610 Series

 Positioning TablesIntroduction F-2
Ordering Guide

\qquad F-4
Specifications

\qquad F-5
Dimensions

\qquad F-6
Mounting Brackets F-9
Thrust Capacity (axial load) F-11
Screw Travel Life F-12
Screw Options F-13
Linear Bearing Load Capacity F-18
EOT \& Home Switches F-19
Motor Couplings F- 22
Motor Mount Options F-24
Power-off Electric Brakes F-26
Rotary Encoders

\qquad F-27

Single or Multiple Axis

LINTECH's 610 series positioning tables offer precision performance and design flexibility for use in a wide variety of Motion Control applications.

\author{

- Welding
 - Test Stands
 - Part Insertion
 - Laser Positioning
 - Liquid Dispensing
 - Gluing
 - Pick \& Place
 - Part Scanning
 - Inspection Stations
 - General Automation
 - Semiconductor Processing
}

Quality Construction

LINTECH's 610 series tables are designed to maximize performance while minimizing physical size and cost. These tables use a low friction, preloaded, recirculating linear ball bearing system, which rides on precision ground profile linear rails. The linear rails are mounted to an aluminum base, which offers a rigid support over the entire travel of the table's carriage. The load is mounted to a precision machined aluminum carriage. The 610 series uses threaded stainless steel inserts in carriage plate for customer mounting of load. There are 38 different acme \& ball screw options, that offer high efficiencies and long life at an economical price. These tables are designed to allow for numerous options. They include motor mounts, couplings, EOT \& Home switches, rotary encoders, power-off electric brakes, motor wrap packages and can be configured for multiple axis applications.

Available Options

Acme Screws \& Ball Screws

An assortment of acme screws and ball screws can be installed in the 610 series tables, providing solutions to load back driving, high duty cycle, high speed, extreme smoothness, and sensitive positioning applications.

Carriage Adapter Plates \& Cartesian Brackets

Optional carriage adapter plates and vertical angle brackets can be mounted directly to the top of various LINTECH positioning tables, thus providing for easy multiple axis configurations.

IP30 Rated Enclosed Positioning Slide

For harsh environmental conditions, and for operator protection, these tables are fitted with aluminum covers with a belt which covers the gaps on the top where the bearing carriage rides. This provides protection for all internal components.

End of Travel and Home Switches

The 610 series tables can be provided with end of travel (EOT) and home switches mounted and wired on either side of the table. Most position controllers can utilize the EOT switches to stop carriage motion when the extreme table travel has been reached in either direction. The home switch provides a known reference location on the table.

Rotary Encoders

Incremental encoders can be mounted to the table in order to provide positional data back to either a motion controller, or a digital display. Contact factory if linear encoder is required.

Motor Adapter Brackets

NEMA 23, NEMA 34, or any metric mount motor can be mounted to a 610 series positioning table with the use of adapters for interface.

Turcite Nut With Rolled Ball Screw

This solid polymer nut has no rolling elements in it, and performs very similar to an acme nut. It can provide smoother motion \& less audible noise than most ball nuts, and is ideal for corrosive \& vertical applications.

Other

The 610 series tables can be provided with chrome plated linear bearings, rails, \& screws for corrosive environment applications, power-off electric brakes for load locking applications, motor wrap packages for space limited applications, and a hand crank for manually operated applications.

Standard Features - 610 Series

- Compact 5.91 inches (150 mm) wide by 2.95 inches (75 mm) tall
- Travel lengths from 6 inches (150 mm) to 60 inches (1520 mm)
- Threaded stainless steel inserts in carriage for load mounting
- $0^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ operating temperature
- 2 rails; 2 or 4 self lube bearings; 6 inch long carriage
- Precision ground profile linear rail design
- Recirculating linear ball bearing system
- IP30 rated enclosed positioning slide

Options - 610 Series

ㅁ Chrome plated linear bearings, rails and screws
\square End of travel (EOT) and home switches wired

- CAD drawings available via our Website
- Adapter brackets for non-NEMA motors
- NEMA 23 \& 34 motor wrap packages
- Rotary incremental encoders
- NEMA 34 adapter bracket
- Power-off electric brakes
- Turcite nut option
- Motor Couplings
- Ball screws:

Rolled - Non-preloaded \& Preloaded Nuts:
0.625 inch diameter, 0.200 inch lead
0.625 inch diameter, 1.000 inch lead 0.750 inch diameter, 0.200 inch lead 0.750 inch diameter, 0.500 inch lead

Precision - Non-preloaded \& Preloaded Nuts:
0.625 inch diameter, 0.200 inch lead 16 mm diameter, 5 mm lead 16 mm diameter, 10 mm lead 16 mm diameter, 16 mm lead 0.750 inch diameter, 0.200 inch lead 20 mm diameter, 5 mm lead 20 mm diameter, 20 mm lead

Ground - Preloaded Nuts Only: 0.625 inch diameter, 0.200 inch lead 0.625 inch diameter, 0.500 inch lead

ㅁ Acme screws:
Rolled - Non-preloaded \& Preloaded Nuts:
0.625 inch diameter, 0.100 inch lead
0.625 inch diameter, 0.200 inch lead
Limit \& Home Switches (see pages F-19 to F-21 for locationn and sepcifcation)

L00 - no switches		Mechanical	Reed	Hall	Prox (NPN)	Prox (PNP)
L99 - other	EOT \& home switches	L01R or L	L04R or L	LO7R or L	L10R or L	L13R or L
	EOT switches only	L02R or L	L05R or L	L08R or L	L11R or L	L14R or L
	home switch only	L03R or L	L06R or L	L09R or L	L12R or L	L15R or L

Encoder Options - SE OPTION ONLY (see page F-27)
E00 - none E01 - rotary (500 lines/rev) E02 - rotary (1000 lines/rev) E03 - rotary (1270 lines/rev) E99 - other (linear or rotary)

Power-off Brakes - SE OPTION ONLY (see page F-26)
B00 - none
B01-24 VDC
B02 - 90 VDC
B99 - other

Specifications

Load Capacities	Two (2) Bearing Carriage		Four (4) Bearing Carriage	
Dynamic Horizontal 2 million inches (50 km) of travel	3,890 lbs	(1765 kgf)	7,780 lbs	(3530 kgf)
Dynamic Horizontal 100 million inches ($1270 \mathrm{~km} \mathrm{)} \mathrm{of} \mathrm{travel}$	1,045 lbs	(474 kgf)	2,090 lbs	(948 kgf)
Static Horizontal	5,820 lbs	(2640 kgf)	11,640 lbs	(5280 kgf)
Dynamic Roll Moment 2 million inches (50 km) of travel	460 ft -lbs	($624 \mathrm{~N}-\mathrm{m}$)	920 ft -lbs	($1247 \mathrm{~N}-\mathrm{m}$)
Dynamic Roll Moment 100 million inches ($1270 \mathrm{~km} \mathrm{)} \mathrm{of} \mathrm{travel}$	124 ft -lbs	($168 \mathrm{~N}-\mathrm{m}$)	247 ft -lbs	($335 \mathrm{~N}-\mathrm{m}$)
Static Roll Moment	840 ft -lbs	($1139 \mathrm{~N}-\mathrm{m}$)	1,680 ft-lbs	(2277 N-m)
Dyn. Pitch \& Yaw Moment 2 million inches (50 km) of travel	71 ft -lbs	($96 \mathrm{~N}-\mathrm{m}$)	$980 \mathrm{ft}-\mathrm{lbs}$	(1,328 N-m)
Dyn. Pitch \& Yaw Moment 100 million inches (1270 km) of travel	19 ft -lbs	($26 \mathrm{~N}-\mathrm{m}$)	263 ft -lbs	($356 \mathrm{~N}-\mathrm{m}$)
Static Pitch \& Yaw Moment	126 ft -lbs	($170 \mathrm{~N}-\mathrm{m}$)	1,770 ft-lbs	(2400 N-m)
Each Bearing Dyn. Capacity 2 million inches (50 km) of travel	1,945 lbs	(882 kgf)	1,945 lbs	(882 kgf)
Each Bearing Dyn. Capacity 100 million inches (1270 km) of travel	525 lbs	(238 kgf)	525 lbs	(238 kgf)
Each Bearing Static Load Capacity	2,910 lbs	(1320 kgf)	2,910 lbs	(1320 kgf)
Thrust Force Capacity 10 million screw revolutions	895 lbs	(406 kgf)	895 lbs	(406 kgf)
Thrust Force Capacity $\quad 500$ million screw revolutions	240 lbs	(109 kgf)	240 lbs	(109 kgf)
Maximum Acceleration	$386 \mathrm{in} / \mathrm{sec}^{2}$	$\left(9,8 \mathrm{~m} / \mathrm{sec}^{2}\right)$	$772 \mathrm{in} / \mathrm{sec}^{2}$	$\left(19,6 \mathrm{~m} / \mathrm{sec}^{2}\right)$
d_{1} Center to center distance (spread) between the	3.228	$(81,99 \mathrm{~mm})$	3.228 in	$(81,99 \mathrm{~mm})$
d_{2} Center to center distance (spacing) of the bearings on a single rail			3.476 in	(88,29 mm)
\mathbf{d}_{r} Distance from the bearing center to top of carriage plate surface	1.299 in	(32,99 mm)	1.299 in	$(32,99 \mathrm{~mm})$

Other	For Two (2) \& Four (4) Bearing Carriages
Table Material Linear Rail Material Screw Material (see pages F-13 to F16) Screw Material (see pages F-13 to F16)	Base, Carriage, End Plates \& Cover Plate Option - 6061 anodized aluminum Case Hardened Steel Acme Screw - Stainless Steel Rolled Ball, Precision Ball, \& Ground Ball - Case Hardened Steel
Unidirectional Repeatability Bidirectional Repeatability Straightness Flatness	
Orthogonality (multi-axis systems) Friction Coefficient	$\begin{gathered} <30 \text { arc-seconds } \\ <0.01 \end{gathered}$
Motor Mount Coupling Belt Cover Strip Material	NEMA 23 \& 34 Mounts, Metric Mounts, Motor Wraps, and Hand Crank Option Three (3) different styles available Black - Polyurethane

Dimensions \& Specifications

Model Number	Travel Length inches (mm)	Table Dimensions inches (mm)		Mounting Dimensions inches (mm)					Screw Length inches (mm)	$\begin{aligned} & \text { Table }^{(2)} \\ & \text { Weight } \\ & \text { lbs } \\ & \text { (kgf) } \end{aligned}$
		A	B	C	D	E	$M^{(1)}$	N		
614606-NE	$\begin{gathered} 6 \\ (150) \end{gathered}$	$\begin{aligned} & 12.125 \\ & (308,0) \end{aligned}$	$\begin{aligned} & 17.800 \\ & (452,1) \end{aligned}$	$\begin{aligned} & 10.125 \\ & (257.18) \end{aligned}$	$\begin{gathered} 8.125 \\ (206,38) \end{gathered}$	3	8	8	$\begin{aligned} & 13.40 \\ & (340) \end{aligned}$	$\begin{aligned} & 17.8 \\ & (8,1) \end{aligned}$
614612-NE	$\begin{gathered} 12 \\ (300) \end{gathered}$	$\begin{aligned} & 18.125 \\ & (460,4) \end{aligned}$	$\begin{aligned} & 23.800 \\ & (604,5) \end{aligned}$	$\begin{aligned} & 16.125 \\ & (409,58) \end{aligned}$	$\begin{aligned} & 14.125 \\ & (358,78) \end{aligned}$	5	8	12	$\begin{aligned} & 19.40 \\ & (493) \end{aligned}$	$\begin{gathered} 23.0 \\ (10,5) \end{gathered}$
614618-NE	$\begin{gathered} 18 \\ (455) \end{gathered}$	$\begin{gathered} 24.125 \\ (612,8) \end{gathered}$	$\begin{array}{r} 29.800 \\ (756,9) \end{array}$	$\begin{aligned} & 22.125 \\ & (561,98) \end{aligned}$	$\begin{aligned} & 20.125 \\ & (511,18) \end{aligned}$	7	8	16	$\begin{gathered} 25.40 \\ (645) \end{gathered}$	$\begin{gathered} 28.2 \\ (12,8) \end{gathered}$
614624-NE	$\begin{gathered} 24 \\ (605) \end{gathered}$	$\begin{aligned} & 30.125 \\ & (765,2) \end{aligned}$	$\begin{aligned} & 35.800 \\ & (909,3) \end{aligned}$	$\begin{aligned} & 28.125 \\ & (714,38) \end{aligned}$	$\begin{aligned} & 12.563 \\ & (319,10) \end{aligned}$	9	12	20	$\begin{gathered} 31.40 \\ (798) \end{gathered}$	$\begin{gathered} 33.5 \\ (15,2) \end{gathered}$
614630-NE	$\begin{gathered} 30 \\ (760) \end{gathered}$	$\begin{aligned} & 36.125 \\ & (917,6) \end{aligned}$	$\begin{aligned} & 41.800 \\ & (1061,7) \end{aligned}$	$\begin{aligned} & 34.125 \\ & (866,78) \end{aligned}$	$\begin{gathered} 15.563 \\ (395,30) \end{gathered}$	11	12	24	$\begin{gathered} 37.40 \\ (950) \end{gathered}$	$\begin{gathered} 38.8 \\ (17,6) \end{gathered}$
614636-NE	$\begin{gathered} 36 \\ (910) \end{gathered}$	$\begin{aligned} & 42.125 \\ & (1070,0) \end{aligned}$	$\begin{aligned} & 47.800 \\ & (1214,1) \end{aligned}$	$\begin{gathered} 40.125 \\ (1019,18) \end{gathered}$	$\begin{aligned} & 18.563 \\ & (471,50) \end{aligned}$	13	12	28	$\begin{aligned} & 43.40 \\ & (1102) \end{aligned}$	$\begin{gathered} 44.1 \\ (20,0) \end{gathered}$
614642-NE	$\begin{gathered} 42 \\ (1060) \end{gathered}$	$\begin{aligned} & 48.125 \\ & (1222,4) \end{aligned}$	$\begin{gathered} 53.800 \\ (1366,5) \end{gathered}$	$\begin{gathered} 46.125 \\ (1171,58) \end{gathered}$	$\begin{aligned} & 21.563 \\ & (547,70) \end{aligned}$	15	12	32	$\begin{aligned} & 49.40 \\ & (1255) \end{aligned}$	$\begin{gathered} 49.3 \\ (22,4) \end{gathered}$
614648-NE	$\begin{gathered} 48 \\ (1215) \end{gathered}$	$\begin{aligned} & 54.125 \\ & (1374,8) \end{aligned}$	$\begin{aligned} & 59.800 \\ & (1518,9) \end{aligned}$	$\begin{gathered} 52.125 \\ (1323.98) \end{gathered}$	$\begin{aligned} & 16.042 \\ & (407,47) \end{aligned}$	17	16	36	$\begin{aligned} & 55.40 \\ & (1407) \end{aligned}$	$\begin{gathered} 54.6 \\ (24,8) \end{gathered}$
614654-NE	$\begin{gathered} 54 \\ (1370) \end{gathered}$	$\begin{gathered} 60.125 \\ (1527,1) \end{gathered}$	$\begin{array}{r} 65.800 \\ (1671,3) \end{array}$	$\begin{gathered} 58.125 \\ (1476,38) \end{gathered}$	$\begin{gathered} 18.042 \\ (458,27) \end{gathered}$	19	16	40	$\begin{gathered} 61.4 \\ (1560) \end{gathered}$	$\begin{gathered} 59.9 \\ (27.2) \end{gathered}$
614660-NE	$\begin{gathered} 60 \\ (1520) \end{gathered}$	$\begin{gathered} 66.125 \\ (1679,6) \end{gathered}$	$\begin{aligned} & 71.800 \\ & (1823,7) \end{aligned}$	$\begin{gathered} 64.125 \\ (1628,78) \end{gathered}$	$\begin{aligned} & 20.042 \\ & (509,07) \end{aligned}$	21	16	44	$\begin{gathered} 67.4 \\ (1712) \end{gathered}$	$\begin{gathered} 65.2 \\ (29,6) \end{gathered}$

- $\mathrm{x}=2$; Carriage has 2 bearings; Carriage weight $=2.5 \mathrm{lbs}(1,13 \mathrm{~kg})$
$-x=4$; Carriage has 4 bearings; Carriage weight $=3.0 \mathrm{lbs}(1,36 \mathrm{~kg})$

Footnotes:
(1) Mounting holes are total number. These holes are used for vertically mounting using 212790 "L" bracket. See page F-9 for details on bracket.
(2) Weight shown is with a 0.625 inch (16 mm) diameter screw, a NEMA 23 motor mount [$0.42 \mathrm{lbs}(0,19 \mathrm{~kg})]$, a C100 style [$0.09 \mathrm{lbs}(0,04 \mathrm{~kg})]$ coupling, and a 2 bearing carriage. When using a 0.750 inch $(20 \mathrm{~mm})$ diameter screw add 0.042 lbs per inch $(0,00075 \mathrm{~kg}$ per mm$)$ of screw length for a given model number.

Dimensions - NE and SE

 adapter plate information.

Toll Free Phone: 877-378-0240 T Specifications subiect t tryange widlbounngtify

Dimensions - Detail D

6" travel

12" travel

18" travel

Sold \& Serviced By:

Mounting Brackets

Mounting brackets (or tapped base holes see page F-7) are required in order to install the 610 onto a horizontal or vertical surface. Two bracket styles allow for ease of installation. The horizontal bracket uses the 610 extrusion slot on both sides to rigidly hold the unit. The vertical bracket uses drilled \& tapped holes on the extrusion body on both sides. This provides a fixed and safer means of holding the unit when installed vertically.

Moment of Inertia Values

The "moment of inertia" of an object is a gauge of the strength of that object to resist deflecting when used in an application or orientation where deflection might occur. The higher an I value relates to a lower amount of deflection.

X-Y Bracket

Mounting bracket is required in order to install the 610 onto a horizontal or vertical surface in a "stacked" X-Y configuration. This $\mathrm{X}-\mathrm{Y}$ adapter plate is used to mount a 610 unit onto a second 610 unit in a configuration.

Screw Nut Lubrication Access

Screw nut lube access is provided on both sides of the base. Lubrication can be input into any of the optional screw nuts via an Alemite 1885 fitting inserted into the carriage. This fitting is accessible on each side by removing the round black extrusion cover on the side of the 610 base. The location is dimensioned on page F-7. Only one side insertion is required.

Ball Chain Option for Bearings (-BC1)

The 610 series utilizes self lube profile rail linear bearings with re-circulating steel balls. The ball chain option captures each steel ball preventing any contact from one ball to another, as the balls re-circulate. This allows for increased linear velocity, acceleration, and provides for longer life as well. In addition, this feature will reduce the "audible noise" for the re-circulating balls, and increase the smoothness of motion. .

Thrust Capacity (axial load)

The life of the screw end support bearings can be estimated by evaluating the applied axial (thrust) load. The applied load "as seen by the bearings" depends upon the table orientation. Typically, the extra force acting upon the bearings during the acceleration interval is offset by a reduction in force during the deceleration interval. Therefore, evaluating the life of the bearings at a constant speed is adequate. The life of the screw end support bearings may not be the limiting element for a given application. See page for load/life capacity of acme and ball screw nuts.

Horizontal Application
Vertical Application
$\mathbf{F}=\left(\mathbf{W} \mathrm{x}^{\mu}\right)+\mathbf{E}$
$L=\left[\frac{R}{F \times S}\right]^{3} \times B$

B = 2 (for millions of revolutions)
$\mathbf{E}=$ externally applied extra forces
$\mathbf{F}=$ applied axial load (as seen by the bearings)
$\mathbf{L}=$ calculated life (millions of revolutions)
$\mathbf{R}=$ dynamic load capacity of bearings at 2 million screw revolutions (see below)
$\mathbf{S}=$ safety factor (1 to 8)
$\mathbf{W}=$ user mounted load weight to carriage
$\mu=$ coefficient of friction for linear bearing system (0.01)

Screw End Supports	Number of Screw Revolutions millions of screw revolutions							
	Static	1	2	10	50	100	500	
Thrust Capacity lbs (kg)	1,725 (782)	1,725 (782)	1,530 (694)	895 (406)	525 (238)	415 (188)	240 (109)	

Screw Travel Life

The life of an acme or ball screw can be estimated by evaluating the load applied to the nut. The applied load "as seen by the screw nut" depends upon the table orientation. Typically, the extra force acting upon the screw nut during the acceleration interval is offset by a reduction in force during the deceleration interval. Therefore, evaluating the life of the screw nut at a constant speed is adequate. The life of the screw nut may not be the limiting element for a given application. See page for load/life capacity of the screw end support bearings.
Horizontal Application

Vertical Application
 $\mathbf{F}=\mathbf{W}+\mathbf{E}$

$L=\left[\frac{R}{F \times S}\right]^{3} \times B$

B = either 1 (for millions of inches) or 25 (for Km)
E = externally applied extra forces
$\mathbf{F}=$ applied axial load (as seen by screw nut)
$\mathbf{L}=$ calculated travel life (millions of inches or Km)
$\mathbf{R}=$ rated dynamic load capacity of screw nut at 1 million inches of travel or 25 Km (see pages)
$\mathbf{S}=$ safety factor (1 to 8)
$\mathbf{W}=$ user mounted load weight to carriage
${ }^{\mu} \quad=\quad$ coefficient of friction for linear bearing system (0.01)

Screws - Acme \& Ball

Acme screws use a turcite (polymer), or bronze nut. The nut threads ride in the matching acme screw threads, much like the ordinary nut and bolt system. This produces a higher friction (lower efficiency) system than a ball screw assembly, since there are no rolling elements between the nut and the acme screw threads. For applications requiring low speeds, noise and duty cycles, an acme screw works fine. Also, an acme screw is a good choice for most vertical applications, as it typically prevents back driving of the attached load.

Ball screws are the screw of choice for high duty cycle, high speed, and long life applications. The 610 series tables can be fitted with an assortment of ball screws. The ball screw nut uses one or more circuits of recirculating steel balls which roll between the nut and ball screw grooves, providing an efficient low friction system. Using a higher lead
ball screw (for example a 0.500 inch lead instead of a 0.200 inch lead) will offer greater carriage speed for applications requiring rapid traverse, or fast, short incremental moves. Low wear and long life are key features of a ball screw system.

LINTECH provides three different ball screw configurations. The rolled ball screw system utilizes a tapped nut with a standard accuracy grade rolled screw. The precision ball screw system utilizes a ground nut with a higher accuracy grade rolled screw. The ground ball screw system utilizes a ground nut with a high accuracy precision ground screw.

Some screws are available with preloaded nuts. The preloaded nut assembly offers high bidirectional repeatability by eliminating backlash.

Consideration	Acme Screw	Ball Screws			Comments
		Rolled	Precision	Ground	
Audible noise	least audible noise	most audible noise	less audible noise than rolled screw	less audible noise than precision screw	Acme: no rolling elements provide for quiet operation. Ball: recirculating balls in nut assembly transmit audible noise during motion; due to more accurate machining procedures - precision \& ground ball screws are quieter than rolled ball screws.
Back Driving Loads	may prevent back driving	can easily back drive a load	can easily back drive a load	can easily back drive a load	Acme: good for light loads \& vertical applications. Ball: recirculating balls in nut assembly produce a low friction system; vertical applications may require a brake to hold the load when no power is applied to the motor.
Backlash non-preloaded nut	will increase with wear	constant	constant	constant	Acme: preloaded nut assembly eliminates backlash. Ball: preloaded nut assembly eliminates backlash.
Duty Cycle	low to medium $\text { (< } 50 \text { \%) }$	high (100 \%)	high (100 \%)	high (100 \%)	Acme: low duty cycle due to high sliding friction. Ball: high duty cycle due to recirculating balls in nut assembly; high efficiency \& low friction system.
Life	shorter due to higher friction	long	long	long	Acme: mechanical wear related to duty cycle, load \& speed. Ball: minimal wear if operated in proper environment, within load specifications, and periodically lubricated.
Relative - Cost	slightly more than rolled ball	least expensive	slightly more than rolled ball	most expensive	Acme: a little more expensive than the rolled ball screw. Ball: due to more accurate manufacturing procedures precision rolled \& ground ball screws are more expensive.
Screw Efficiency	Iow 40 \% -Acme 60 \% -Turcite	high (90\%)	high (90\%)	high (90\%)	Acme: low efficiency due to high sliding friction. Ball: high efficiency due to recirculating balls in nut assembly - low friction system.
Smoothness	can be smooth	least smooth	medium smoothness	smoothest	Acme: due to friction can start/stop at very low speeds. Ball: smoothness is constant through a wide speed range; due to more accurate manufacturing procedures precision rolled \& ground ball screws are smoother than rolled ball screws.
Speeds	low	high	high	high	Acme: high friction can causes excess heat \& wear at high speeds. Ball: recirculating balls in nut provide for a high speed system due to low friction \& high efficiency.

Toll Free Phone: 877-378-0240

Screws - Acme \& Ball

Model Number	Travel Length in (mm)	Maximum Safe Table Operating Speed in/sec (mm/sec)										
		Screw										
		0.625 dia. 0.100 lead	0.625 dia. 0.200 lead	0.625 dia. 0.500 lead	0.625 dia. 1.000 lead	16 mm dia. 5 mm lead	16 mm dia. 10 mm lead	16 mm dia. 16 mm lead	$\begin{aligned} & 0.750 \text { dia. } \\ & 0.200 \text { lead } \end{aligned}$	$\begin{aligned} & 0.750 \text { dia. } \\ & 0.500 \text { lead } \end{aligned}$	20 mm dia. 5 mm lead	20 mm dia. 20 mm lead
61×606	6 (150)	$\begin{gathered} 5.0 \\ (127) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 50.0 \\ (1270) \end{gathered}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 31.5 \\ & (800) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 39.3 \\ & \text { (998) } \end{aligned}$
61×612	12 (300)	$\begin{gathered} 5.0 \\ (127) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 50.0 \\ (1270) \end{gathered}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 31.5 \\ & (800) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 39.3 \\ & \text { (998) } \end{aligned}$
61×618	18 (455)	$\begin{gathered} 5.0 \\ (127) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 50.0 \\ (1270) \end{gathered}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 31.5 \\ & (800) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 39.3 \\ & (998) \end{aligned}$
61×624	24 (605)	$\begin{gathered} 5.0 \\ (127) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 50.0 \\ (1270) \end{gathered}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 31.5 \\ & (800) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 39.3 \\ & (998) \end{aligned}$
61×630	30 (760)	$\begin{gathered} 4.6 \\ (117) \end{gathered}$	$\begin{gathered} 9.3 \\ (236) \end{gathered}$	$\begin{aligned} & 24.0 \\ & (609) \end{aligned}$	$\begin{gathered} 47.7 \\ (1211) \end{gathered}$	$\begin{gathered} 9.5 \\ (241) \end{gathered}$	$\begin{aligned} & 18.8 \\ & (447) \end{aligned}$	$\begin{aligned} & 30.4 \\ & (772) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 39.3 \\ & \text { (998) } \end{aligned}$
61×636	36 (910)	$\begin{aligned} & 3.4 \\ & (86) \end{aligned}$	$\begin{gathered} 6.9 \\ (175) \end{gathered}$	$\begin{aligned} & 17.8 \\ & (452) \end{aligned}$	$\begin{aligned} & 35.4 \\ & (899) \end{aligned}$	$\begin{gathered} 7.0 \\ (177) \end{gathered}$	$\begin{aligned} & 13.9 \\ & (353) \end{aligned}$	$\begin{aligned} & 22.5 \\ & (571) \end{aligned}$	$\begin{gathered} 8.8 \\ (223) \end{gathered}$	$\begin{aligned} & 21.6 \\ & (548) \end{aligned}$	$\begin{gathered} 8.9 \\ (226) \end{gathered}$	$\begin{aligned} & 35.9 \\ & (912) \end{aligned}$
61×642	42 (1060)	$\begin{gathered} 2.6 \\ (66) \end{gathered}$	$\begin{gathered} 5.3 \\ (134) \end{gathered}$	$\begin{aligned} & 13.7 \\ & (348) \end{aligned}$	$\begin{aligned} & 27.3 \\ & \text { (693) } \end{aligned}$	$\begin{gathered} 5.4 \\ (137) \end{gathered}$	$\begin{aligned} & 10.7 \\ & (272) \end{aligned}$	$\begin{aligned} & 17.4 \\ & (441) \end{aligned}$	$\begin{gathered} 6.7 \\ (170) \end{gathered}$	$\begin{aligned} & 16.6 \\ & (421) \end{aligned}$	$\begin{gathered} 6.9 \\ (175) \end{gathered}$	$\begin{aligned} & 27.7 \\ & (703) \end{aligned}$
61×648	48 (1215)	$\begin{gathered} 2.1 \\ (53) \end{gathered}$	$\begin{gathered} 4.2 \\ (106) \end{gathered}$	$\begin{aligned} & 10.9 \\ & (276) \end{aligned}$	$\begin{aligned} & 21.7 \\ & (551) \end{aligned}$	$\begin{gathered} 4.3 \\ (109) \end{gathered}$	$\begin{gathered} 8.5 \\ (216) \end{gathered}$	$\begin{aligned} & 13.8 \\ & (350) \end{aligned}$	$\begin{gathered} 5.3 \\ (134) \end{gathered}$	$\begin{aligned} & 13.2 \\ & (335) \end{aligned}$	$\begin{gathered} 5.4 \\ (137) \end{gathered}$	$\begin{aligned} & 22.0 \\ & (558) \end{aligned}$
61×654	54 (1370)	$\begin{aligned} & 1.7 \\ & (43) \end{aligned}$	$\begin{aligned} & 3.4 \\ & (86) \end{aligned}$	$\begin{gathered} 8.8 \\ (224) \end{gathered}$	$\begin{aligned} & 17.6 \\ & (447) \end{aligned}$	$\begin{aligned} & 3.5 \\ & (89) \end{aligned}$	$\begin{gathered} 6.9 \\ (175) \end{gathered}$	$\begin{aligned} & 11.2 \\ & (284) \end{aligned}$	$\begin{gathered} 4.3 \\ (109) \end{gathered}$	$\begin{aligned} & 10.7 \\ & (271) \end{aligned}$	$\begin{gathered} 4.4 \\ (111) \end{gathered}$	$\begin{aligned} & 17.9 \\ & (455) \end{aligned}$
61×660	60 (1520)	$\begin{aligned} & 1.4 \\ & (35) \end{aligned}$	$\begin{aligned} & 2.8 \\ & (71) \end{aligned}$	$\begin{gathered} 7.3 \\ (185) \end{gathered}$	$\begin{aligned} & 14.6 \\ & (370) \end{aligned}$	$\begin{aligned} & 2.9 \\ & (73) \end{aligned}$	$\begin{gathered} 5.7 \\ (145) \end{gathered}$	$\begin{gathered} 9.3 \\ (236) \end{gathered}$	$\begin{aligned} & 3.6 \\ & (91) \end{aligned}$	$\begin{gathered} 8.9 \\ (226) \end{gathered}$	$\begin{aligned} & 3.7 \\ & \text { (94) } \end{aligned}$	$\begin{aligned} & 14.8 \\ & (376) \end{aligned}$

Footnotes:

(1) These listed speeds are a mechanical limitation. The maximum speed of a positioning table depends on the screw diameter, screw lead, screw length, and the screw end bearing support configuration. LINTECH uses a rigid-rigid screw end bearing support configuration in its positioning tables. The correct motor \& drive system needs to be selected in order to obtain the above maximum table speeds.

Screws - Acme \& Ball

SCREW		ROLLED BALL SCREWS								
		Dyn. ${ }^{(1)}$ Capacity lbs (kg)	Static Capacity lbs (kg)	Screw Efficiency \%	$\begin{aligned} & \text { Breakaway } \\ & \text { Torque } \\ & \text { oz-in } \\ & (\mathrm{N}-\mathrm{m}) \end{aligned}$	Position Accuracy inch/ft (microns/300 mm)	Backlash inches (microns)	Unidirectional Repeatability inches (microns)	Bidirectio Repeatab inches (microns)	
	Non-preloaded (S005)	$\begin{gathered} 800 \\ (363) \end{gathered}$	$\begin{aligned} & 6,150 \\ & (2790) \end{aligned}$	90	$\begin{gathered} 10 \\ (0,07) \end{gathered}$	$<\underset{(75)}{0.003}$	$<\underset{(203)}{0.008}$	$+/-0.0002$ (5)	$+\underset{(5)}{0.0002} \text { to }$	$-\begin{gathered} 0.0082 \\ (208) \end{gathered}$
	Preloaded (S006)	$\begin{gathered} 720 \\ (326) \end{gathered}$	$\begin{aligned} & 6,070 \\ & (2753) \end{aligned}$		$\begin{gathered} 20 \\ (0,14) \end{gathered}$		0		$+\underset{(5)}{0.0002} \text { to }$	-0.0002 (5)
	Non-preloaded Turcite Nut (S007)	$\begin{aligned} & 100 \\ & (45) \end{aligned}$	$\begin{gathered} 800 \\ (363) \end{gathered}$	60	$\begin{gathered} 15 \\ (0,11) \end{gathered}$		$<\underset{(203)}{0.008}$		$+\underset{(5)}{0.0002} \text { to }$	$\begin{gathered} -0.0082 \\ (208) \end{gathered}$
	Preloaded Turcite Nut (S008)	$\begin{gathered} 90 \\ (41) \end{gathered}$	$\begin{aligned} & 800 \\ & (363) \end{aligned}$		$\begin{gathered} 30 \\ (0,21) \end{gathered}$		0		$+\underset{(5)}{0.0002} \text { to }$	-0.0002 (5)
	Non-preloaded (S009)	$\begin{gathered} 590 \\ (267) \end{gathered}$	$\begin{aligned} & 2,425 \\ & (1100) \end{aligned}$	90	$\begin{gathered} 25 \\ (0,18) \end{gathered}$	$<\begin{gathered} 0.004 \\ (100) \end{gathered}$	$\begin{array}{r} 0.008 \\ (203) \end{array}$	$+\begin{gathered} 0.0002 \\ (5) \end{gathered}$	$+\underset{(5)}{0.0002} \text { to }$	$-\begin{gathered} 0.0082 \\ (208) \end{gathered}$
	Preloaded (S010)	$\begin{gathered} 530 \\ (240) \end{gathered}$	$\begin{aligned} & 2,390 \\ & (1084) \end{aligned}$		$\begin{gathered} 40 \\ (0,28) \end{gathered}$		0		$+\underset{(5)}{0.0002} \text { to }$	$-\begin{gathered} 0.0002 \\ (5) \end{gathered}$
	Non-preloaded Turcite Nut (S011)	$\begin{aligned} & 100 \\ & (45) \end{aligned}$	$\begin{gathered} 800 \\ (363) \end{gathered}$	60	$\begin{gathered} 35 \\ (0,25) \end{gathered}$		$\begin{array}{r} 0.008 \\ (203) \end{array}$		$+\underset{(5)}{0.0002} \text { to }$	$-\begin{gathered} 0.0082 \\ (208) \end{gathered}$
	Preloaded Turcite Nut (S012)	$\begin{gathered} 90 \\ (41) \end{gathered}$	$\begin{aligned} & 800 \\ & (363) \end{aligned}$		$\begin{gathered} 60 \\ (0,42) \end{gathered}$		0		$+\underset{(5)}{0.0002} \text { to }$	$-\underset{(5)}{0.0002}$
	Non-preloaded (S013)	$\begin{aligned} & 1,900 \\ & (862) \end{aligned}$	$\begin{gathered} 18,800 \\ (8527) \end{gathered}$	90	$\begin{gathered} 20 \\ (0,14) \end{gathered}$	$<\underset{(75)}{0.003}$	$\begin{array}{r} 0.008 \\ (203) \end{array}$	$+\begin{gathered} 0.0002 \\ (5) \end{gathered}$	$+\underset{(5)}{0.0002} \text { to }$	$-\begin{gathered} 0.0082 \\ (208) \end{gathered}$
	(2) \qquad (S014)	$\begin{aligned} & 1,710 \\ & (776) \end{aligned}$	$18,610$ (8441)		$\begin{gathered} 30 \\ (0,21) \end{gathered}$		0		$+\underset{(5)}{0.0002} \text { to }$	$-\underset{(5)}{0.0002}$
	Non-preloaded Turcite Nut (S015)	$\begin{aligned} & 195 \\ & (88) \end{aligned}$	$\begin{aligned} & 1,500 \\ & (680) \end{aligned}$	60	$\begin{gathered} 25 \\ (0,18) \end{gathered}$		$<\underset{(203)}{0.008}$		$+\underset{(5)}{0.0002} \text { to }$	$\begin{gathered} -0.0082 \\ (208) \end{gathered}$
	Preloaded Turcite Nut (S016)	$\begin{aligned} & 175 \\ & (79) \end{aligned}$	$\begin{aligned} & 1,500 \\ & (680) \end{aligned}$		$\begin{gathered} 40 \\ (0,28) \end{gathered}$		0		$+\underset{(5)}{0.0002} \text { to }$	$-\underset{(5)}{0.0002}$
	Non-preloaded (S017)	$\begin{aligned} & 3,450 \\ & (1565) \end{aligned}$	$\begin{aligned} & 24,200 \\ & (10977) \end{aligned}$	90	$\begin{gathered} 25 \\ (0,18) \end{gathered}$	$<\underset{(75)}{0.003}$	$<\quad \begin{array}{r} 0.008 \\ (203) \end{array}$	$+/-\underset{(5)}{0.0002}$	$+\underset{(5)}{0.0002} \text { to }$	$-\begin{gathered} 0.0082 \\ (208) \end{gathered}$
	(2) Preloaded (S018)	$\begin{aligned} & 3,150 \\ & (1429) \end{aligned}$	$\begin{aligned} & 23,855 \\ & (10820) \end{aligned}$		$\begin{gathered} 40 \\ (0,28) \end{gathered}$		0		$+\underset{(5)}{0.0002} \text { to }$	$-\underset{(5)}{0.0002}$
	Non-preloaded Turcite Nut (S019)	$\begin{aligned} & 195 \\ & (88) \end{aligned}$	$\begin{aligned} & 1,500 \\ & (680) \end{aligned}$	60	$\begin{gathered} 35 \\ (0,25) \end{gathered}$		$<\underset{(203)}{0.008}$		$+\underset{(5)}{0.0002} \text { to }$	$\begin{gathered} -0.0082 \\ (208) \end{gathered}$
	Preloaded Turcite Nut (SO20)	$\begin{aligned} & 175 \\ & (79) \end{aligned}$	$\begin{aligned} & 1,500 \\ & (680) \end{aligned}$		$\begin{gathered} 60 \\ (0,42) \end{gathered}$		0		$+\underset{(5)}{0.0002} \text { to }$	$-\begin{gathered} 0.0002 \\ (5) \end{gathered}$

Footnotes:

(1) Dynamic load capacity of screw based on 1 million inches of travel (25 Km).
(2) There is a 0.675 inch ($17,1 \mathrm{~mm}$) reduction of carriage travel (from the listed travel) when using a preloaded nut with this screw option for all
(-CP0), (-CP1), and (-CP2) model versions with a 6 inch carriage. All the model numbers with (-WC1) and 12 inch carriages are not affectad RVO GO.COm

- Screw Drive -

Screws - Acme \& Ball

SCREW		PRECISION BALL SCREWS							
		Dyn. (1) Capacity Ibs (kg)	Static Capacity lbs (kg)	Screw Efficiency $\%$	$\begin{gathered} \text { Breakaway } \\ \text { Torque } \\ \text { oz-in } \\ (\mathrm{N}-\mathrm{m}) \end{gathered}$	Position Accuracy inch/ft (microns/300 mm)	Backlash inches (microns)	Unidirectional Repeatability inches (microns)	Bidirectional Repeatability inches (microns)
	Non-preloaded (S114) Preloaded (S115)	$\begin{gathered} 876 \\ (397) \\ \\ 788 \\ (357) \end{gathered}$	$\begin{aligned} & 2,700 \\ & (1224) \\ & \\ & 2,430 \\ & (1102) \end{aligned}$	90	$\begin{gathered} 10 \\ (0,07) \\ \\ 20 \\ (0,14) \end{gathered}$	$<\underset{(50)}{0.002}$	<0.003 (76) 0	$+/-\underset{(5)}{0.0002}$	$\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0032}{(81)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$
	Non-preloaded (S116) Preloaded (S117)	$\begin{gathered} 876 \\ (397) \\ \\ 788 \\ (357) \end{gathered}$	$\begin{aligned} & 2,700 \\ & (1224) \\ & \\ & 2,430 \\ & (1102) \end{aligned}$	90	$\begin{gathered} 10 \\ (0,07) \\ \\ 20 \\ (0,14) \end{gathered}$	$<\underset{(50)}{0.002}$	<0.003 (76) 0	$+/-\underset{(5)}{0.0002}$	$\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0032}{(81)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$
	Non-preloaded (S118) Preloaded (S119)	$\begin{gathered} 1,080 \\ (489) \\ \\ 972 \\ (440) \end{gathered}$	$\begin{aligned} & 2,630 \\ & (1192) \\ & \\ & 2,365 \\ & (1072) \end{aligned}$	90	$\begin{gathered} 15 \\ (0,11) \\ 25 \\ (0,18) \end{gathered}$	$<\underset{(50)}{0.002}$	$<\underset{(76)}{0.003}$ 0	$+/-0.0002$ (5)	$\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0032}{(81)} \\ & +\underset{(5)}{0.0002} \text { to }-\frac{0.0002}{(5)} \end{aligned}$
	Non-preloaded (S120) Preloaded (S121)	$\begin{gathered} 819 \\ (371) \\ \\ 737 \\ (334) \end{gathered}$	$\begin{aligned} & 1,620 \\ & (734) \\ & 1,455 \\ & (659) \end{aligned}$	90	$\begin{gathered} 20 \\ (0,14) \\ \\ 35 \\ (0,24) \end{gathered}$	$<\underset{(50)}{0.002}$	$<\underset{(76)}{0.003}$ 0	$+/-\underset{(5)}{0.0002}$	$\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0032}{(81)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$
	Non-preloaded (S122) Preloaded (S123)	$\begin{gathered} 964 \\ (437) \\ \\ 867 \\ (393) \end{gathered}$	$\begin{aligned} & 3,360 \\ & (1524) \\ & 3,025 \\ & (1372) \end{aligned}$	90	$\begin{gathered} 15 \\ (0,11) \\ \\ 25 \\ (0,18) \end{gathered}$	$<\underset{(50)}{0.002}$	<0.003 (76) 0	$+/-\underset{(5)}{0.0002}$	$\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0032}{(81)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$
	Non-preloaded (S124) Preloaded (S125)	$\begin{gathered} 1,070 \\ (485) \\ \\ 960 \\ (435) \end{gathered}$	$\begin{aligned} & 3,990 \\ & (1809) \\ & 3,590 \\ & (1628) \end{aligned}$	90	$\begin{gathered} 15 \\ (0,11) \\ \\ 25 \\ (0,18) \end{gathered}$	$<\frac{0.002}{(50)}$	$<\underset{(76)}{0.003}$ 0	$+/-\underset{(5)}{0.0002}$	$\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0032}{(81)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$
	Non-preloaded (S128) Preloaded (S129)	$\begin{aligned} & 1,293 \\ & (586) \\ & \\ & 1,160 \\ & (526) \end{aligned}$	$\begin{aligned} & 3,505 \\ & (1589) \\ & 3,150 \\ & (1428) \end{aligned}$	90	$\begin{gathered} 25 \\ (0,18) \\ 40 \\ (0,28) \end{gathered}$	$<\frac{0.002}{(50)}$	$<\underset{(76)}{0.003}$ 0	$+/-\underset{(5)}{0.0002}$	$\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0032}{(81)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$

Footnotes:
(1) Dynamic load capacity of screw based on 1 million inches of travel (25 Km).

Screws - Acme \& Ball

SCREW	GROUND BALL SCREWS							
	Dyn. (1) Capacity lbs (kg)	Static Capacity lbs (kg)	Screw Efficiency \%	Breakaway Torque oz-in ($\mathrm{N}-\mathrm{m}$)	Position Accuracy inch/ft (microns/300 mm)	Backlash inches (microns)	Unidirectional Repeatability inches (microns)	Bidirectional Repeatability inches (microns)
0.625 dia., 0.200 lead (2) Preloaded (S212)	$\begin{gathered} 987 \\ (447) \end{gathered}$	$\begin{aligned} & 3,080 \\ & (1397) \end{aligned}$	90	$\begin{gathered} 20 \\ (0,14) \end{gathered}$	$<\underset{(50)}{0.002}$	0	$+/-0.0002$ (5)	$+\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002}$
0.625 dia., 0.500 lead (2) Preloaded (S213)	$\begin{aligned} & 1430 \\ & (649) \end{aligned}$	$\begin{aligned} & 4,191 \\ & (1901) \end{aligned}$	90	$\begin{gathered} 30 \\ (0,21) \end{gathered}$	$<\underset{(50)}{0.002}$	0	$+/-0.0002$ (5)	$+\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002}$
16 mm dia., 5 mm lead (2) Preloaded (S214)	$\begin{aligned} & 987 \\ & (447) \end{aligned}$	$\begin{aligned} & 3,080 \\ & (1397) \end{aligned}$	90	$\begin{gathered} 20 \\ (0,14) \end{gathered}$	$<\underset{(50)}{0.002}$	0	$+/-\underset{(5)}{0.0002}$	$+\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002}$
16 mm dia., 16 mm lead (2) Preloaded (S215)	$\begin{gathered} 910 \\ (412) \end{gathered}$	$\begin{aligned} & 1,800 \\ & (816) \end{aligned}$	90	$\begin{gathered} 35 \\ (0,24) \end{gathered}$	$<\underset{(50)}{0.002}$	0	$+/-0.0002$ (5)	$+\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002}$

SCREW		ROLLED ACME SCREWS							
		Dyn. ${ }^{(1)}$ Capacity lbs (kg)	Static Capacity lbs (kg)		```Breakaway Torque oz-in (\(\mathrm{N}-\mathrm{m}\))```	Position Accuracy inch/ft (microns $/ 300 \mathrm{~mm}$)	Backlash inches (microns)	Unidirectional Repeatability inches (microns)	Bidirectional Repeatability inches (microns)
	Non-preloaded (S300) Preloaded (S301)	160 (73) 140 (64)	$\begin{gathered} 800 \\ (363) \\ \\ 720 \\ (327) \end{gathered}$	40	$\begin{gathered} 10 \\ (0,07) \\ \\ 20 \\ (0,14) \end{gathered}$	$<\underset{(75)}{0.003}$	$\begin{array}{r} 0.008 \\ (203) \end{array}$ 0	$+/-\underset{(5)}{0.0002}$	$\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0082}{(208)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$
	Non-preloaded (S302) Preloaded (S303)	160 (73) 140 (64)	$\begin{gathered} 800 \\ (363) \\ \\ 720 \\ (327) \end{gathered}$	40	$\begin{gathered} 15 \\ (0,11) \\ \\ 30 \\ (0,21) \end{gathered}$	$<\underset{(75)}{0.003}$	$\begin{array}{r} 0.008 \\ (203) \end{array}$ 0	$+/-\underset{(5)}{0.0002}$	$\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0082}{(208)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$

Footnotes:

(1) Dynamic load capacity of screw based on 1 million inches of travel (25 Km).
(2) The 0.625 inch \& 16 mm diameter Ground Ball Screw options are only available in travel lengths where the screw length is less than 47 inches (1194 mm).

Linear Bearing Load Capacities

The following equation, and graphs, can be used to help determine the linear bearing life, and load capacity, of a 610 series 6 inch carriage positioning table.

$$
L=\left[\frac{R}{F \times S}\right]^{3} \times B
$$

$\mathbf{L}=$ calculated travel life (millions of inches or Km)
$\mathbf{R}=$ rated dynamic load capacity of carriage (or each bearing) at 2 million inches of travel or 50 Km
F = user applied load
$\mathbf{S}=$ safety factor (1 to 8)
$\mathbf{B}=$ either 2 (for millions of inches) or 50 (for Km)

Dynamic Moment Load (M_{R}) Capacity Load applied away from Carriage Center

Dynamic Moment Load (M_{p} \& M_{Y}) Capacity Load applied away from Carriage Center

End of Travel (EOT) Switches \& Home Switch

LINTECH provides several options for EOT \& home switches. One style uses mechanically actuated switches, while other styles use "non-contact" versions. When ordered with a LINTECH 610 series table, each switch is mounted to the side of the table, while the actuating cams are mounted to the carriage assembly. The T-slot which runs along both sides of the 610 series, allows the switches to be located anywhere along the table. The switches are pre-wired by LINTECH for easy interfacing to the users Motion Controller.

End of Travel (EOT) Switches

End of travel (EOT) switches can be utilized by a motion controller to stop carriage motion, thereby preventing any damage to personnel, table carriage, or user mounted load if the extreme end of travel has been reached by the carriage. There are two EOT switches mounted to the side of the table, one on each end. The CCW switch is mounted at the motor mount end, while the CW switch is located at the opposite end of the table. LINTECH provides normally closed (NC) end of travel switches. This provides for a power-off fail safe system, where the position controller can detect broken wires. It is highly recommended that any positioning table used with a position controller, should have end of travel switches installed for protection of personnel, table carriage, and user mounted load.

Home Switch

The home switch can be utilized by a motion controller as a known fixed reference location on the positioning table. The switch is located between the EOT switches, near the motor mount end, and is a normally open (NO) switch.

Switch Locations

The following diagram shows the locations of the switches when ordered from LINTECH. Switches can be located on left or right hand side. Below diagram shows -LxxL (left side - when looking at non-driven end plate).

For the 610 series (no waycover versions), EOT switches are normally located 0.125 inches (3 mm) inward from the maximum travel hard stops. Thus, reducing overall system travel by 0.25 inches (6 mm) from listed table travel for each model \#.

Note: Switches can be located anywhere on the T-slots, which run on both sides of the unit.

Switch Type	Cost	Repeatability inches (microns)	Actuated	Power Supply Required	Activation Area inches (mm)	Comments
mechanical	least expensive	$+/-$0.0002 (5)	mechanical	No	1.75 $(44,45)$	for most applications
reed	slightly more	$+/-$0.0020 (50)	magnetic	No	0.30 $(7,62)$	for non-contact \& low repeatable applications
hall effect	medium priced	$+/-$0.0002 (5)	magnetic	Yes	for non-contact and wash down applications	
proximity	most expensive	$+/-0.0002$				
(5)	non-magnetic	Yes	1.75 $(44,45)$	 wash down applications		

Note: The repeatability of any switch is dependent upon several factors: carriage speed, accel rate, load weight, switch style, and the position controller. LINTECH's ratings are based upon a carriage speed of 0.5 inches $/ \mathrm{sec}(12.7 \mathrm{~mm} / \mathrm{sec}$) and a no load condition.

End of Travel (EOT) Switches \& Home Switch

Mechanical Switches

Repeatability	$:+/-0.0002$ inch (5 microns)
Electrical	$: 5 \mathrm{amps} @ 125 \mathrm{VAC}$
$1 \mathrm{amp} @ 85 \mathrm{VDC}$	
Activation Style	$:$ mechanical cam
Activation Area	$: 1.75$ inches $(44,45 \mathrm{~mm})$ of travel
Temperature Range	$:-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Environment	$:$ non wash down
Added Table Width	$: 0.063$ inch $(1,6 \mathrm{~mm})$ (EOT switches)
	0.063 inch $(1,6 \mathrm{~mm})$ (Home switch)

Standard LINTECH Wiring (provided with switch option)

Female connector wired to: 10 foot (3 m) shielded cable, 6 conductor, 24 AWG, unterminated leads

Pin	Wire Color	Description	
$\mathbf{2}$	Black	CW EOT	\longrightarrow
$\mathbf{3}$	Blue	CW Common	\longrightarrow
$\mathbf{5}$	White	CCW EOT	\longrightarrow
$\mathbf{6}$	Green	CCW Common	\square
$\mathbf{8}$	Yellow	HOME	\longrightarrow
$\mathbf{9}$	Grey	HOME Common	\longrightarrow
	Silver	Shield	

Note: Hermetically sealed mechanical switches can be ordered as an option. This may be desired for "wash down" applications. Contact LINTECH.

Non-Contact Reed Switches

Repeatability

Electrical

Activation Style
Activation Area
Temperature Range
Environment
Added Table Width

Standard LINTECH Wiring (provided with switch option)

Female connector wired to: 10 foot (3 m) shielded cable, 6 conductor, 24 AWG, unterminated leads

Pin	Wire Color	Description	
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	Black Blue	CW EOT CW Common	
$\begin{aligned} & 5 \\ & 6 \end{aligned}$	White Green	CCW EOT CCW Common	
8	Yellow Grey	HOME HOME Common	
	Silver	Shield	

End of Travel (EOT) Switches \& Home Switch

Non-Contact Hall Effect Switches

Repeatability
Electrical

Actuation Style
Activation Area
Temperature Range
Environment
Added Table Width
: +/- 0.0002 inch (5 microns)
: 5-24 VDC
15 mA - power input
25 mA max - signal
: magnetic
: 0.32 inches $(8,13 \mathrm{~mm})$ of travel
$:-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
: wash down
: 0.063 inch ($1,6 \mathrm{~mm}$) (EOT switches) 0.063 inch ($1,6 \mathrm{~mm}$) (Home switch)

Non-Contact Proximity Switches

Repeatability
: +/- 0.0002 inch (5 microns)
Electrical
: 10-28 VDC
15 mA - power input
100 mA max - signal
Actuation Style : non-magnetic cam
Activation Area
: 1.75 inches $(44,45 \mathrm{~mm})$ of travel
Temperature Range
: $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Environment
: IEC IP67 wash down
Added Table Width : 0.20 inch $(5,1 \mathrm{~mm})$ (EOT switches) 0.20 inch $(5,1 \mathrm{~mm})$ (Home switch)

Standard LINTECH Wiring (provided with switch option)

Female connector wired to: 10 foot (3 m) shielded cable, 9 conductor, 24 AWG, unterminated leads

Pin	Wire Color	Description			
1	Brown Black Blue	CW Power CW EOT CW Common	(brown)		
2			(black)	switch	NC
3			(blue)		
4	Red	ccW Power	(brown)		
5	White	CCW EOT	(black)	switch	NC
6	Green	CCW Common	(blue)		
7	Orange	Home Power	(brown)		
8	Yellow	Home	(black)	switch	NO
9	Grey	Home Common	(blue)		
	Silver	Shield			

Motor Couplings

LINTECH provides three different types of couplings that can be used to mount a motor to a positioning table. These couplings compensate for misalignment between the motor shaft \& screw (or belt) drive shaft extension. This provides for troublefree operation as long as certain precautions are taken. The connected motor output torque should never exceed the coupling maximum torque capacity. Larger capacity couplings may be required for applications having high accelerations, large back driving loads, high torque output motors, or servo motors.

$\begin{aligned} & \text { Model }{ }^{(1)} \\ & \text { Number } \end{aligned}$		L inches (mm)	Table	Motor	Diam Mini (in)		Max	$\begin{array}{r} \text { ximum } \\ (\mathrm{mm}) \end{array}$	Weight ounces (grams)	Inertia oz-in ${ }^{2}$ ($\mathrm{g}-\mathrm{cm}^{2}$)	Wind-up arc-sec/oz-in (deg/N-m)	Max Torque oz-in ($\mathrm{N}-\mathrm{m}$)
C100-375-aaa	$\begin{aligned} & 1.00 \\ & (25,4) \end{aligned}$	$\begin{aligned} & 1.50 \\ & (38,1) \end{aligned}$	375	aaa	. 250	6	. 375	10	$\begin{aligned} & 1.5 \\ & (43) \end{aligned}$	$\begin{aligned} & .19 \\ & (35) \end{aligned}$	$\begin{aligned} & 23.0 \\ & (0,9) \end{aligned}$	$\begin{aligned} & 400 \\ & (2,8) \end{aligned}$
C125-375-aaa	$\begin{aligned} & 1.25 \\ & (31,8) \end{aligned}$	$\begin{aligned} & 2.00 \\ & (50,8) \end{aligned}$	375	aaa	. 250	6	. 500	14	$\begin{aligned} & 3.5 \\ & (99) \end{aligned}$	$\begin{gathered} .68 \\ (124) \end{gathered}$	$\begin{aligned} & 15.0 \\ & (0,59) \end{aligned}$	$\begin{aligned} & 700 \\ & (4,9) \end{aligned}$
H100-375-aaa	$\begin{aligned} & 1.00 \\ & (25,4) \end{aligned}$	$\begin{aligned} & 1.28 \\ & (32,5) \end{aligned}$	375	aaa	. 250	6	. 375	10	$\begin{aligned} & 1.2 \\ & (34) \end{aligned}$	$\begin{aligned} & .15 \\ & (27) \end{aligned}$	$\begin{gathered} 7.2 \\ (0,28) \end{gathered}$	$\begin{aligned} & 450 \\ & (2,8) \end{aligned}$
H131-375-aaa	$\begin{aligned} & 1.31 \\ & (33,3) \end{aligned}$	$\begin{aligned} & 1.89 \\ & (48,0) \end{aligned}$	375	aaa	. 250	6	. 625	16	$\begin{aligned} & 2.9 \\ & (82) \end{aligned}$	$\begin{gathered} .62 \\ (114) \end{gathered}$	$\begin{gathered} 2.5 \\ (0,098) \end{gathered}$	$\begin{gathered} 1,000 \\ (7,1) \end{gathered}$
H163-375-aaa	$\begin{gathered} 1.63 \\ (41,4) \end{gathered}$	$\begin{aligned} & 2.00 \\ & (50,8) \end{aligned}$	375	aaa	. 375	10	. 750		$\begin{gathered} 5.4 \\ (153) \end{gathered}$	$\begin{aligned} & 1.79 \\ & (328) \end{aligned}$	$\begin{gathered} 1.2 \\ (0,047) \end{gathered}$	$\begin{aligned} & 2,000 \\ & (14,1) \end{aligned}$
G100-375-aaa	$\begin{aligned} & 0.99 \\ & (25,2) \end{aligned}$	$\begin{gathered} 1.26 \\ (32,0) \end{gathered}$	375	aaa	. 250	6	. 500	12	$\begin{aligned} & 1.3 \\ & (36) \end{aligned}$	$\begin{aligned} & .16 \\ & \text { (29) } \end{aligned}$	$\begin{gathered} 1.0 \\ (0,39) \end{gathered}$	$\begin{aligned} & 500 \\ & (3,5) \end{aligned}$
G126-375-aaa	$\begin{aligned} & 1.26 \\ & (32,1) \end{aligned}$	$\begin{gathered} 1.62 \\ (41,0) \end{gathered}$	375	aaa	. 250	6	. 625		$\begin{aligned} & 2.7 \\ & (74) \end{aligned}$	$\begin{aligned} & .54 \\ & (99) \end{aligned}$	$\begin{gathered} 0.3 \\ (0,012) \end{gathered}$	$\begin{gathered} 1,100 \\ (7,7) \end{gathered}$
G158-375-aaa	$\begin{aligned} & 1.58 \\ & (40,2) \end{aligned}$	$\begin{gathered} 1.85 \\ (47,0) \end{gathered}$	375	aaa	. 375	10	. 750		$\begin{gathered} 4.3 \\ (120) \end{gathered}$	$\begin{aligned} & 1.34 \\ & \text { (245) } \end{aligned}$	$\begin{gathered} 0.2 \\ (0,008) \end{gathered}$	$\begin{aligned} & 2,400 \\ & (17,0) \end{aligned}$
Possible values for aaa	$\begin{aligned} & 250=.250 \text { inch } \\ & 375=.375 \text { inch } \\ & 500=.500 \text { inch } \\ & 625=.625 \text { inch } \end{aligned}$		$750=.750$ inch			$\begin{aligned} & 006=6 \mathrm{~mm} \\ & 008=8 \mathrm{~mm} \\ & 009=9 \mathrm{~mm} \\ & 010=10 \mathrm{~mm} \end{aligned}$			$\begin{aligned} & 011=11 \mathrm{~mm} \\ & 012=12 \mathrm{~mm} \\ & 014=14 \mathrm{~mm} \\ & 016=16 \mathrm{~mm} \end{aligned}$		$\begin{aligned} & 018=18 \mathrm{~mm} \\ & 019=19 \mathrm{~mm} \\ & 020=20 \mathrm{~mm} \end{aligned}$	

Footnotes:

(1) Some couplings are either too large or too long to fit into a particular motor mount. See page E-67 for maximum coupling diameter and length specifications for use with the optional NEMA 23 \& 34 motor mounts. Visit our website to see which couplings are available and fit into other standard motor mounts. Custom motor mounts can be provided upon request.

Motor Couplings

Coupling	Cost	Torque Capacity	Wind-up	Suggested Motor	Comments
C Type	least expensive	light	the most	stepper	ideal for most step motor applications
H Type	medium priced	medium	medium	stepper or servo	use for high accels \& for starting \& stopping large inertia loads
G Type	most expensive	high	the least	servo	use for very high torque requirements \& very high servo accelerations

Specification	610 Series NEMA 23 bracket inches (mm)	610 Series NEMA 34 bracket inches (mm)
Shaft extension diameter at motor mount end	0.375	0.375
$(9,53)$	$(9,53)$	
Maximum coupling diameter	1.500	1.500
	$(38,10)$	$(38,10)$
Maximum coupling length	1.750	2.250
$(44,45)$	$(57,15)$	
Note: Custom brackets available upon request.		

Coupling Part Numbers

C025	$\mathrm{C} 100-375-250$
C026	$\mathrm{C} 100-375-375$
C027	$\mathrm{C} 100-375-006$
C028	$\mathrm{C} 100-375-008$
C030	$\mathrm{C} 100-375-009$
C029	$\mathrm{C} 100-375-010$
C048	$\mathrm{C} 125-375-250$
C049	$\mathrm{C} 125-375-375$
C050	$\mathrm{C} 125-375-500$
C051	$\mathrm{C} 125-375-006$
C052	$\mathrm{C} 125-375-008$
C053	$\mathrm{C} 125-375-010$
C054	$\mathrm{C} 125-375-012$
C055	$\mathrm{C} 125-375-014$
C069	$\mathrm{C} 125-375-016$

C130	H100-375-250
C131	$\mathrm{H} 100-375-375$
C132	$\mathrm{H} 100-375-006$
C133	$\mathrm{H} 100-375-008$
C135	$\mathrm{H} 100-375-009$
C134	$\mathrm{H} 100-375-010$
C136	$\mathrm{H} 100-375-011$
C155	$\mathrm{H} 131-375-250$
C156	$\mathrm{H} 131-375-375$
C157	$\mathrm{H} 131-375-500$
C158	$\mathrm{H} 131-375-625$
C159	$\mathrm{H} 131-375-006$
C160	$\mathrm{H} 131-375-008$
C183	$\mathrm{H} 11-375-009$
C161	H131-375-010
C184	H131-375-011
C162	$\mathrm{H} 131-375-012$
C163	$\mathrm{H} 131-375-014$
C164	$\mathrm{H} 131-375-016$

C190	H163-375-375
C191	H163-375-500
C192	H163-375-625
C193	H163-375-750
C194	H163-375-010
C195	H163-375-012
C196	H163-375-014
C197	H163-375-016
C198	H163-375-018
C199	H163-375-019
C200	H163-375-020

C407	G100-375-250	C470	G158-375-375
C408	G100-375-375	C471	G158-375-500
C409	G100-375-500	C472	G158-375-625
C410	G100-375-006	C473	G158-375-50
C411	G100-37-008	C474	G158-375-010
C414	G100-375-009	C514	G158-375-011
C412	G100-375-010	C475	G158-375-012
C415	G100-375-011	C476	G158-375-014
C413	G100-375-012	C477	G158-375-016
		C478	G158-375-018
C435	G126-375-250	C479	G158-375-019
C436	G126-375-375	C480	G158-375-020
C437	G126-375-500		
C438	G126-375-625		
C439	G126-375-006		
C440	G126-375-008		
C463	G126-375-009		
C441	G126-35-010		
C464	G126-375-011		
C442	G126-375-012		
C443	G126-375-014		
C444	G126-375-016		

A NEMA 34 aluminum motor adapter bracket can be mounted to the 610, series positioning tables. The bracket can be ordered in either an English, or Metric motor mount. LINTECH can provide adapter brackets for any step motor, or servo motor, that has other mounting requirements.

Hand Crank
For manually operated applications, LINTECH provides a hand crank option for the 610 table series. The hand crank replaces the motor mount and coupling on the table.

Other Motor Mounts

LINTECH can provide motor adapter brackets for any step motor, or servo motor, that has mounting requirements other than what are shown in this catalog. Please review our Website for the latest information on standard motor mounts that are readily available. Listed as standard options include some: Rockwell, Mitsubishi, Praker, and Yaskawa metric motors models.

Motor Wrap Packages for 610 Series

For space limited 610 series applications, a belt and pulley system can couple the screw shaft extension to the motor shaft. This wraps the motor parallel to the table in order to decrease the overall positioning system length. Pulley weights and diameters are given in order to assist in calculating motor torque requirements.

Motor Wrap Frame Size	Motor Pulley Dia. inches (mm)	Motor Pulley Wt. ounces (kg)	Screw Pulley Dia. inches (mm)	Screw Pulley Wt. ounces (kg)	Belt Weight ounces (kg)
NEMA 23	1.65 $(41,9)$	7.5 $(0,21)$	1.65 $(41,9)$	7.5 $(0,21)$	$(0,028)$
NEMA 34	1.65 $(41,9)$	8.0 $(0,23)$	1.65 $(41,9)$	8.0 $(0,23)$	$(0,034)$

Note: Right hand motor wraps shown. The left hand wrap packages orient the motor to the opposite side of the table. Motor pulley \& belt shipped "loose". No motor mount nuts \& bolts are provided. Custom motor wrap packages are available upon request. Other motor pulley bores MUST be specified for non-NEMA motors.

Chrome Plated Linear Bearings, Rails, and Screws

For applications in high moisture, high humidity, clean room, or highly corrossive environments, chrome plating of the linear bearings, linear rails, and screw will offer superior resistance to corrosion than stainless steel components, resulting in longer table life. The process uniformly deposits dense, hard, high chromium alloy on the rails or screw, and has a Rockwell C hardness value of 67-72. This process also conforms to MIL Spec: (MIL-C-23422). The chrome plating bonds to the parent material and will not crack or peel off under the high point loading of balls on the rail, or screw. This chrome plating process differs from a normal hard chrome plate which just lays on the surface of the part plated.

610-SE Power-off Electric Brakes

For vertical table applications, or for those applications requiring the load to be locked securely in place, an electric brake may be mounted to the positioning table. The 610 series will have the brake mounted to the screw shaft extension located on the table end, opposite the motor mount bracket. The 620 series will have the brake mounted to the thru drive shaft option. With proper wiring from a control system, this power-off friction brake can ensure that the carriage is firmly held in place, when no electric power is applied to the brake. When power is applied to the brake, the brake is opened or "released".

For proper emergency braking of the positioning table, this electric brake needs to be interfaced to a position controller or relay network. LINTECH also provides 24 \& 90 VDC power supplies which can be used to power the brakes.

Brakes

Model Number	Holding Force in-lbs $(\mathrm{N}-\mathrm{m})$	Excitation Voltage volts	Current amps	Weight lbs (kg)
B01	18 $(2,0)$	24 VDC	0.733	1.4 $(0,62)$
B02	18 $(2,0)$	90 VDC	0.178	1.4 $(0,62)$

Note: This power-off electric brake MUST NOT be engaged when the positioning table is in motion. Moving the table with the brake applied could damage the brake and the positioning table. Also, continuous use of this brake to stop a table (load) that is in motion could damage the brake and the positioning table. Dynamic braking of a positioning table should be done by the motor and not the brake.

610-SE Series
inches
(mm)

Table end opposite motor mount bracket

Power Supplies

Model Number	DC Output			AC Input		
volts	amps	style	volts	amps	Hz	
41970	5	3.0	regulated	$120 / 240$	$0.8 / 0.4$	$47-63$
37488	24	1.2	regulated	$120 / 240$	$0.8 / 0.4$	$47-63$
37489	90	0.8	unregulated	120	1.0	$50 / 60$
37490	90	0.8	unregulated	240	0.5	$50 / 60$

Rotary Incremental Encoders

Incremental, optical rotary encoders can be mounted to the end of the LINTECH 610-SE series table. These shaftless optical rotary encoders are mounted to the screw shaft extension opposite the motor mount end. These encoders provide positional feedback to either a motion controller, or a digital position display.

Din Pin \#	Wire Color	Description
C	White	Channel A^{+}(or A)
D	Blue	Channel A- (or A)
E	Green	Channel B^{+}(or B)
L	Orange	Channel B- (or B)
G	White/Black	Channel Z^{+}(or Z)
H	Red/Black	Channel Z (or Z)
A		Case ground
B	Black	Common
K	Red	+ 5 vdc (+/-5\%)

Specification	ROTARY ENCODERS		
	E01	E02	E03
Line Count Pre Quadrature Resolution Post Quadrature Resolution Accuracy	500 lines/rev 0.002 revs/pulse $0.0005 \mathrm{revs} / \mathrm{pulse}$	1000 lines/rev 0.001 revs/pulse 0,00025 revs/pulse	1270 lines/rev 0.00079 revs/pulse 0.00019 revs/pulse
Maximum Speed Maximum Accel Excitation Power	50 revs/sec $40 \mathrm{revs} / \mathrm{sec}^{2}$ + 5 VDC @ 125 ma		
Operating Temperature Humidity Shock Weight	$32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ 20% to 80% non condensing 10 G's for 11 msec duration $0.7 \mathrm{lbs}(0,283 \mathrm{~kg})$		
Cable Length Zero Reference Output	$10 \mathrm{ft}(3 \mathrm{~m})$, unterminated 26 gauge leads Once per revolution		
Outputs	TTL square wave; 2 channel ($\mathrm{A}^{\prime} / \mathrm{B}_{+}$); Differential ($\mathrm{A} / \mathrm{B}_{-}$); Line Driver		

Multi-Axis Configurations

LINTECH can provide adapter plates \& vertical brackets, to facilitate the construction of $\mathrm{X}-\mathrm{Y}, \mathrm{X}-\mathrm{Z}, \mathrm{X}-\mathrm{Y}-\mathrm{Z}$, Cartesian, and other multi-axis configurations. There are hundreds of possible configurations available. See below for some common systems. LINTECH has experience dealing with multiple axis configurations. Sometimes different standard table series can be mounted to form a custom system. Other times, a custom assembly can be created. Contact LINTECH for more information.

