

# Linear Actuators Catalog

R2A - R4 Series Rodless Actuators



**KOLLMORGEN** 

Because Motion Matters™



# Kollmorgen: Your partner. In Motion.

Every solution comes from a real understanding of the challenges facing machine designers and users.

Innovators consistently rate Kollmorgen as one of their best motion systems manufacturing partners. Whether you are looking for classic servo motors, direct-drive servo motors, stepper motors, drives & amplifiers, gearing, actuation, or CNC & multi-axis motion controllers, Kollmorgen is one of the few companies in the world who actually designs and manufactures all of these products.

Our customers are leaders in many industries such as Aerospace & Defense, Printing, Packaging & Converting, Food & Beverage Processing, Medical Imaging, In Vitro Diagnostics & Laboratory Automation, Pharmaceutical Manufacturing, Material Forming and Cutting, Oil & Gas, and Robotics. Kollmorgen is also a leader in Warehouse Automation, including complete AGV systems, software, awareness and autonomy.

**Our Automation Solutions** can be found on Mars and in space, ships and submarines, O&G drilling and metrology, surgical robots and laser eye surgery, even inside artificial hearts. These are just a few applications that demand high-performance and high-quality while satisfying their specific needs.

**Because motion matters, it's our focus:** Motion can distinctly differentiate a machine and deliver a marketplace advantage by increasing its performance and dramatically improving overall equipment effectiveness (OEE).

High-performance motion can make your customer's machine more reliable and energy-efficient, enhance accuracy and improve operator safety. Motion also represents endless possibilities for innovation.

We've always understood this potential, and thus have kept motion at our core and in our Vison, Mission & Values, relentlessly developing products that offer precise control of torque, velocity and position accuracy in machines that rely on complex motion.

# KOLLMORGEN



Because Motion Matters™

# **Table of Contents**

|          | Linear Actuation & Positioning Systems     | 4  |   | R4 Series Rodless Actuator                               |     |
|----------|--------------------------------------------|----|---|----------------------------------------------------------|-----|
|          | Rodless Series Linear Actuators - Overview | 6  |   | General Specifications                                   | 62  |
| <b>•</b> | Rodless Actuator Servo Systems             | 12 |   | Inertia Data                                             | 63  |
|          | Servo Motor System Quick Selection Guide   | 13 |   | Servo Thrust Speed Curves                                | 64  |
|          | Servo Motor System Performance Summary     | 14 |   | Stepper Thrust Speed Curves                              | 70  |
|          | Rodless Actuator Stepper Systems           | 16 |   | Belt Drive Dimensions                                    | 76  |
|          | Stepper Motor System Quick Selection Guide | 17 |   | Screw Drive Dimensions                                   | 78  |
|          | Stepper Motor System Performance Summary   | 18 |   | Mounting Option Dimensions                               | 80  |
|          | Rodless Series General Specifications      | 20 |   | Carriage Dimensions                                      | 81  |
|          | R2A Series Rodless Actuator                |    | • | R Series Options and Accessories                         | 82  |
|          | General Specifications                     | 24 | • | AKD® Servo Drive                                         | 84  |
|          | Inertia Data                               | 25 | • | AKM® Brushless Servo Motor                               | 88  |
|          | Servo Thrust Speed Curves                  | 26 | • | AKM Brushless Servo System Specifications                |     |
|          | Stepper Thrust Speed Curves                | 28 |   | AKM23, 42, 52 Performance with AKD Servo Drive           | 92  |
|          | Belt Drive Dimensions                      | 32 |   | AKM2x, AKM4x, and AKM5x Frame Dimensions                 | 94  |
|          | Screw Drive Dimensions                     | 34 | • | P7000 Stepper Drive-Controller                           | 98  |
|          | Mounting Option Dimensions                 | 36 | • | Stepper Motor System Specifications                      |     |
|          | Carriage Dimensions                        | 37 |   | T22, 31, 32, 41 Performance with P70360 Drive-Controller | 99  |
|          | R3 Series Rodless Actuator                 |    |   | Typical Stepper Motor Frame Dimensions                   | 99  |
|          | General Specifications                     | 38 | • | Linear Sizing Calculations                               |     |
|          | Inertia Data                               | 39 |   | Move Profile                                             | 100 |
|          | Servo Thrust Speed Curves                  | 40 |   | Thrust Calculations, Positioner Mass, RMS Thrust         | 102 |
|          | Stepper Thrust Speed Curves                | 48 | • | Linear Motion Terminology                                |     |
|          | Belt Drive Dimensions                      | 56 |   | Linear Positioner Precision                              | 106 |
|          | Screw Drive Dimensions                     | 58 |   | Critical Speed and Column Loading                        | 108 |
|          | Mounting Option Dimensions                 | 60 | • | Glossary of Motion Control Terminology                   | 110 |
|          | Carriage Dimensions                        | 61 | • | Conversion Tables                                        | 112 |
|          |                                            |    | • | NEMA and Material Specifications                         | 115 |
|          |                                            |    | • | <b>Application Worksheet</b>                             | 116 |
|          |                                            |    |   | Model Nomenclature                                       | 120 |
|          |                                            |    | • | MOTIONEERING® Online                                     | 125 |

# Linear Actuation & Positioning



Kollmorgen offers a comprehensive range of linear actuator products including electric cylinders, rodless actuators, and precision tables to meet a wide range of application requirements. For actuator products not included in this catalog go to www.kollmorgen.com for information about other Kollmorgen linear positioning products. (Products highlighted are included in this catalog).

| Model                              | Product<br>Family                     | General Information                                                                                                                             |
|------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Electric Cylinders <sup>1</sup>    | EC1<br>EC2<br>EC3<br>EC4<br>EC5<br>N2 | <ul> <li>Highest Force (Thrust)</li> <li>Clean, Hydraulic Replacement</li> <li>Compact Cross Section</li> <li>Extends into Work Area</li> </ul> |
| Rodless Actuators<br>(screw drive) | R2A<br>R3<br>R4                       | <ul><li> High Force (Thrust)</li><li> High Repeatability</li><li> Long Travel</li><li> Load Carrying Capability</li></ul>                       |
| Rodless Actuators<br>(belt drive)  | R2A<br>R3<br>R4                       | <ul><li>Very High Speed</li><li>Quiet Operation</li><li>Long Travel</li><li>Load Carrying Capability</li></ul>                                  |
| Precision Tables                   | DS4<br>DS6                            | <ul><li> High Accuracy &amp; Repeatability</li><li> Low Maintenance, Long Life</li><li> High Moment Loads</li></ul>                             |

#### **Electric Cylinders (EC)**

Primarily designed to apply a force through an extendable rod, electric cylinders are a clean and efficient replacement for hydraulic actuators and pneumatic cylinders, and an alternative to many types of linear transmissions. A wide variety of mounting and coupling alternatives significantly increases their problem solving potential.

#### **Rodless Actuators**

Long travel, quiet operation, and high moment loading differentiates rodless actuators from other mechanical transmissions.

#### **Precision Tables**

Positioning tables are used when accurate and repeatable motion is critical (1 part per 10,000 or better). These tables offer a wide variety of single and multi-axis configurations, open and closed frame tables, ball or lead screw driven, and overhung and constant support for Kollmorgen geometry configurations.



| Model                           | Max Speed <sup>3</sup> | Max Thrust <sup>2, 3</sup> | Repeatability <sup>4, 5</sup>                                | Max Payload  | Max Travel     |
|---------------------------------|------------------------|----------------------------|--------------------------------------------------------------|--------------|----------------|
|                                 | In/s (mm/s)            | Lb (N)                     | In (mm)                                                      | Lb (kg)      | In (mm)        |
| Electric Cylinders <sup>1</sup> | 52.5<br>(1330)         | 5620<br>(25,000)           | to 0.0005<br>(0.013)                                         | Note 1       | 59.1<br>(1500) |
| Rodless Actuators               | 39                     | 700                        | to 0.0005                                                    | 300          | 108            |
| (screw drive)                   | (1000)                 | (3110)                     | (0.013)                                                      | (136)        | (2743)         |
| Rodless Actuators               | 118                    | 300                        | to 0.004                                                     | 300          | 108            |
| (belt drive)                    | (3000)                 | (1330)                     | (0.10)                                                       | (136)        | (2743)         |
| Precision Tables                | 32.5<br>(825)          | 440<br>(1960)              | 3 microns (commercial grade) / 1.3 microns (precision grade) | 794<br>(360) | 79<br>(2000)   |

#### Notes:

- Electric cylinders are designed primarily for thrust application where loads are supported externally.
- Thrust ratings are based on mechanical limits rather than motor limits unless indicated otherwise.
- 3. Max speed and max thrust ratings are not necessarily available simultaneously
- 4. 5. Repeatability is dependent on feedback resolution, load, friction, and drive gain settings.
- Repeatability is unidirectional unless otherwise specified



# Rodless Actuator

The name "Rodless Actuator" comes from this technology's close relationship to Electric Cylinders, sharing many of the same components. Rather than having a rod, Kollmorgen Rodless Actuators incorporate a carriage supported by linear bearings. Where Electric Cylinders are designed to extend in and out of the work area delivering force or thrust, Rodless Actuators are designed to be load carrying mechanisms (up to 300 lb) incorporating ball screws, leadscrews, or belt drive transmissions with optional integrated gearheads.

Rodless Actuators also share many of the fundamental design characteristics of Precision Positioning Tables. Precision Tables are designed to carry larger payloads and deliver superior repeatability and accuracy. Rodless Actuators offer longer travels and higher speeds at a lower price. Screw driven Rodless Actuators are also thrust-producing devices that are best for axial force applications where the space is limited and a payload must also be supported or carried. They have less moment loading capabilities than Precision Tables, however, they can be effectively combined into complete Cartesian Systems for some multi-axis applications. For higher speed, lower thrust applications, Rodless Actuators are available with a timing belt drive instead of a screw.

Kollmorgen has combined the broad product offering of the R-Series Rodless Actuators with the industry leading AKM servo motors and AKD drives. Stepper motors are also available as an option.



#### **The Benefits of R Series Rodless Actuators**

| Rodless Actuators Provide Compact Low Cost Systems                       | <ul> <li>These system provide compact load positioning when moment<br/>loads are minimal</li> </ul>                                                                                                            |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                          | <ul> <li>Eliminate need for external bearing guides compared to electric cylinders</li> </ul>                                                                                                                  |
|                                                                          | <ul> <li>Provide the shortest overall envelope</li> </ul>                                                                                                                                                      |
|                                                                          | • Multiple units can be combined into Cartesian Systems                                                                                                                                                        |
|                                                                          | Have a very compact cross-section                                                                                                                                                                              |
| Broad Range of Motor and Feedback Selections                             | <ul> <li>World class AKM® brushless servo motor with feedback options<br/>such as the Smart Feedback Device (SFD) provide plug-and-play<br/>commissioning with the Advanced Kollmorgen Drive (AKD®)</li> </ul> |
|                                                                          | <ul> <li>AKM offers an integrated fail-safe holding brake for vertical applications</li> </ul>                                                                                                                 |
|                                                                          | High performance hybrid stepper motor options are available                                                                                                                                                    |
| Highly Configurable Design Optimizes Solution and Speeds     Development | • Three sizes (R2A, R3, R4 with choice of stroke lengths up to 108 inches, and speeds to 118 in/sec)                                                                                                           |
|                                                                          | <ul> <li>Screw or belt driven configurations to optimize performance for<br/>maximum thrust or speed</li> </ul>                                                                                                |
|                                                                          | <ul> <li>Wide range of geared and timing belt reduction ratios to optimize<br/>speed/thrust performance and to match motor/load inertia with<br/>drives</li> </ul>                                             |
|                                                                          | Multiple motor mounting orientations and frame mounting styles                                                                                                                                                 |
| Standard and custom options                                              | Screw mounted brake (all models)                                                                                                                                                                               |
|                                                                          | <ul> <li>Water resistant seal, lube port, breather vent (model size<br/>dependent)</li> </ul>                                                                                                                  |
|                                                                          | Custom motor mounts                                                                                                                                                                                            |
|                                                                          | Custom stroke lengths                                                                                                                                                                                          |
|                                                                          | <ul> <li>Other custom options are available by request</li> </ul>                                                                                                                                              |

# Rodless Series Linear Actuators Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com



#### Kollmorgen's

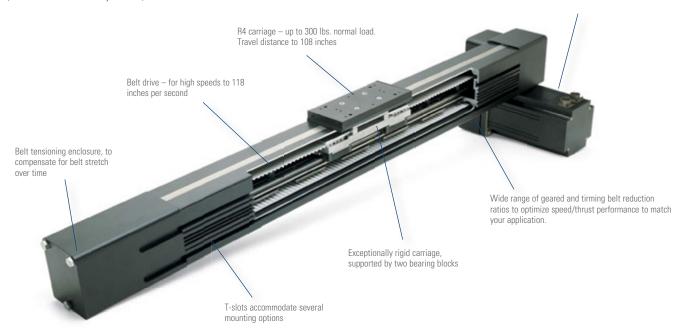
Rodless Series Linear Actuator Systems provide performance and versatility in a compact package.

- Travel lengths from 6 to 108 inches provide solutions to a wide range of applications.
- Precision ball screw drive, with 0.2, 0.25, 0.5 and 1.0 inch leads, offers high speed and efficiency, excellent repeatability and accuracy.
- Lead screws and bronze nuts with 0.125 and 0.2 inch leads offer quiet operation and self locking.
- Belt drive versions offer the highest speed when speed instead of thrust is of greatest importance.
- Easily configurable modular design and option set, including a variety of motor mounting orientations, motor sizes and type, drive options, reducer ratios, feedback options, limit/home sensor types and shaft brakes allow the R Series to be customized to meet your specific requirements.

#### **Standard Configurable Rodless Linear Actuator Designs:**

| R Series              |                                                                                                                            |  |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Servo Motor options   | AKM23, AKM42, AKM52                                                                                                        |  |  |  |  |  |
| Stepper Motor options | T22, T31, T32, T41                                                                                                         |  |  |  |  |  |
| Transport Method      | Ball Screw (1, 2, 4, 5 [rev/in] pitch) Lead Screw (5 and 8 [rev/in] pitch) Transport Belt                                  |  |  |  |  |  |
| Integrated Gearing    | Timing Belt (1:1, 1.5:1, 2:1, 3:1 ratios) Helical Gear (3.1:1, 3.5:1, 5:1, 7:1, 10:1, 12:1 ratios) Inline (direct coupled) |  |  |  |  |  |
| Mounting Types        | 3 Parallel Mounts<br>1 Inline Mount                                                                                        |  |  |  |  |  |
| Stroke Lengths        | Standard Stroke (6 to 108 in.) Custom Stroke Lengths Available                                                             |  |  |  |  |  |




#### **Use Rodless Linear Actuators When You Need:**

- To position and guide a load for the lowest system cost.
- To save space by eliminating external guides and ways.
- The shortest overall work envelope (extended length equals retracted length).
- To combine multiple units into Cartesian systems.
- A complete, compact linear position system.

### **Typical Construction**

(R4 belt-driven cutaway shown)

Three motor mounting choices for belt-driven models, under (shown), behind and over



#### **R Series Linear Actuators**

- Designed for load carrying up to 300 lbs.
- Ball screw, lead screw or belt-driven transmission
- · Integrated load carrying support bearing
- Integrated seal strip
- English and Metric carriage mounting
- Speeds up to 118 in/sec
- Motor options: AKM brushless servo motors or T series stepper motors
- Available in 3 power ranges: R2A, R3, R4

# Rodless Series Linear Actuators Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com

### **Mechanical Drive Comparison**

The following chart will help pinpoint which linear drive mechanism is right for your application. Kollmorgen offers many positioner options, such as brakes, encoders, lubrication ports, preloaded nuts, and precision ground screws, that may help you meet your specification. If these standard options do not meet your requirements, please contact Kollmorgen for information regarding custom solutions.

| Considerations           | Lead Screw                        | Ball screw                     | Belt Drive                                   |
|--------------------------|-----------------------------------|--------------------------------|----------------------------------------------|
| Noise                    | Quiet                             | Noisy                          | Quiet                                        |
| Back Driving             | Self locking                      | Easily backdrives              | Easily backdrives                            |
| Backlash                 | Increases with wear               | Constant throughout screw life | Can increase with wear or stretching of belt |
| Repeatability            | +/- 0.001                         | +/- 0.001                      | +/- 0.010                                    |
| Duty Cycle               | Moderate<br>max. 60%              | High<br>max. 100%              | High<br>max. 100%                            |
| Mechanical Efficiency    | Low<br>Bronze Nut - 40%           | High<br>90%                    | High<br>90%                                  |
| Life and Mechanical Wear | Shorter life due to high friction | Longer                         | Longer                                       |
| Shock Loads              | Higher                            | Lower                          | Low                                          |
| Smoothness               | Smooth operation at lower speeds  | Smooth operation at all speeds | Smooth operation at all speeds               |
| Speed                    | Low                               | High                           | Higher                                       |
| Cost                     | \$\$\$ Moderate                   | \$\$\$ Moderate                | \$\$\$ Moderate                              |

sales@servo2go.com www.servo2go.com



#### Comments

Lead Screw: Sliding nut design provides quiet operation.

Ball screw: Transmits audible noise as balls recirculate through nut during motion.

Belt Drive: The neoprene cover of the belt provides noise dampening. The support bearing will generate some noise.

**Lead Screw:** Good for vertical applications.

**Ball screw:** May require brake or holding device when no holding torque is applied to the screw. **Belt Drive:** May require brake or holding device when no holding torque is applied to the drive pulley.

Lead Screw: Considered worn-out when backlash exceeds 0.020". Typically 0.006" when shipped from factory.

**Ball screw:** Typically constant at 0.006" (screw/nut only).

**Belt Drive:** Typically at 0.010" when shipped. Can be adjusted to compensate for wear or stretching.

**Lead Screw:** Low duty cycle due to high friction from sliding surface design. **Ball screw:** High screw efficiency and low friction allow high duty cycle. **Belt Drive:** High efficiency provides low heating and high duty cycle.

**Lead Screw:** Low efficiency sliding friction surfaces. **Ball screw:** High efficiency smooth rolling contact.

Lead Screw: Mechanical wear is function of duty cycle, load and speed.

**Ball screw:** Virtually no mechanical wear when operated within rated load specifications.

Belt Drive: High efficiency contributes to long life. Drive belts can be easily replaced to extend system life.

**Lead Screw:** Better suited because of larger surface area.

**Ball screw:** Brinelling of steel balls limits shock load capability. **Belt Drive:** Shock loads can cause fatigue and stretching of drive belts.

Lead Screw: At extreme low speeds, units have a tendency to stop/start stutter (due to friction).

**Ball screw:** Generally smoother than lead screw types through the entire speed range.

Belt Drive: 180° engagement of belt provides continuous smooth contact throughout the speed range.

**Lead Screw:** Extreme speeds and accelerations can generate excessive heat and deform the screw.

**Ball screw:** Can achieve higher speeds than the lead screw due to the efficiency of the ballnut vs. the sliding contact of the solid nut. Speeds in excess of ratings can deform screw.

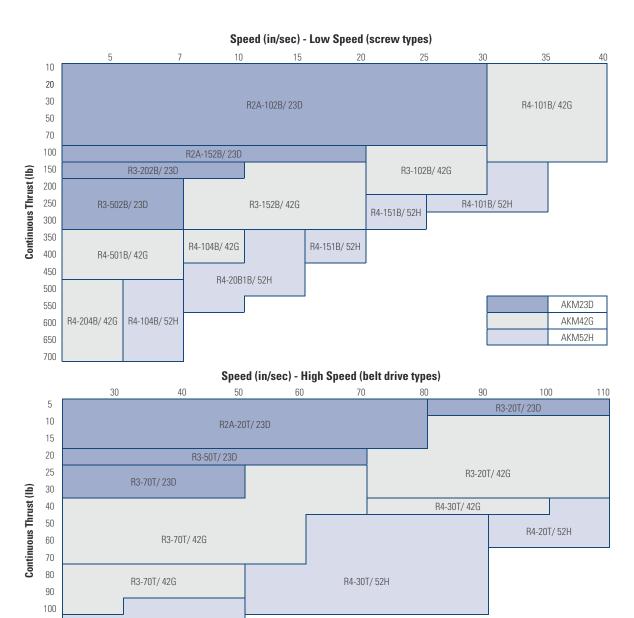
Belt Drive: Each revolution of the drive pulley provides several inches of travel. Speeds up to 118 in/sec can be achieved.

# Rodless Actuator Servo Systems old Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com

The Rodless Linear Actuator Servo Systems are offered with the Advanced Kollmorgen Drive (AKD®) series to provide the optimum combination of performance and price. Let your application and system requirements determine what AKD option configuration integrates best.

- Single vendor solution for the complete electro-mechanical system ensures system interoperability and single dedicated worldwide motion-control supplier for support.
- The Rodless Linear Actuator Servo Systems are available in drive and control technologies ranging from simple and intuitive positioning drives to fully programable IEC 61131 based control systems.
- The Rodless Linear Actuator Servo Systems leverage Kollmorgen's AKD diverse option configurations and AKM brushless servo motors for complete system flexibility and to support positioning and guiding a load for the lowest system cost.
- The Precision Table Servo Systems have the flexibility for multi-axis configurations including XY, XZ, and XYZ and Gantry configurations.




Flexible Drive
Universal Control
Options &
Power Range

#### AKD 115 / 230 / 400 / 460 Vac

- Base Unit: Analog torque and velocity, CanOpen®, step and direction, encoder following
- Network Option Cards
- EtherCAT®, SynqNet®, Modbus®/TCP, and CANopen®
- Simple Positioning System
  - Motion Task, Linked Motion Task, ACCEL/DECEL control, S-curve
  - Incremental, absolute positioning, Jog mode and more

# Servo Motor System Quick Selection Gui





#### **Quick Selection Guide Reference**

120

140

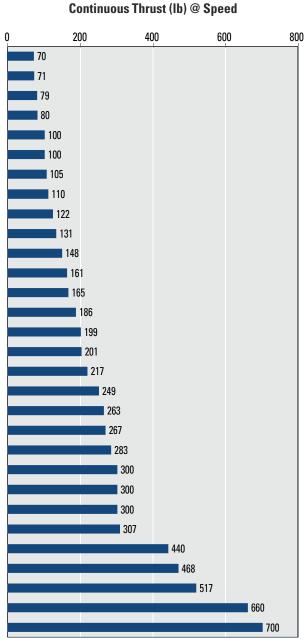
150

- Select Chart for application speed range Top chart - Low speeds, up to 40 in/sec Bottom Chart - High speeds, up to 118 in/sec Select system by required continuous thrust (lb) and required rated speed (in/sec.)

Other application considerations (stroke length, system resolution, inertia ratio, desired safety margins, note pages, etc) may result in selection of a different system. For additional AKD® system specifications see page 17.

Performance data represents continuous thrust (lb) at rated speed (in/s) Based on AKD drive with 240 Vac, 3 phase supply.

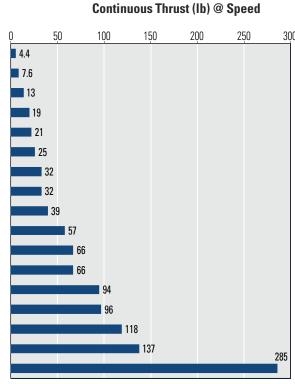
R4-50T/52H


AKM23D

AKM42G AKM52H

# Servo Motor System Performance Sunting Servo 2go.com Servo Motor System Performance Sunting 87-378-0249 Sales @ Servo 2go.com www.servo 2go.com www.servo 2go.com

### **Screw Based Systems**


|                          | AKD®  |     | Thrust | Peak | Thrust | Max    |
|--------------------------|-------|-----|--------|------|--------|--------|
| Screw Based System       | Cont. | @ s | peed   | @ s  | peed   | Thrust |
|                          | Amps  | lb  | in/s   | lb   | in/s   | lb     |
| R2A-AKM23D-xxx-102B-yy-P | 3 A   | 70  | 30     | 100  | 30     | 100    |
| R3-AKM23D-xxx-102B-yy-P  | 3 A   | 71  | 30     | 269  | 25     | 275    |
| R2A-AKM23D-xxx-105A-yy-P | 3 A   | 79  | 12     | 100  | 12     | 100    |
| R3-AKM23D-xxx-105A-yy-P  | 3 A   | 80  | 12     | 255  | 12     | 300    |
| R2A-AKM23D-xxx-152B-yy-P | 3 A   | 100 | 20     | 100  | 20     | 100    |
| R2A-AKM23D-xxx-155A-yy-P | 3 A   | 100 | 8.0    | 100  | 8      | 100    |
| R4-AKM42G-xxx-101B-yy-P  | 6 A   | 105 | 40     | 356  | 40     | 390    |
| R3-AKM23D-xxx-152B-yy-P  | 3 A   | 110 | 20     | 300  | 20     | 300    |
| R3-AKM23D-xxx-155A-yy-P  | 3 A   | 122 | 8.0    | 300  | 8.0    | 300    |
| R3-AKM23D-xxx-108A-yy-P  | 3 A   | 131 | 7.5    | 300  | 7.5    | 300    |
| R3-AKM23D-xxx-202B-yy-P  | 3 A   | 148 | 15     | 300  | 15     | 300    |
| R4-AKM42G-xxx-151B-yy-P  | 6 A   | 161 | 27     | 540  | 27     | 588    |
| R3-AKM23D-xxx-205A-yy-P  | 3 A   | 165 | 6.0    | 300  | 6.0    | 300    |
| R3-AKM23D-xxx-105B-yy-P  | 3 A   | 186 | 12     | 300  | 12     | 300    |
| R3-AKM23D-xxx-158A-yy-P  | 3 A   | 199 | 5.0    | 300  | 5.0    | 300    |
| R3-AKM42G-xxx-102B-yy-P  | 6 A   | 201 | 30     | 300  | 30     | 300    |
| R4-AKM42G-xxx-201B-yy-P  | 6 A   | 217 | 20     | 700  | 20     | 700    |
| R3-AKM42G-xxx-105A-yy-P  | 6 A   | 249 | 12     | 300  | 12     | 300    |
| R4-AKM52H-xxx-101B-yy-P  | 6 A   | 263 | 37     | 263  | 37     | 700    |
| R3-AKM23D-xxx-208A-yy-P  | 3 A   | 267 | 3.8    | 300  | 3.8    | 300    |
| R3-AKM23D-xxx-155B-yy-P  | 3 A   | 283 | 8.0    | 300  | 8.0    | 300    |
| R3-AKM23D-xxx-505A-yy-P  | 3 A   | 300 | 2.4    | 300  | 2.4    | 300    |
| R3-AKM42G-xxx-152B-yy-P  | 6 A   | 300 | 20     | 300  | 20     | 300    |
| R3-AKM42G-xxx-155A-yy-P  | 6 A   | 300 | 8.0    | 300  | 8.0    | 300    |
| R4-AKM52H-xxx-151B-yy-P  | 6 A   | 307 | 25     | 307  | 25     | 700    |
| R4-AKM42G-xxx-104B-yy-P  | 6 A   | 440 | 10     | 700  | 10     | 700    |
| R4-AKM42G-xxx-501B-yy-P  | 6 A   | 468 | 7.8    | 700  | 7.8    | 700    |
| R4-AKM52H-xxx-201B-yy-P  | 6 A   | 517 | 18     | 600  | 18     | 700    |
| R4-AKM42G-xxx-154B-yy-P  | 6 A   | 660 | 6.7    | 700  | 6.7    | 700    |
| R4-AKM52H-xxx-104B-yy-P  | 6 A   | 700 | 9.4    | 700  | 9.4    | 700    |



# Servo Motor System Performance Sun 1977-378-0240 Sales@servo2go.com www.servo2go.com

### **Belt Based Systems**

| Belt Based System  | AKD®<br>Cont. | Cont. Thrust<br>@ speed |      | Peak Thrust<br>@ speed |      | Max<br>Thrust |
|--------------------|---------------|-------------------------|------|------------------------|------|---------------|
|                    | Amps          | lb                      | in/s | lb                     | in/s | lb            |
| R3-AKM23D-xxx-15T  | 3 A           | 4.4                     | 118  | 29                     | 118  | 29            |
| R3-AKM23D-xxx-20T  | 3 A           | 7.6                     | 118  | 41                     | 118  | 41            |
| R2A-AKM23D-xxx-15T | 3 A           | 13                      | 80   | 64                     | 80   | 64            |
| R2A-AKM23D-xxx-20T | 3 A           | 19                      | 80   | 78                     | 80   | 87            |
| R3-AKM23D-xxx-50T  | 3 A           | 21                      | 71   | 76                     | 71   | 92            |
| R4-AKM42G-xxx-20T  | 6 A           | 25                      | 118  | 100                    | 118  | 100           |
| R3-AKM23D-xxx-70T  | 3 A           | 32                      | 51   | 108                    | 51   | 131           |
| R3-AKM42G-xxx-20T  | 6 A           | 32                      | 118  | 117                    | 118  | 126           |
| R4-AKM42G-xxx-30T  | 6 A           | 39                      | 100  | 139                    | 100  | 153           |
| R4-AKM42G-xxx-50T  | 6 A           | 57                      | 59   | 200                    | 59   | 219           |
| R3-AKM42G-xxx-50T  | 6 A           | 66                      | 72   | 138                    | 72   | 200           |
| R4-AKM52H-xxx-20T  | 6 A           | 66                      | 118  | 200                    | 90   | 202           |
| R3-AKM42G-xxx-70T  | 6 A           | 94                      | 51   | 197                    | 51   | 200           |
| R4-AKM52H-xxx-30T  | 6 A           | 96                      | 92   | 300                    | 60   | 300           |
| R4-AKM42G-xxx-100T | 6 A           | 118                     | 30   | 300                    | 30   | 300           |
| R4-AKM52H-xxx-50T  | 6 A           | 137                     | 54   | 300                    | 44   | 300           |
| R4-AKM52H-xxx-100T | 6 A           | 285                     | 27   | 300                    | 27   | 300           |



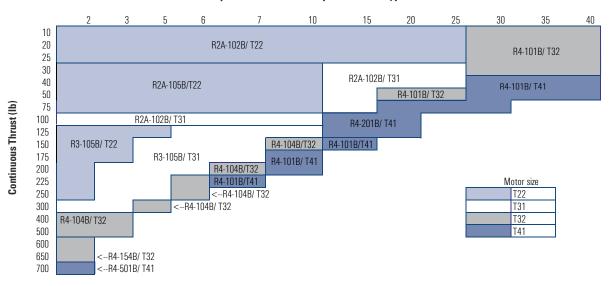
# Rodless Actuator Stepper System Phone: 877-378-0240 Sales@servo2go.com

The Rodless Actuator Stepper Systems are offered with a versatile stepper drive and multiple hybrid stepper motor sizes to provide system flexibility. Let your application and system requirements determine what solution integrates best.

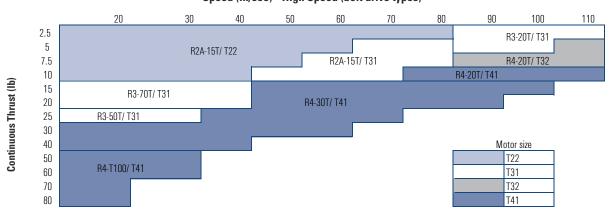
- Single vendor solution for the complete electro-mechanical system ensures system interoperability and single dedicated worldwide motion-control supplier for support.
- The Rodless Actuator Stepper Systems are available with standard step and direction drive functions, and enhanced drive technologies incorporating simple program control functionality (P7000 with -PL option).
- The Rodless Actuator Stepper Systems leverage multiple stepper motor sizes to provide the most cost effective solution to meet your machine's performance requirement.
- The Precision Table Stepper Systems have the flexibility for multi-axis configurations including XY, XZ, and XYZ and Gantry configurations.



# Advanced Stepper Motor Control Easy Commissioning Compatible with a Wide Range of Motors


#### P70630 115/230 VAC

- Base Unit: accepts step and direction inputs
- An integrated position controller is available (-PN option)
  - Up to 68 absolute or incremental moves
  - Specify detailed move parameters or simply distance and time
- Multistepping<sup>™</sup> inserts fine micro-steps to smooth coarse low speed motion
- Advanced auto-tuning provides outstanding low-speed performance


# Stepper Motor System Quick Selection Guick



#### Speed (in/sec) - Low Speed (screw types)



#### Speed (in/sec) - High Speed (belt drive types)



#### **Quick Selection Guide Reference**

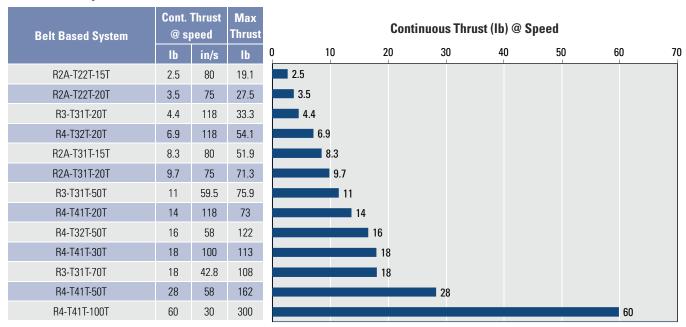
- Select Chart for application speed range Top chart - Low speeds, up to 40 in/sec Bottom Chart - High speeds, up to 118 in/sec
- 2. Select system by required continuous thrust (lb) and required rated speed (in/sec.)
- 3. Performance data respresents continuous output thrust and speed.

Other application considerations (stroke length, system resolution, inertia ratio, desired safety margins, etc) may result in selection of a different system.

Performance data represents continuous thrust (lb) at rated speed (in/s) based on P7000 drive with 240 Vac, single phase supply. For stepper motor systems it is good practice to size based on a 2x thrust margin and a 1.2x speed margin.

# Stepper Motor System Performance Summance




### **Screw Based Systems**

|                    | Cont.            | Thrust | Max    |                        |     |
|--------------------|------------------|--------|--------|------------------------|-----|
| Screw Based System | @ s <sub>l</sub> | peed   | Thrust | Continuous Thrust (lb) |     |
|                    | lb               | in/s   | lb     | 0 50 100 150 200 250   | 300 |
| R2A-T22T-152B-yy-P | 17               | 38     | 100    | 17                     |     |
| R2A-T22T-102B-yy-P | 23               | 25     | 100    | 23                     |     |
| R3-T22T-102B-yy-P  | 24               | 25     | 96.2   | 24                     |     |
| R2A-T22T-105A-yy-P | 27               | 10     | 100    | 27                     |     |
| R3-T22T-105A-yy-P  | 28               | 10     | 108    | 28                     |     |
| R4-T32T-101B-yy-P  | 33               | 40     | 218    | 33                     |     |
| R2A-T31T-102B-yy-P | 42               | 25     | 100    | 42                     |     |
| R3-T31T-102B-yy-P  | 43               | 25     | 228    | 43                     |     |
| R2A-T22T-155A-yy-P | 43               | 6.6    | 100    | 43                     |     |
| R3-T22T-108A-yy-P  | 47               | 6.2    | 175    | 47                     |     |
| R2A-T31T-105A-yy-P | 48               | 10     | 100    | 48                     |     |
| R3-T31T-105A-yy-P  | 49               | 10     | 253    | 49                     |     |
| R4-T32T-151B-yy-P  | 52               | 26.6   | 330    | 52                     |     |
| R4-T41T-151B-yy-P  | 52               | 26.6   | 437    | 52                     |     |
| R4-T41T-101B-yy-P  | 53               | 40     | 290    | 53                     |     |
| R3-T22T-202B-yy-P  | 54               | 12.5   | 198    | 54                     |     |
| R3-T22T-205A-yy-P  | 61               | 5      | 221    | 61                     |     |
| R3-T31T-152B-yy-P  | 67               | 16.6   | 300    | 67                     |     |
| R2A-T22T-105B-yy-P | 68               | 10     | 100    | 68                     |     |
| R3-T31T-105B-yy-P  | 69               | 10     | 249    | 69                     |     |
| R4-T32T-201B-yy-P  | 71               | 20     | 442    | 71                     |     |
| R3-T22T-158A-yy-P  | 74               | 4.1    | 266    | 74                     |     |
| R3-T31T-108A-yy-P  | 81               | 6.2    | 300    | 81                     |     |
| R3-T22T-105B-yy-P  | 89               | 10     | 249    | 89                     |     |
| R3-T31T-202B-yy-P  | 92               | 12.5   | 300    | 92                     |     |
| R3-T22T-208A-yy-P  | 100              | 3.1    | 300    | 100                    |     |
| R3-T22T-152B-yy-P  | 106              | 6.6    | 300    | 106                    |     |
| R3-T22T-155B-yy-P  | 106              | 6.6    | 300    | 106                    |     |
| R4-T41T-201B-yy-P  | 112              | 20     | 585    | 112                    |     |
| R4-T32T-104B-yy-P  | 149              | 10     | 700    | 149                    |     |
| R4-T32T-501B-yy-P  | 158              | 7.8    | 700    | 158                    |     |
| R4-T32T-154B-yy-P  | 226              | 6.6    | 700    | 226                    |     |
| R4-T41T-501B-yy-P  | 245              | 7.8    | 700    | 245                    |     |

Performance data represents continuous thrust (lb) at rated speed (in/s) based on P7000 drive with 240 Vac, single phase supply. For stepper motor systems it is good practice to size based on a 2x thrust margin and a 1.2x speed margin.



### **Belt Based Systems**

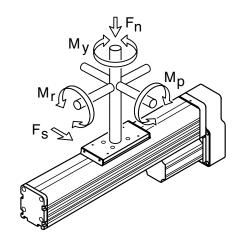


Performance data represents continuous thrust (Ib) at rated speed (in/s) based on P7000 drive with 240 Vac, single phase supply. For stepper motor systems it is good practice to size based on a 2x thrust margin and a 1.2x speed margin.

# Rodless Series General Specification: 877-378-0240 Sales Series General Specification: 877-378-0249 Sales Series Series General Specification: 877-378-0249 Sales Series Series General



## **Specification Overview**


| Series                                    | R2A                                            |                 | R3              |                |                | R4             |                      |              |  |
|-------------------------------------------|------------------------------------------------|-----------------|-----------------|----------------|----------------|----------------|----------------------|--------------|--|
| Std. maximum stroke length (in)           | 72                                             |                 |                 | 108            |                |                | 108                  |              |  |
| Cross Section (in)                        | 2 x 2                                          |                 |                 |                | 2.5 x 2.8      |                |                      | 3.6 x 4.25   |  |
| Guide Type                                |                                                | Roller Guides   |                 |                | Profile Rail   |                | Profil               | Profile Rail |  |
| Drive Type                                | Ball screw                                     | Lead Screw      | Belt            | Ball screw     | Lead Screw     | Belt           | Ball screw           | Belt         |  |
| Screw Leads (in/rev)                      | 0.5, 0.2                                       | 0.2, 0.125      | n/a             | 0.5, 0.2       | 0.2, 0.125     | n/a            | 1, 0.25              | n/a          |  |
| Nominal Screw Diameter (in)               | 0.625                                          | 0.625           | n/a             | 0.625          | 0.625          | n/a            | 1                    | n/a          |  |
| Brushless Servo Motor (1)                 |                                                | AKM23           |                 | A              | AKM23, AKM4    | 2              | AKM42, AKM52         |              |  |
| Stepper Motor                             |                                                | T22, T31        |                 |                | T22, T31       | T32, T41       |                      |              |  |
| Max Thrust (lb)                           |                                                | 100             |                 |                | 300            |                | 700                  | 300          |  |
| Max Velocity (in/sec)                     | 3                                              | 0               | 80              | 3              | 0              | 118            | 40                   | 118          |  |
| Max Carriage Load                         |                                                |                 |                 |                |                |                |                      |              |  |
| Normal (lb)                               |                                                | 50              |                 |                | 100            |                | 300                  |              |  |
| Roll Moment (lb-in)                       |                                                | 50              |                 |                | 300            |                | 60                   | 00           |  |
| Pitch Moment (Ib-in)                      |                                                | 100             |                 | 500            |                |                | 1000                 |              |  |
| Repeatability (in)                        | +/-0                                           | .001            | +/-0.010        | +/-0           | .001           | +/-0.010       | +/-0.001             | +/-0.010     |  |
| Max Duty Cycle<br>(speed, load dependent) | 100%                                           | 60%             | 100%            | 100% 60%       |                | 100%           | 100%                 | 100%         |  |
| Limit Sensors                             | Optional                                       |                 |                 |                |                |                |                      |              |  |
| Std. Operating Temperature Range          | -20 deg F to 140 deg F (-28 deg C to 60 deg C) |                 |                 |                |                |                |                      |              |  |
| Moisture/Contamination                    | IP 4                                           | 14 rated: Splas | h-proof, protec | ted against in | gress of solid | particles grea | ter than 0.040 [1mm] | diameter.    |  |



**Carriage:** Straigtness & Flatness  $\pm$  0.005 in/ft [0.125 mm/300 mm], not to exceed  $\pm$  0.035 in [0.9 mm] (all models)

# **Load Limits:** R2A, R3, R4

|                                      | R2A       | R3        | R4 Screw    | R4 Belt    |
|--------------------------------------|-----------|-----------|-------------|------------|
| Normal (F <sub>n</sub> ): lb (N)     | 50 (222)  | 100 (445) | 300 (1330)  | 300 (1330) |
| Side (F <sub>s</sub> ): Ib (N)       | 50 (222)  | 100 (445) | 150 (667)   | 150 (667)  |
| Pitch (M <sub>p</sub> ): Ib-in (N-m) | 100 (11)  | 500 (56)  | 1700 (2305) | 750 (1017) |
| Roll (M <sub>r</sub> ): Ib-in (N-m)  | 50 (5.65) | 300 (34)  | 600 (68)    | 600 (68)   |
| Yaw (M <sub>y</sub> ): Ib-in (N-m)   | 100 (11)  | 500 (56)  | 1000 (113)  | 1000 (113) |



#### Pitch Moment Examples

#### Equation: $Mp = (a + h) \times Ft$

Note that the distance from the carriage surface to the screw/belt center-line has been added to the moment arm.

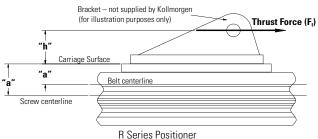
#### Pitch Moment offset values "a"

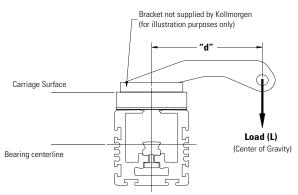
| "a"                   | R2A         | R3          | R4          |
|-----------------------|-------------|-------------|-------------|
| Screw Offset: in (mm) | 1.82 (46.2) | 1.68 (42.7) | 3.94 (100)  |
| Belt Offset: in (mm)  | 1.58 (40.1) | 1.10 (27.9) | 3.06 (77.7) |

#### **Roll Moment (overhung load) Example**

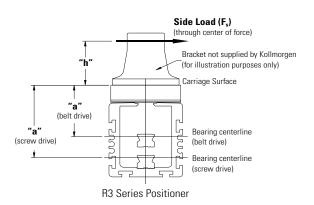
#### Equation: $Mr = d \times L$

Note that the distance from the carriage surface to the screw/belt center-line has been added to the moment arm.


#### **Roll Moment (side load) Example**


#### Equation: $Mr = (a + h) \times Tf$

Note that the distance from the carriage surface to the screw/belt center-line has been added to the moment arm.


#### Roll Moment offset values "a"

| "a"                   | R2A         | R3          | R4          |
|-----------------------|-------------|-------------|-------------|
| Screw Offset: in (mm) | 1.11 (28.2) | 2.76 (70.1) | 3.94 (100)  |
| Belt Offset: in (mm)  | 1.11 (28.2) | 1.97 (50)   | 3.06 (77.7) |

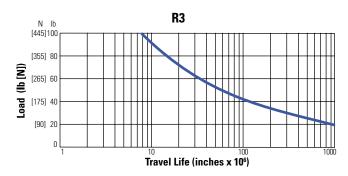


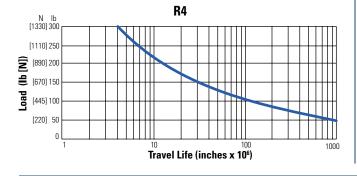


R Series Positioner




# Rodless Series General Specification: 877-378-0240 sales@servo2go.com www.servo2go.com

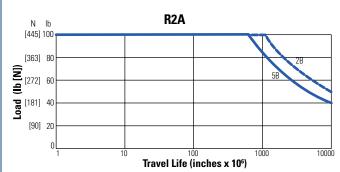

#### Life

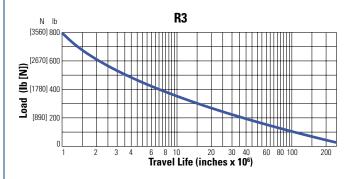

#### **Belt Drive**

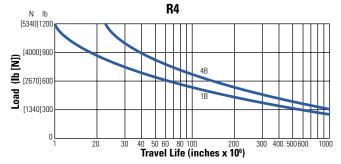
As belt-driven actuators are generally used horizontally with light thrust loads, life is usually a function of the load weight. Actual life will be determined by carriage loading, speed, acceleration, and duty cycle and operating environment. The curves show predicted life of the actuator under ideal conditions. Derate as required by your application.

#### **Carriage Load vs. Rail Life**







#### **Ball screw**

Ball screw life is rated in inches (meters) of travel for a given load. The values in the charts indicate the travel life where 90% of all units in the sample will continue to work, while 10% have failed. This is similar to the B10 rating where 90% of a roller bearing mechanism. Be sure to consider acceleration loads as well as thrust, gravitational and friction loads.

#### **Ball screw Life vs. Travel Life**

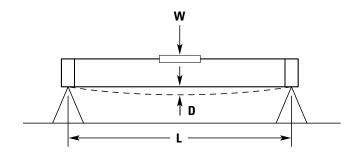






#### **Lead Screw**

Usable life for a lead screw is defined as the length of travel completed before linear backlash of the lead screw and nut exceeds 0.0200 in (0.051 mm). A travel life of 1 million inches under the maximum rated load can be used as a first approximation. Since wear is a function of several application parameters (load, duty cycle, speed, acceleration rates, environment, etc.) it is often difficult to exactly predict travel life of a lead screw.




#### **Deflection**

The equations shown provide deflection as a function of the various loads applied to the carriage.

Deflection should not exceed 0.015 in. (0.38 mm) for all models. Mounting spacing should not exceed 48 in. (1200 mm)

#### **Deflection Equations**



#### Where:

W = Load (Ib)

D = Deflection (inches)

L = Mounting spacing (inches)

Positioner deflection will affect the flatness or straightness of the positioner when the system is supported at spaced mounting points.

Normal and Side:  $D = WL^3 / ("c" \times 10^8 + "d")$ 

| Orientation    |      | R2A     |           |      | R3  |           |      | R4  |           |
|----------------|------|---------|-----------|------|-----|-----------|------|-----|-----------|
| Value          | "c"  | "d"     | "D" limit | "c"  | "d" | "D" limit | "c"  | "d" | "D" limit |
| Normal - Screw | 3.3  | 3.0 E-5 | 0.015     | 7.20 | 0   | 0.015     | 28.0 | 0   | 0.015     |
| Normal - Belt  | 3.3  | 1.2 E-4 | 0.015     | 7.20 | 0   | 0.015     | 28.0 | 0   | 0.015     |
| Side           | 2.70 | 0       | 0.015     | 6.50 | 0   | 0.015     | 13.0 | 0   | 0.015     |

#### Pitch, Roll, Yaw: D = "e" x 10<sup>-6</sup> radians/ lb-in

| Orientation |     | R2A               |     | R3                |     | R4                 |
|-------------|-----|-------------------|-----|-------------------|-----|--------------------|
| Value       | "e" | limit (radians)   | "e" | limit (radians)   | "e" | limit (radians)    |
| Pitch       | 4.0 | 0.004 @ 100 lb-in | 3.3 | 0.002 @ 500 lb-in | 3   | 0.003 @ 1000 lb-in |
| Roll        | 52  | 0.026 @ 50 lb-in  | 46  | 0.014 @ 300 lb-in | 20  | 0.013 @ 600 lb-in  |
| Yaw         | 10  | 0.010 @ 100 lb-in | 5.1 | 0.003 @ 500 lb-in | 4   | 0.004 @ 1000 lb-in |

#### **Maintenance**

The carriage seal and internal bearing design prevents lubrication contamination and nearly eliminates the need for routine maintenance.

# R2A Series Rodless Actuator



## **General Specifications**

| •                                |                                                                                                                                           |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Travel Lengths                   | 6, 12, 18, 24, 30, 36, 42, 48, 60, 72 inches                                                                                              |
| Construction Materials           |                                                                                                                                           |
| Bearing Housing                  | Type 380 die cast aluminum, epoxy coated                                                                                                  |
| Guide Housing                    | 6063 T-6 aluminum, hard anodized and Teflon® impregnated                                                                                  |
| Carriage Assembly                | 6061 T-6 aluminum, hard anodized                                                                                                          |
| Internal Guide Bearings          | Four angular contact bearings with ground Gothic arch raceway running on dual precision rails                                             |
| Lead Screw or Belt               |                                                                                                                                           |
| Lead Choices                     | 0.5, 0.2, Ball; 0.2, 0.125, Lead Screw (in/rev)                                                                                           |
| Support Bearings                 | Ball bearings                                                                                                                             |
| Lead Screw; drive nut            | 0.625" diameter alloy steel screw; lubricated bronze drive nut                                                                            |
| Ball screw; ballnut              | 0.625" diameter hardened alloy steel screw; alloy steel, heat treated ballnut                                                             |
| Belt Drive                       | 0.5" wide polyurethane with steel reinforcement cords                                                                                     |
| Flexible Seal                    | Stainless steel band with elastomeric seal                                                                                                |
| Motor                            | AKM® servo motor or T series stepper                                                                                                      |
| Weight (approx, without options) |                                                                                                                                           |
| R2A-AKM23                        | 16 + 0.3 x (inches stroke) lb [7.3 + 0.14 x (inches stroke)] kg                                                                           |
| R2A-T22                          | 17 + 0.3 x (inches stroke) lb [7.7 + 0.14 x (inches stroke)] kg                                                                           |
| R2A-T31                          | 19 + 0.3 x (inches stroke) lb [8.6 + 0.14 x (inches stroke)] kg                                                                           |
| <b>Environmental Operation</b>   |                                                                                                                                           |
| Temperature Range                | -20° to 140°F [-28° to 60°C]                                                                                                              |
| Moisture/Contaminants            | IP 44 rated: Splash-proof, protected against ingress of solid particles greater than 0.040" [1 mm] diameter. Non-corrosive, non-abrasive. |





#### **R2A Series Inertia**

## **Inertia Equations:**

Rotary Inertia (lb-in-s<sup>z</sup>, reflected to the motor) = A + B x Stroke + C x Load + D

Linear Inertia (lb, reflected to the carriage) = [[A + B x Stroke + D]/C] + Load

#### where:

A = Inertia of zero length slide (lb-in-s<sup>2</sup>)

**B** = Inertia adder per inch of stroke length (Ib-in-s<sup>2</sup>/in)

**C** = Inertia adder per pound of payload (lb-in-s<sup>2</sup>/lb)

**D** = Motor inertia (lb-in-s<sup>z</sup>)

**Stroke** = Total stroke length in inches (in).

Load = Payload in pounds (lb)

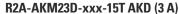
Same as stroke length entered into part number

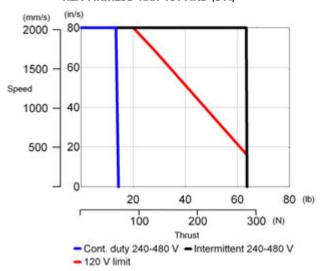
| Belt Driven<br>Models  | Motors          | Ratio | Belt (in)                    | A<br>(Ib-in-s²) | B<br>(Ib-in-s²/in) | C<br>(lb-in-s²/lb) |                          |
|------------------------|-----------------|-------|------------------------------|-----------------|--------------------|--------------------|--------------------------|
| R2A10T                 | AKM23           | 1:1   |                              | 5.85 E-04       | 2.41 E-06          | 5.74 E-04          |                          |
| R2A15T                 | AKM 23,T22, T31 | 1.5:1 | 0.5 wide                     | 2.63 E-04       | 1.07 E-06          | 2.56 E-04          |                          |
| R2A20T                 | AKM 23,T22, T31 | 2:1   |                              | 1.51 E-04       | 5.98 E-07          | 1.46 E-04          |                          |
| Screw Driven<br>Models | Motors          | Ratio | Screw<br>dia. x<br>lead (in) | A<br>(Ib-in-s²) | B<br>(lb-in-s²/in) | C<br>(lb-in-s²/lb) | <b>Me</b><br>1 m<br>1 kg |
| R2A102B                | AKM 23,T22, T31 | 1:1   |                              | 1.99 E-04       | 7.12 E-05          | 1.64 E-05          | 1 lb                     |
| R2A152B                | AKM23, T22      | 1.5:1 | 0.625 x 0.5                  | 9.14 E-05       | 3.17 E-05          | 7.29 E-06          |                          |
| R2A202B                | AKM23           | 2:1   |                              | 5.35 E-05       | 1.78 E-05          | 4.10 E-06          |                          |
| R2A105B                | AKM23, T22      | 1:1   |                              | 1.74 E-04       | 7.12 E-05          | 2.62 E-06          |                          |
| R2A155B                | AKM23           | 1.5:1 | 0.625 x 0.2                  | 8.04 E-05       | 3.17 E-05          | 1.17 E-06          |                          |
| R2A205B                | AKM23           | 2:1   |                              | 4.73 E-05       | 1.78 E-05          | 6.64 E-07          |                          |
| R2A105A                | AKM 23,T22, T31 | 1:1   |                              | 1.74 E-04       | 7.12 E-05          | 2.62 E-06          |                          |
| R2A155A                | AKM23, T22      | 1.5:1 | 0.625 x 0.2                  | 8.01 E-05       | 3.17 E-05          | 1.17 E-06          |                          |
| R2A205A                | AKM23           | 2:1   |                              | 4.71 E-05       | 1.78 E-05          | 6.64 E-07          |                          |

| Motor | D<br>(lb-in-s²) |
|-------|-----------------|
| AKM23 | 1.91 E-04       |
| T22   | 3.50 E-04       |
| T31   | 1 27 F-03       |

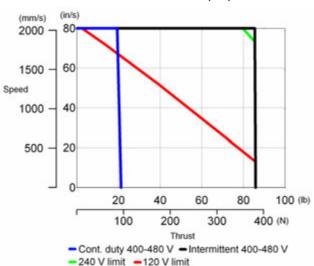
#### **Metric Conversions:**

mm = 0.03937 in

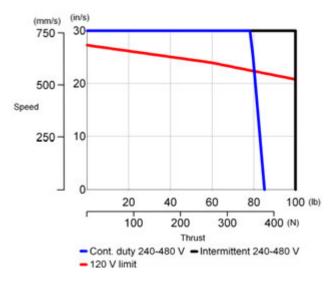

kg = 2.205 lb


1 lb-in- $s^2$  = 1129 kg-cm<sup>2</sup> = 1.152 kg-cm- $s^2$ 

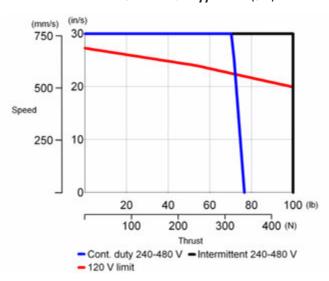
# R2A Series Rodless Actuator




### **Servo Thrust Speed Curves**







## R2A-AKM23D-xxx-20T AKD (3 A)

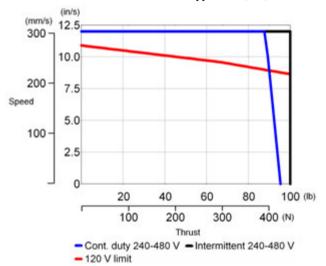


### R2A-AKM23D-xxx-102B-yy-I AKD (3 A)

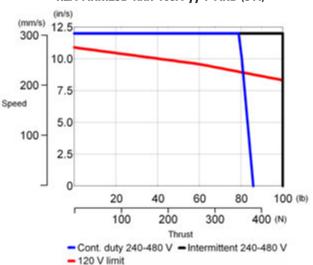


#### R2A-AKM23D-xxx-102B-yy-P AKD (3 A)

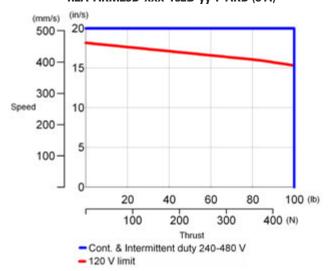



#### **Column Loading and Critical Speed Limits for Screw-driven Configurations**

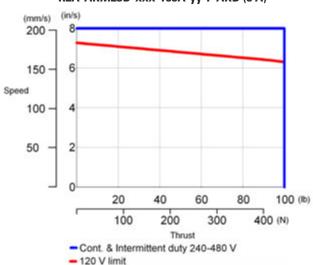
|    | Critical Speed (in/sec) | 30.0   | 25.5 | 17.3 | 12.5 | 9.4 | 7.4 | 5.9 | 4.1 | 3.0 |
|----|-------------------------|--------|------|------|------|-----|-----|-----|-----|-----|
| 2B | Stroke (in)             | 6 - 12 | 18   | 24   | 30   | 36  | 42  | 48  | 60  | 72  |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | n/a | n/a | n/a | n/a |




### **Servo Thrust Speed Curves**


#### R2A-AKM23D-xxx-105A-yy-I AKD (3 A)




#### R2A-AKM23D-xxx-105A-yy-P AKD (3 A)



#### R2A-AKM23D-xxx-152B-yy-P AKD (3 A)

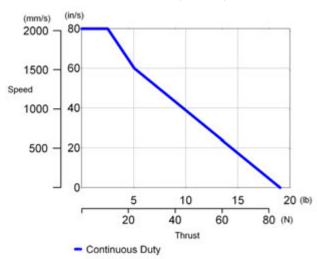


#### R2A-AKM23D-xxx-155A-yy-P AKD (3 A)

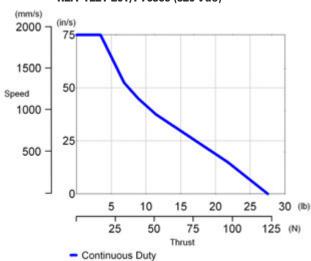


#### **Column Loading and Critical Speed Limits for Screw-driven Configurations**

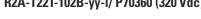
|    | Critical Speed (in/sec)             | 15.0           | 12.5       | 7.7        | 5.2        | 3.8       | 2.8       | 2.2       | 1.8       | 1.2       | 0.9 |
|----|-------------------------------------|----------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----|
| 5A | Stroke (in)                         | 6 - 12         | 12         | 18         | 24         | 30        | 36        | 42        | 48        | 60        | 72  |
|    | Column Load Limit (lb)              | n/a            | n/a        | n/a        | n/a        | n/a       | n/a       | n/a       | 98        | 63        | 44  |
|    |                                     |                |            |            |            |           |           |           |           |           |     |
|    |                                     |                |            |            |            |           |           |           |           |           |     |
|    | Critical Speed (in/sec)             | 30.0           | 25.5       | 17.3       | 12.5       | 9.4       | 7.4       | 5.9       | 4.1       | 3.0       |     |
| 2B | Critical Speed (in/sec) Stroke (in) | 30.0<br>6 - 12 | 25.5<br>18 | 17.3<br>24 | 12.5<br>30 | 9.4<br>36 | 7.4<br>42 | 5.9<br>48 | 4.1<br>60 | 3.0<br>72 |     |

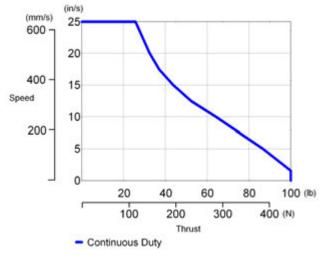

Notes:

# **R2A Series Rodless Actuator**

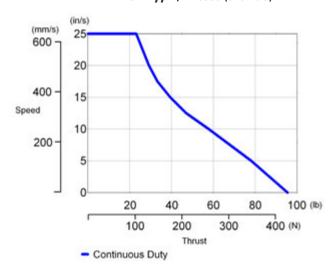



#### **Stepper Thrust Speed Curves**


#### R2A-T22T-15T/P70360 (320 Vdc)




#### R2A-T22T-20T/P70360 (320 Vdc)



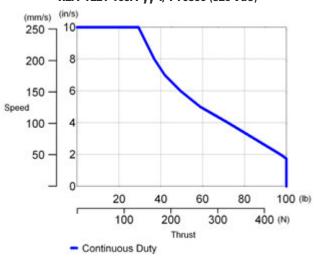

R2A-T22T-102B-yy-I/ P70360 (320 Vdc)



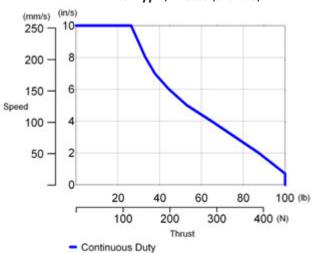


#### R2A-T22T-102B-yy-P/ P70360 (320 Vdc)

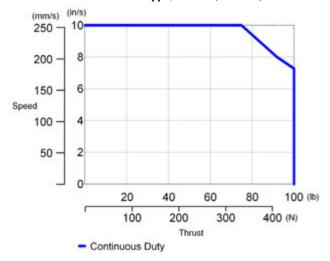



#### **Column Loading and Critical Speed Limits for Screw-driven Configurations**

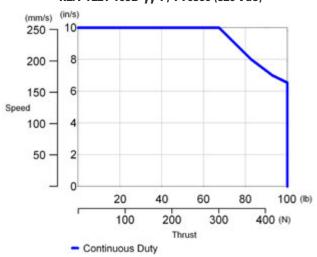
|    | Critical Speed (in/sec) | 30.0   | 25.5 | 17.3 | 12.5 | 9.4 | 7.4 | 5.9 | 4.1 | 3.0 |
|----|-------------------------|--------|------|------|------|-----|-----|-----|-----|-----|
| 2B | Stroke (in)             | 6 - 12 | 18   | 24   | 30   | 36  | 42  | 48  | 60  | 72  |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | n/a | n/a | n/a | n/a |




### **Stepper Thrust Speed Curves**


#### R2A-T22T-105A-yy-I/ P70360 (320 Vdc)




#### R2A-T22T-105A-yy-P/ P70360 (320 Vdc)



R2A-T22T-105B-yy-I/P70360 (320 Vdc)

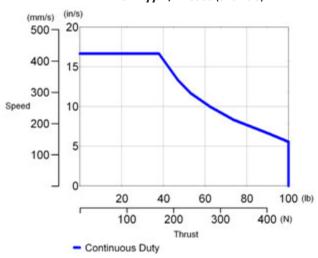


#### R2A-T22T-105B-yy-P/ P70360 (320 Vdc)

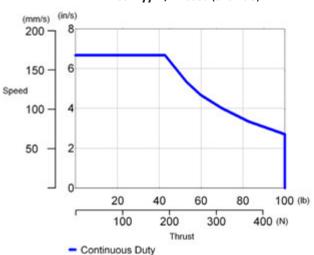


#### **Column Loading and Critical Speed Limits for Screw-driven Configurations**

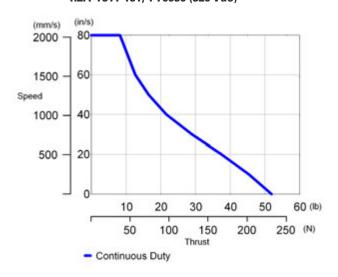
|    | Critical Speed (in/sec) | 15.0   | 12.5 | 7.7 | 5.2 | 3.8 | 2.8 | 2.2 | 1.8 | 1.2 | 0.9 |
|----|-------------------------|--------|------|-----|-----|-----|-----|-----|-----|-----|-----|
| 5A | Stroke (in)             | 6 - 12 | 12   | 18  | 24  | 30  | 36  | 42  | 48  | 60  | 72  |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a | n/a | n/a | n/a | n/a | 98  | 63  | 44  |
|    |                         |        |      |     |     |     |     |     |     |     |     |
|    | Critical Speed (in/sec) | 15.0   | 10.2 | 6.9 | 5.0 | 3.8 | 2.9 | 2.4 | 1.6 | 1.2 |     |
| 5B | Stroke (in)             | 6 - 12 | 18   | 24  | 30  | 36  | 42  | 48  | 60  | 72  |     |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a | n/a | n/a | n/a | n/a | n/a | n/a |     |


Notes:

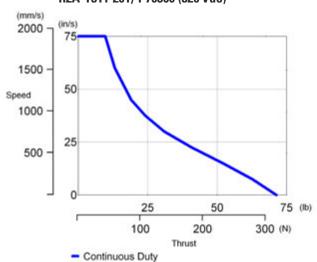
# **R2A Series Rodless Actuator**




#### **Stepper Thrust Speed Curves**


#### R2A-T22T-152B-yy-P/ P70360 (320 Vdc)




#### R2A-T22T-155A-yy-P/ P70360 (320 Vdc)



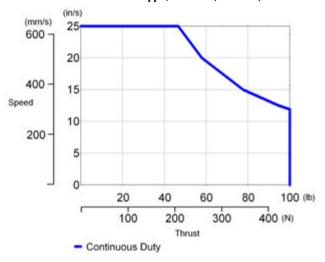
R2A-T31T-15T/ P70630 (320 Vdc)



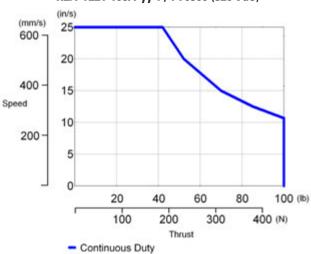
#### R2A-T31T-20T/ P70360 (320 Vdc)



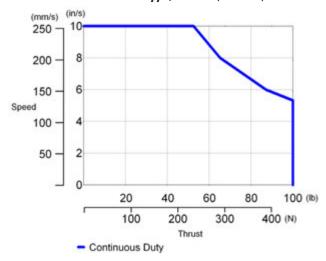
#### **Column Loading and Critical Speed Limits for Screw-driven Configurations**


| 2R | Critical Speed (in/sec)             | 30.0           | 25.5       | 17.3      | 12.5      | 9.4 | 7.4       | 5.9       | 4.1       | 3.0       |  |
|----|-------------------------------------|----------------|------------|-----------|-----------|-----|-----------|-----------|-----------|-----------|--|
| 2B | Stroke (in)                         | 6 - 12         | 18         | 24        | 30        | 36  | 42        | 48        | 60        | 72        |  |
|    | Column Load Limit (lb)              | n/a            | n/a        | n/a       | n/a       | n/a | n/a       | n/a       | n/a       | n/a       |  |
|    |                                     |                |            |           |           |     |           |           |           |           |  |
|    |                                     |                | 40 F       | 77        | г о       | 0.0 | 0.0       | 0.0       | 1.0       | 1.0       |  |
|    | Critical Speed (in/sec)             | 15.0           | 12.5       | 7.7       | 5.2       | 3.8 | 2.8       | 2.2       | 1.8       | 1.2       |  |
| 5A | Critical Speed (in/sec) Stroke (in) | 15.0<br>6 - 12 | 12.5<br>12 | 7.7<br>18 | 5.2<br>24 | 3.8 | 2.8<br>36 | 2.2<br>42 | 1.8<br>48 | 1.2<br>60 |  |

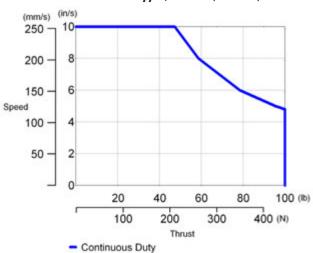
Notes:




### **Stepper Thrust Speed Curves**


#### R2A-T31T-102B-yy-I/ P70630 (320 Vdc)




#### R2A-T22T-105A-yy-P/ P70360 (320 Vdc)



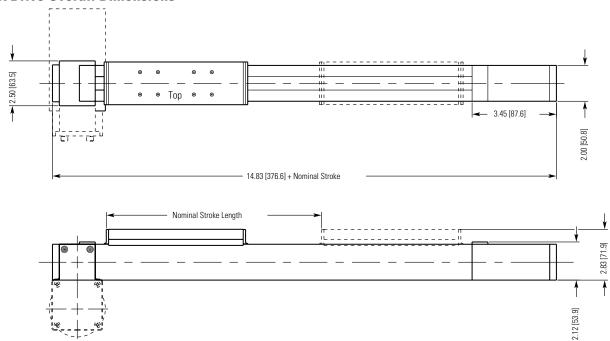
#### R2A-T31T-105A-yy-I/ P70630 (320 Vdc)



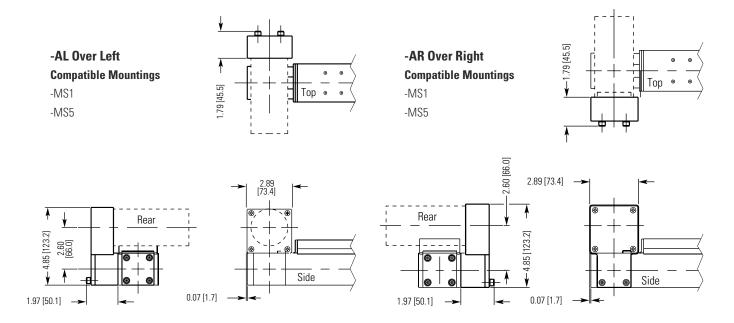
#### R2A-T31T-105A-yy-P/ P70630 (320 Vdc)



### **Column Loading and Critical Speed Limits for Screw-driven Configurations**

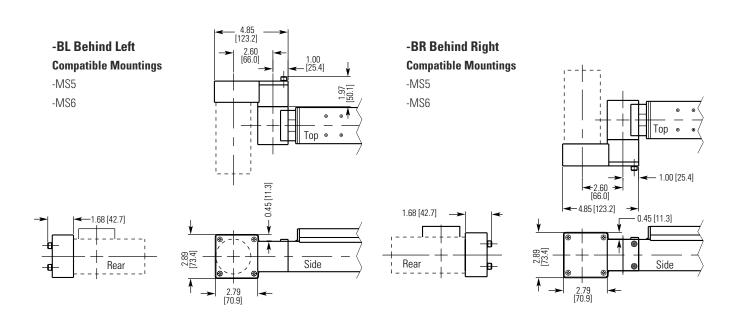

|             | Critical Speed (in/sec) | 30.0   | 25.5 | 17.3 | 12.5 | 9.4 | 7.4 | 5.9 | 4.1 | 3.0 |  |
|-------------|-------------------------|--------|------|------|------|-----|-----|-----|-----|-----|--|
| 2B          | Stroke (in)             | 6 - 12 | 18   | 24   | 30   | 36  | 42  | 48  | 60  | 72  |  |
|             | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | n/a | n/a | n/a | n/a |  |
|             | Critical Speed (in/sec) | 15.0   | 12.5 | 7.7  | 5.2  | 3.8 | 2.8 | 2.2 | 1.8 | 1 2 |  |
| 5A          | Stroke (in)             | 6 - 12 | 12.0 | 18   | 24   | 30  | 36  | 42  | 48  | 60  |  |
| <b>57</b> 1 | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | n/a | n/a | 98  | 63  |  |

Notes:


# **R2A Series Rodless Actuator**

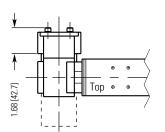


#### **Belt Drive Overall Dimensions**



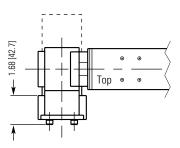

## **Belt Drive Orientation Options with Dimensions**

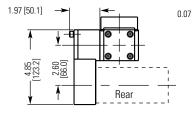


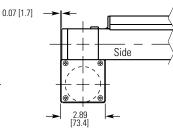


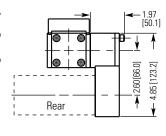

## **Belt Drive Orientation Options with Dimensions**

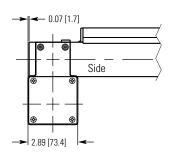






- -MS5
- -MS6

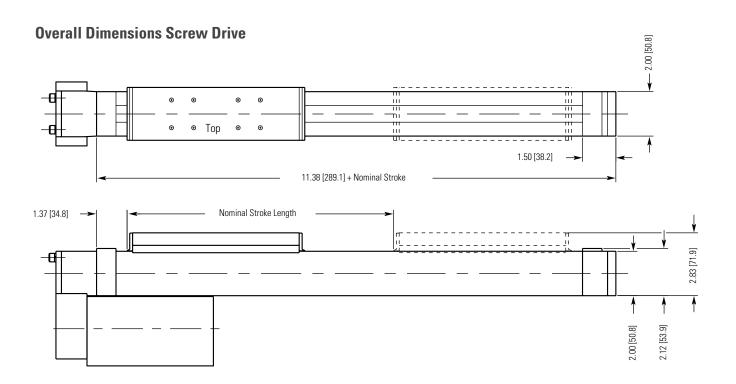


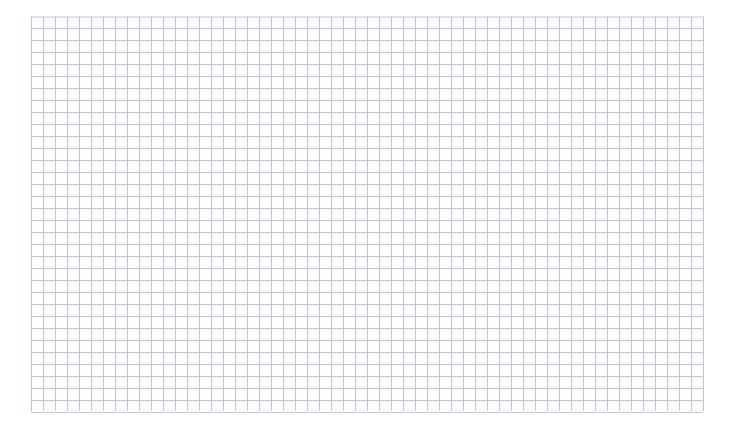


### -CR Under Left Compatible Mountings


- -MS5
- -MS6



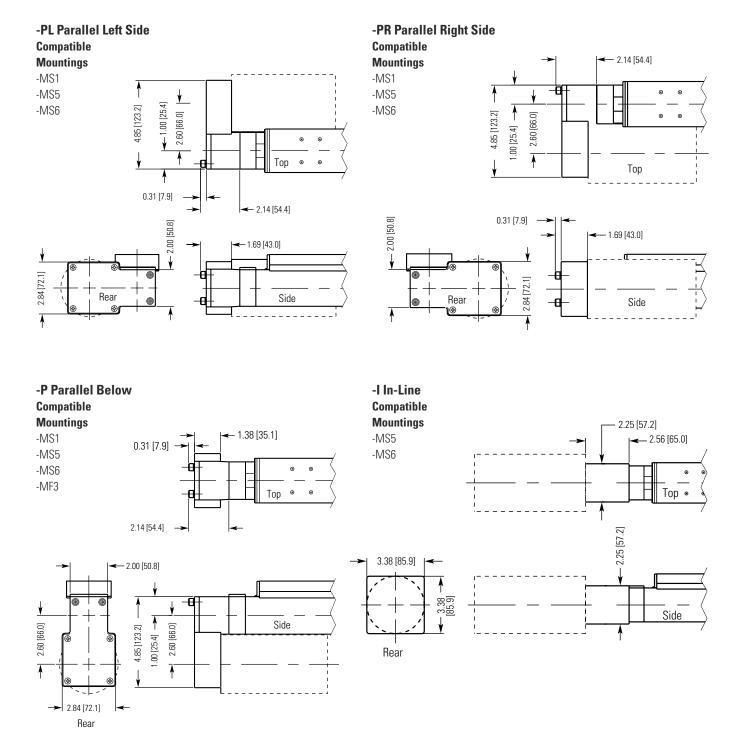







# R2A Series Rodless Actuator







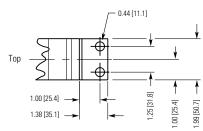


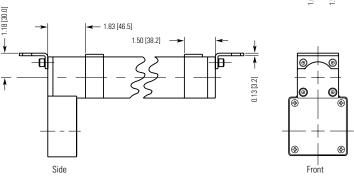

## **Screw Drive Orientation Options with Dimensions**



# **R2A Series Rodless Actuator**




## **Mounting Option Dimensions**


### -MS1E Side End Angles Compatible Motor Orientations

Belt Screw -AR -P

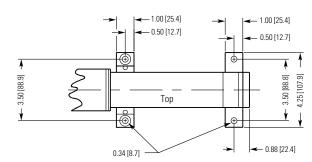
-AL -PR

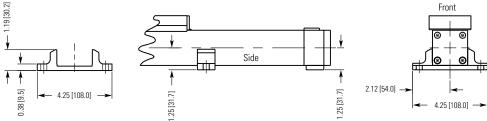
-PL

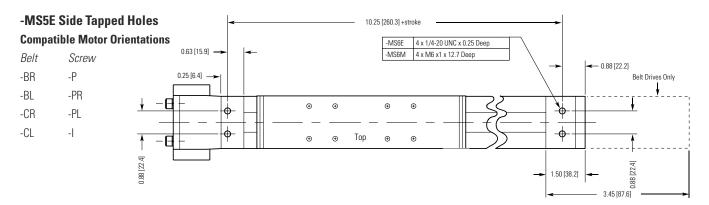




# -MS5E Adjustable Feet


## **Compatible Motor Orientations**


Belt Screw
-AR -P
-AL -PR
-BR -PL


-BL -I

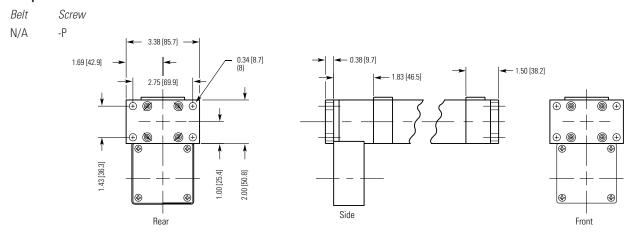
-CR

| -CL    |                |
|--------|----------------|
| Stroke | Number of Feet |
| 0-18   | 2              |
| 19-36  | 3              |
| 37-48  | 4              |

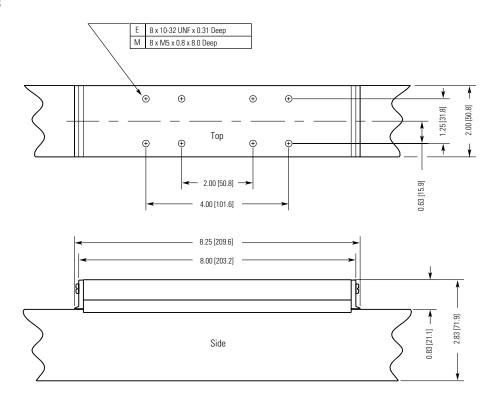









## **Mounting Option Dimensions**


### -MF3E Front & Rear Rectangular Flanges

Screw Driven Models Only

### **Compatible Motor Orientations**



## **Carriage Dimensions**





## **General Specifications**

| Travel Lengths                   | 6, 12, 18, 24, 30, 36, 42, 48, 60, 72, 84, 96, 108 inches                                                                                 |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Construction Materials           |                                                                                                                                           |
| Bearing Housing                  | 6063 T-6 aluminum, hardcoat anodized                                                                                                      |
| Guide Housing                    | 6063 T-6 aluminum, hardcoat anodized                                                                                                      |
| Carriage Assembly                | 6061 T-6 aluminum, hardcoat anodized                                                                                                      |
| Internal Rail Bearings           | Recirculating ball on precision ground rail                                                                                               |
| Lead Screw or Belt               |                                                                                                                                           |
| Support Bearing                  | Angular contact, high thrust ball bearings                                                                                                |
| Lead Screw; drive nut            | Lubricated bronze drive nut                                                                                                               |
| Ball screw; ballnut              | 0.625" diameter hardened alloy steel screw; alloy steel, heat treated ballnut                                                             |
| Belt Drive                       | 1.0" wide XL pitch polyurethane with steel reinforcement cords                                                                            |
| Flexible Seal                    | Stainless steel band with elastomeric seal                                                                                                |
| Motor                            | AKM® servo motor or T series stepper                                                                                                      |
| Weight (approx, without options) |                                                                                                                                           |
| R3-AKM23                         | 17 + 0.4 x (inches stroke) lb [7.7 + 0.18 x (inches stroke)] kg                                                                           |
| R3-AKM42                         | 25 + 0.4 x (inches stroke) lb [11.3 + 0.18 x (inches stroke)] kg                                                                          |
| R3-T22                           | 17 + 0.4 x (inches stroke) lb [7.7 + 0.18 x (inches stroke)] kg                                                                           |
| R3-T31                           | 20 + 0.4 x (inches stroke) lb [9.1 + 0.18 x (inches stroke)] kg                                                                           |
| <b>Environmental Operation</b>   |                                                                                                                                           |
| Temperature Range                | -20° to 140°F [-28° to 60°C]                                                                                                              |
| Moisture/Contaminants            | IP 44 rated: Splash-proof, protected against ingress of solid particles greater than 0.040" [1 mm] diameter. Non-corrosive, non-abrasive. |





### **R3 Series Inertia**

### **Inertia Equations:**

Rotary Inertia (Ib-in-sz, reflected to the motor) = A + B x Stroke + C x Load + D

Linear Inertia (lb, reflected to the carriage) = [[A + B x Stroke + D]/C] + Load

### where:

A = Inertia of zero length slide (Ib-in-s<sup>2</sup>)

**B** = Inertia adder per inch of stroke length (lb-in-s<sup>2</sup>/in)

**C** = Inertia adder per pound of payload (lb-in-s<sup>2</sup>/lb)

**D** = Motor inertia (lb-in-s<sup>z</sup>)

Stroke = Total stroke length in inches (in).

Load = Payload in pounds (lb)

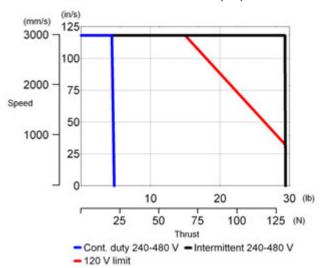
Same as stroke length entered into part number

| Belt Driven<br>Models  | Motors             | Ratio | Belt (in)                    | A<br>(Ib-in-s²) | B<br>(lb-in-s²/in) | C<br>(lb-in-s²/lb) |
|------------------------|--------------------|-------|------------------------------|-----------------|--------------------|--------------------|
| R310T                  | AKM23, 42          | 1:1   |                              | 6.18 E-03       | 1.92 E-05          | 2.30 E-03          |
| R315T                  | AKM23, 42          | 1.5:1 | 1.0 wide                     | 2.75 E-03       | 8.52 E-06          | 1.02 E-03          |
| R320T                  | AKM23, 42, T31     | 2:1   |                              | 1.56 E-03       | 4.82 E-06          | 5.78 E-04          |
| Screw Driven<br>Models | Motors             | Ratio | Screw<br>dia. x<br>lead (in) | A<br>(lb-in-s²) | B<br>(lb-in-s²/in) | C<br>(lb-in-s²/lb) |
| R3102B                 | AKM23, 42, T22, 31 | 1:1   |                              | 2.15 E-04       | 7.12 E-05          | 1.64 E-05          |
| R3152B                 | AKM23, 42, T22, 31 | 1.5:1 | 0.625 x 0.5                  | 9.80 E-05       | 3.17 E-05          | 7.29 E-06          |
| R3202B                 | AKM23, 42, T22, 31 | 2:1   | 0.020 X 0.0                  | 5.70 E-05       | 1.78 E-05          | 4.10 E-06          |
| R3502B                 | AKM23, 42          | 5:1   |                              | 1.41 E-04       | 2.80 E-06          | 6.48 E-07          |
| R3105B                 | AKM23, 42, T22, 31 | 1:1   |                              | 1.80 E-04       | 7.12 E-05          | 2.62 E-06          |
| R3155B                 | AKM23, 42, T22     | 1.5:1 | 0.625 x 0.2                  | 8.22 E-05       | 3.17 E-05          | 1.17 E-06          |
| R3205B                 | AKM23, 42          | 2:1   | 0.020 X 0.2                  | 4.81 E-05       | 1.78 E-05          | 6.64 E-07          |
| R3505B                 | AKM23, 42, T22, 31 | 5:1   |                              | 1.40 E-04       | 2.80 E-06          | 9.71 E-08          |
| R3102A                 |                    | 1:1   | 0.625 x 0.5                  | 2.01 E-04       | 7.12 E-05          | 1.64 E-05          |
| R3105A                 | AKM23, 42, T22, 31 | 1:1   |                              | 1.79 E-04       | 7.12 E-05          | 2.62 E-06          |
| R3155A                 | AKM23, 42          | 1.5:1 | 0.625 x 0.2                  | 8.19 E-05       | 3.17 E-05          | 1.17 E-06          |
| R3205A                 | AKM23, 42, T22     | 2:1   | U.023 X U.2                  | 4.80 E-05       | 1.78 E-05          | 6.64 E-07          |
| R3505A                 | AKM23, 42          | 5:1   |                              | 1.40 E-04       | 2.80 E-06          | 9.71 E-08          |
| R3108A                 | AKM23, 42, T22, 31 | 1:1   |                              | 1.74 E-04       | 7.08 E-05          | 1.02 E-06          |
| R3158A                 | AKM23, 42, T22     | 1.5:1 | 0.625 x                      | 7.99 E-05       | 3.15 E-05          | 4.54 E-07          |
| R3208A                 | AKM23, 42          | 2:1   | 0.125                        | 4.68 E-05       | 1.77 E-05          | 2.55 E-07          |
| R3508A                 | AKM23, 42          | 5:1   |                              | 1.39 E-04       | 2.79 E-06          | 4.02E-08           |

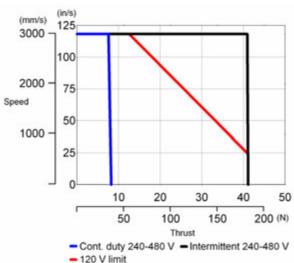
| Motor | D<br>(lb-in-s²) |
|-------|-----------------|
| AKM23 | 1.91 E-04       |
| AKM42 | 1.28 E-3        |
| T22   | 3.05 E-04       |
| T31   | 1.27 E-03       |

### **Metric Conversions:**

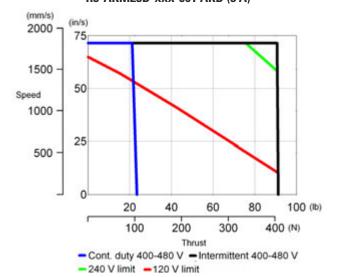
1 mm = 0.03937 in

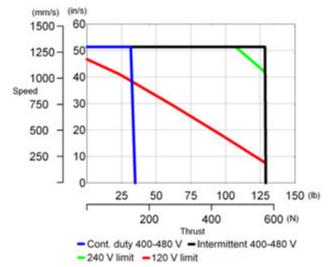

1 kg = 2.205 lb

1 lb-in- $s^2$  = 1129 kg-cm<sup>2</sup> = 1.152 kg-cm- $s^2$ 




### **Servo Thrust Speed Curves**

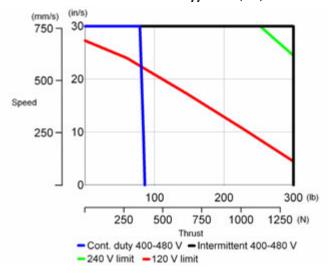

#### R3-AKM23D-xxx-15T AKD (3 A)



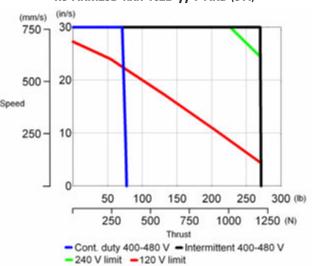

### R3-AKM23D-xxx-20T AKD (3 A)



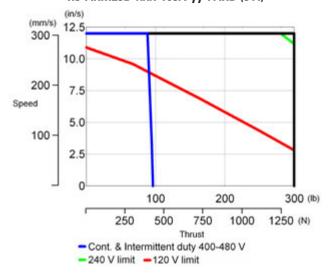
## R3-AKM23D-xxx-50T AKD (3 A) R3-AKM23D-xxx-70T AKD (3 A)



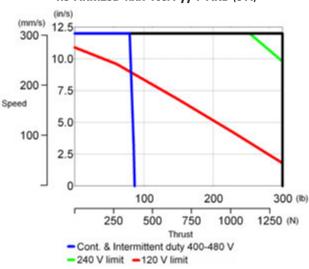



## **Servo Thrust Speed Curves**


### R3-AKM23D-xxx-102B-yy-I AKD (3 A)




### R3-AKM23D-xxx-102B-yy-P AKD (3 A)



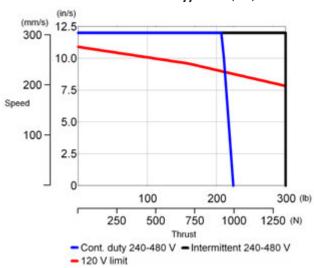
### R3-AKM23D-xxx-105A-yy-I AKD (3 A)



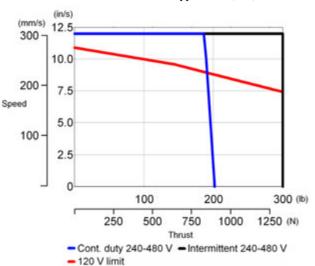
### R3-AKM23D-xxx-105A-yy-P AKD (3 A)



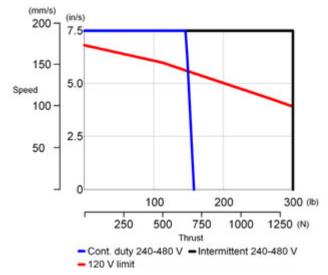
### **Column Loading and Critical Speed Limits for Screw-driven Configurations**


|    | Critical Speed (in/sec) | 30.0   | 23.6 | 16.2 | 11.8 | 9.0 | 7.1 | 4.7 | 3.3 | 2.5 | 1.9 | 1.6 |     |
|----|-------------------------|--------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|
| 2B | Stroke (in)             | 6 - 18 | 24   | 30   | 36   | 42  | 48  | 60  | 72  | 84  | 96  | 108 |     |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | 300 | 190 | 130 | 95  | 72  | 56  |     |
|    |                         |        |      |      |      |     |     |     |     |     |     |     |     |
|    | Critical Speed (in/sec) | 15.0   | 11.3 | 7.1  | 4.9  | 3.6 | 2.7 | 2.1 | 1.4 | 1.0 | 0.8 | 0.6 | 0.5 |
| 5A | Stroke (in)             | 6 - 12 | 18   | 24   | 30   | 36  | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | 250  | 175 | 125 | 95  | 60  | 40  | 30  | 25  | 19  |

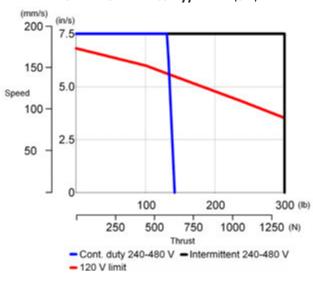
Notes:




### **Servo Thrust Speed Curves**







### R3-AKM23D-xxx-105B-yy-P AKD (3 A)

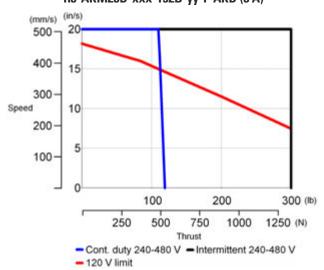




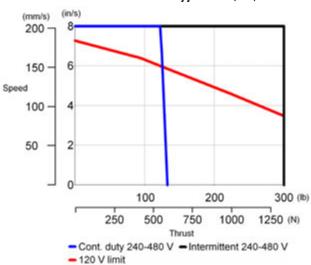


### R3-AKM23D-xxx-108A-yy-P AKD (3 A)

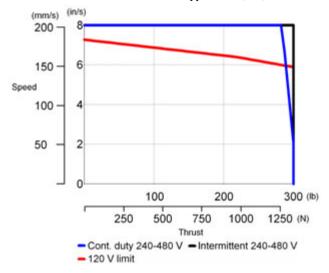



### **Column Loading and Critical Speed Limits for Screw-driven Configurations**

|    | 3                       |        |     |     |     |     | 3   |     |     |     |     |     |  |
|----|-------------------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
|    | Critical Speed (in/sec) | 15.0   | 9.4 | 6.5 | 4.7 | 3.6 | 2.8 | 1.9 | 1.3 | 1.0 | 0.8 | 0.6 |  |
| 5B | Stroke (in)             | 6 - 18 | 24  | 30  | 36  | 42  | 48  | 60  | 72  | 84  | 96  | 108 |  |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | 300 | 190 | 130 | 95  | 72  | 56  |  |
|    |                         | 7.5    | 0.0 |     | 0.7 | 0.7 | 0.4 | 4.0 |     | 0.0 | 0.0 |     |  |
|    | Critical Speed (in/sec) | 7.5    | 8.6 | 5.4 | 3.7 | 2.7 | 2.1 | 1.6 | 1.1 | 0.8 | 0.6 | 0.4 |  |
| 8A | Stroke (in)             | 6 - 12 | 18  | 24  | 30  | 36  | 42  | 48  | 60  | 72  | 84  | 96  |  |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | 278 | 212 | 136 | 94  | 69  | 53  |  |




## **Servo Thrust Speed Curves**


### R3-AKM23D-xxx-152B-yy-P AKD (3 A)



### R3-AKM23D-xxx-155A-yy-P AKD (3 A)

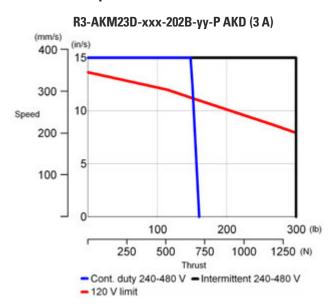


### R3-AKM23D-xxx-155B-yy-P AKD (3 A)

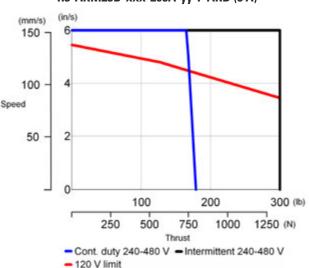


### R3-AKM23D-xxx-158A-yy-P AKD (3 A)




### **Column Loading and Critical Speed Limits for Screw-driven Configurations**

|    | Critical Speed (in/sec) | 30.0   | 23.6 | 16.2 | 11.8 | 9.0 | 7.1 | 4.7 | 3.3 | 2.5 | 1.9 | 1.6 |     |    | See      |
|----|-------------------------|--------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|----|----------|
| 2B | Stroke (in)             | 6 - 18 | 24   | 30   | 36   | 42  | 48  | 60  | 72  | 84  | 96  | 108 | 5B  | 8A | Previous |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | 300 | 190 | 130 | 95  | 72  | 56  |     |    | Page     |
|    |                         |        |      |      |      |     |     |     |     |     |     |     |     |    |          |
|    | Critical Speed (in/sec) | 15.0   | 11.3 | 7.1  | 4.9  | 3.6 | 2.7 | 2.1 | 1.4 | 1.0 | 0.8 | 0.6 | 0.5 |    |          |
| 5A | Stroke (in)             | 6 - 12 | 18   | 24   | 30   | 36  | 42  | 48  | 60  | 72  | 84  | 96  | 108 |    |          |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | 250  | 175 | 125 | 95  | 60  | 40  | 30  | 25  | 19  |    |          |


Notes



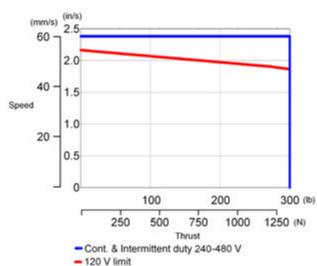
### **Servo Thrust Speed Curves**



### R3-AKM23D-xxx-205A-yy-P AKD (3 A)



#### R3-AKM23D-xxx-208A-yy-P AKD (3 A)




100

500

250

R3-AKM23D-xxx-505A-yy-P AKD (3 A)



## Column Loading and Critical Speed Limits for Screw-driven Configurations

750

Thrust

Cont. duty 240-480 V - Intermittent 240-480 V

200

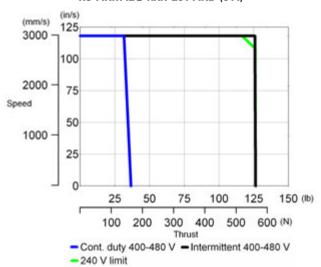
1000

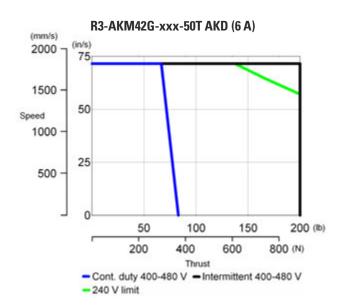
|    | •                       | •      |      |      |      |     | •   |     |     |     |     |     |     |    |           |
|----|-------------------------|--------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|----|-----------|
|    | Critical Speed (in/sec) | 30.0   | 23.6 | 16.2 | 11.8 | 9.0 | 7.1 | 4.7 | 3.3 | 2.5 | 1.9 | 1.6 |     |    | See       |
| 2B | Stroke (in)             | 6 - 18 | 24   | 30   | 36   | 42  | 48  | 60  | 72  | 84  | 96  | 108 |     | 8A | Following |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | 300 | 190 | 130 | 95  | 72  | 56  |     |    | Page      |
|    |                         |        |      |      |      |     |     |     |     |     |     |     |     |    |           |
|    | Critical Speed (in/sec) | 15.0   | 11.3 | 7.1  | 4.9  | 3.6 | 2.7 | 2.1 | 1.4 | 1.0 | 0.8 | 0.6 | 0.5 |    |           |
| 5A | Stroke (in)             | 6 - 12 | 18   | 24   | 30   | 36  | 42  | 48  | 60  | 72  | 84  | 96  | 108 |    |           |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | 250  | 175 | 125 | 95  | 60  | 40  | 30  | 25  | 19  |    |           |

300 (lb)

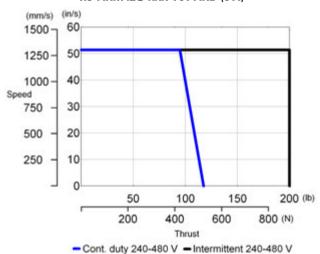
1250 (N)

Notes


40


20




## **Servo Thrust Speed Curves**

#### **R3-AKM42G-xxx-20T AKD (6 A)**

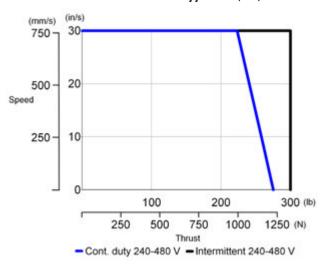




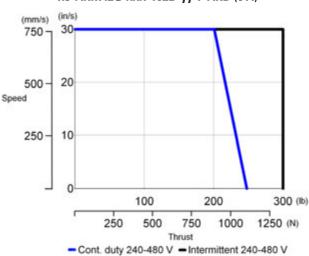
### **R3-AKM42G-xxx-70T AKD (6 A)**



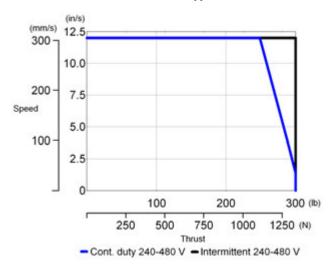
### **Column Loading and Critical Speed Limits for Screw-driven Configurations**


|    | Critical Speed (in/sec) | 7.5    | 8.6 | 5.4 | 3.7 | 2.7 | 2.1 | 1.6 | 1.1 | 0.8 | 0.6 | 0.4 | 0.4 |
|----|-------------------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 8A | Stroke (in)             | 6 - 12 | 18  | 24  | 30  | 36  | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | 278 | 212 | 136 | 94  | 69  | 53  | 42  |

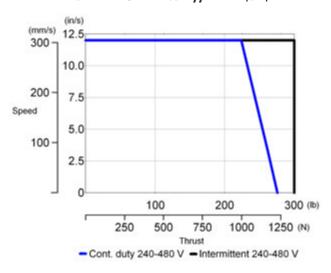
Notes




## **Servo Thrust Speed Curves**


### R3-AKM42G-xxx-102B-yy-I AKD (6 A)




### R3-AKM42G-xxx-102B-yy-P AKD (6 A)



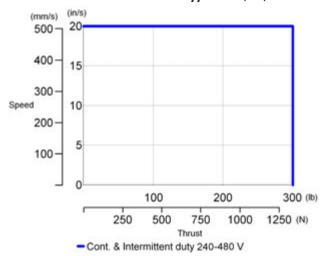
### R3-AKM42G-xxx-105A-yy-I AKD (6 A)



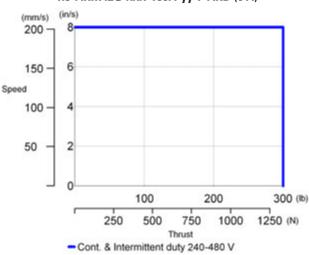
### R3-AKM42G-xxx-105A-yy-P AKD (6 A)



### **Column Loading and Critical Speed Limits for Screw-driven Configurations**


|    | Critical Speed (in/sec) | 30.0   | 23.6 | 16.2 | 11.8 | 9.0 | 7.1 | 4.7 | 3.3 | 2.5 | 1.9 | 1.6 |
|----|-------------------------|--------|------|------|------|-----|-----|-----|-----|-----|-----|-----|
| 2B | Stroke (in)             | 6 - 18 | 24   | 30   | 36   | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | 300 | 190 | 130 | 95  | 72  | 56  |
|    |                         |        |      |      |      |     |     |     |     |     |     |     |
|    | Critical Speed (in/sec) | 15.0   | 11.3 | 7.1  | 4.9  | 3.6 | 2.7 | 2.1 | 1.4 | 1.0 | 0.8 | 0.6 |
| 5A | Stroke (in)             | 6 - 12 | 18   | 24   | 30   | 36  | 42  | 48  | 60  | 72  | 84  | 96  |
|    |                         |        |      |      |      |     | 125 | 95  | 60  |     | 30  | 25  |

Notes:




## **Servo Thrust Speed Curves**

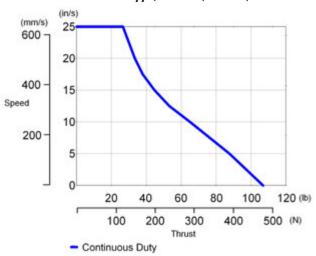
### R3-AKM42G-xxx-152B-yy-P AKD (6 A)



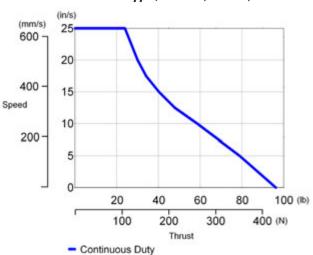




### **Column Loading and Critical Speed Limits for Screw-driven Configurations**


|    | Critical Speed (in/sec) | 30.0   | 23.6 | 16.2 | 11.8 | 9.0 | 7.1 | 4.7 | 3.3 | 2.5 | 1.9 | 1.6 |    |
|----|-------------------------|--------|------|------|------|-----|-----|-----|-----|-----|-----|-----|----|
| 2B | Stroke (in)             | 6 - 18 | 24   | 30   | 36   | 42  | 48  | 60  | 72  | 84  | 96  | 108 |    |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | 300 | 190 | 130 | 95  | 72  | 56  |    |
|    |                         |        |      |      |      |     |     |     |     |     |     |     |    |
|    | Critical Speed (in/sec) | 15.0   | 11.3 | 7.1  | 4.9  | 3.6 | 2.7 | 2.1 | 1.4 | 1.0 | 0.8 | 0.6 | 0  |
| 5A | Stroke (in)             | 6 - 12 | 18   | 24   | 30   | 36  | 42  | 48  | 60  | 72  | 84  | 96  | 10 |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | 250  | 175 | 125 | 95  | 60  | 40  | 30  | 25  | 1  |

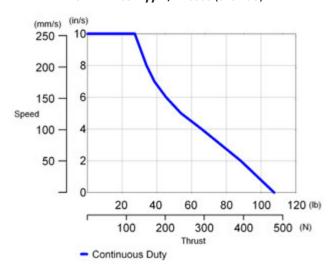
Notes




### **Stepper Thrust Speed Curves**

### R3-T22T-102B-yy-I/ P70360 (320 Vdc)




### R3-T22T-102B-yy-P/ P70360 (320 Vdc)



### R3-T22T-105A-yy-I/ P70360 (320 Vdc)

#### (mm/s) 250 200 150 100 2 50 25 75 125 (lb) 50 100 200 100 300 400 500 (N) Thrust

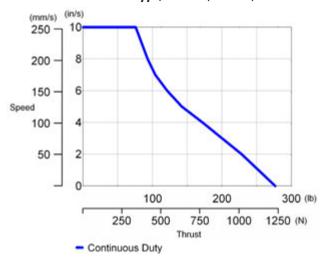
### R3-T22T-105A-yy-P/ P70360 (320 Vdc)



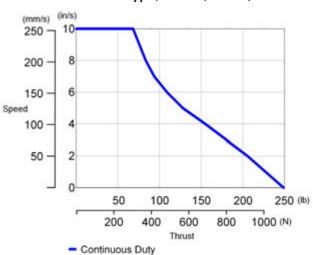
### **Column Loading and Critical Speed Limits for Screw-driven Configurations**

|    | •                       | •      |      |      |      |     | •   |     |     |     |     |     |  |
|----|-------------------------|--------|------|------|------|-----|-----|-----|-----|-----|-----|-----|--|
|    | Critical Speed (in/sec) | 30.0   | 23.6 | 16.2 | 11.8 | 9.0 | 7.1 | 4.7 | 3.3 | 2.5 | 1.9 | 1.6 |  |
| 2B | Stroke (in)             | 6 - 18 | 24   | 30   | 36   | 42  | 48  | 60  | 72  | 84  | 96  | 108 |  |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | 300 | 190 | 130 | 95  | 72  | 56  |  |
|    |                         |        |      |      |      |     |     |     |     |     |     |     |  |
|    | Critical Speed (in/sec) | 15.0   | 11.3 | 7.1  | 4.9  | 3.6 | 2.7 | 2.1 | 1.4 | 1.0 | 0.8 | 0.6 |  |
| 5A | Stroke (in)             | 6 - 12 | 18   | 24   | 30   | 36  | 42  | 48  | 60  | 72  | 84  | 96  |  |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | 250  | 175 | 125 | 95  | 60  | 40  | 30  | 25  |  |

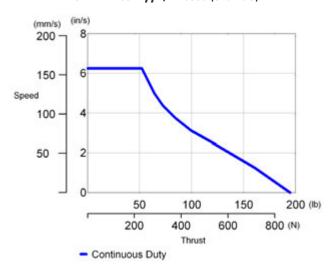
Notes:


Column loads listed as "n/a" exceed the maximum force the positioner is rated for

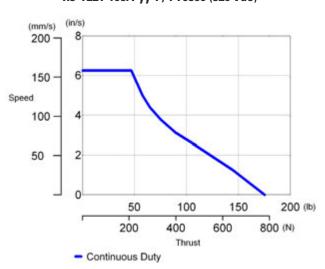
- Continuous Duty




## **Stepper Thrust Speed Curves**


### R3-T22T-105B-yy-I/ P70360 (320 Vdc)




### R3-T22T-105B-yy-P/ P70360 (320 Vdc)



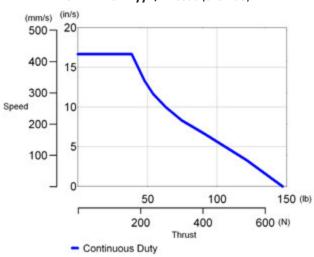
### R3-T22T-108A-yy-I/ P70360 (320 Vdc)



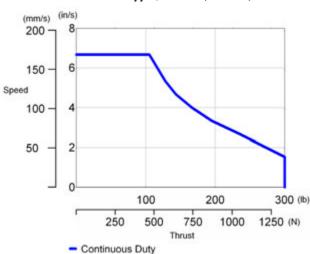
### R3-T22T-108A-yy-P/ P70360 (320 Vdc)



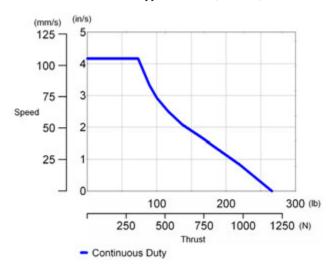
### **Column Loading and Critical Speed Limits for Screw-driven Configurations**


|    | Critical Speed (in/sec) | 15.0   | 9.4 | 6.5 | 4.7 | 3.6 | 2.8 | 1.9 | 1.3 | 1.0 | 0.8 | 0.6 |   |
|----|-------------------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|
| 5B | Stroke (in)             | 6 - 18 | 24  | 30  | 36  | 42  | 48  | 60  | 72  | 84  | 96  | 108 |   |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | 300 | 190 | 130 | 95  | 72  | 56  |   |
|    |                         |        |     |     |     |     |     |     |     |     |     |     |   |
|    | Critical Speed (in/sec) | 7.5    | 8.6 | 5.4 | 3.7 | 2.7 | 2.1 | 1.6 | 1.1 | 0.8 | 0.6 | 0.4 | C |
| 8A | Stroke (in)             | 6 - 12 | 18  | 24  | 30  | 36  | 42  | 48  | 60  | 72  | 84  | 96  | 1 |
|    | Column Load Limit (Ib)  | n/a    | n/a | n/a | n/a | n/a | 278 | 212 | 136 | 94  | 69  | 53  |   |

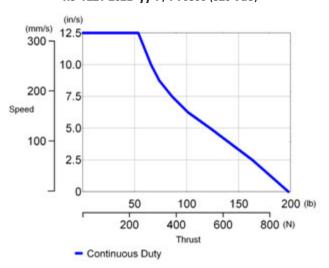
Notes:




### **Stepper Thrust Speed Curves**


### R3-T22T-152B-yy-I/ P70360 (320 Vdc)




#### R3-T22T-155B-yy-P/ P70360 (320 Vdc)



### R3-T22T-158A-yy-P/ P70360 (320 Vdc)

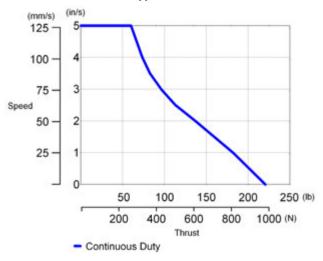


### R3-T22T-202B-yy-P/ P70360 (320 Vdc)

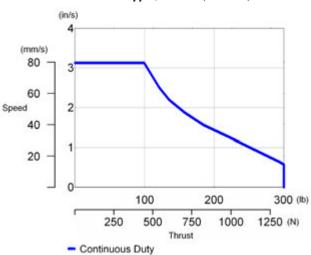


### **Column Loading and Critical Speed Limits for Screw-driven Configurations**

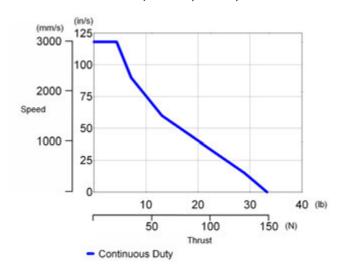
|    | Critical Speed (in/sec) | 30.0   | 23.6 | 16.2 | 11.8 | 9.0 | 7.1 | 4.7 | 3.3 | 2.5 | 1.9 | 1.6 |
|----|-------------------------|--------|------|------|------|-----|-----|-----|-----|-----|-----|-----|
| 2B | Stroke (in)             | 6 - 18 | 24   | 30   | 36   | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | 300 | 190 | 130 | 95  | 72  | 56  |
|    |                         |        |      |      |      |     |     |     |     |     |     |     |
|    | Critical Speed (in/sec) | 15.0   | 9.4  | 6.5  | 4.7  | 3.6 | 2.8 | 1.9 | 1.3 | 1.0 | 0.8 | 0.6 |
| 5B | Stroke (in)             | 6 - 18 | 24   | 30   | 36   | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | 300 | 190 | 130 | 95  | 72  | 56  |


8A See Following Page

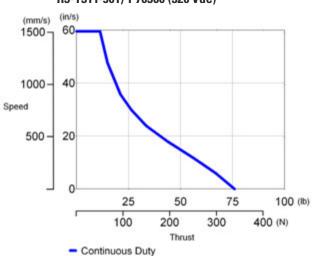
Notes:




## **Stepper Thrust Speed Curves**


### R3-T22T-205A-yy-P/ P70360 (320 Vdc)




### R3-T22T-208A-yy-P/ P70360 (320 Vdc)



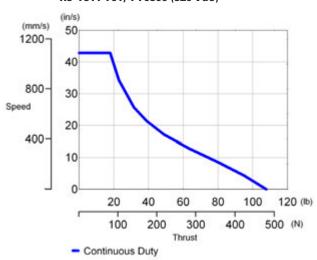
### R3-T31T-20T/ P70360 (320 Vdc)



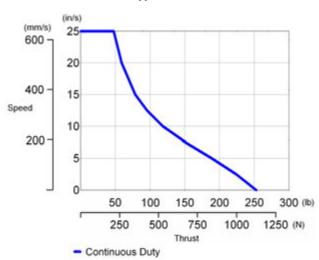
### R3-T31T-50T/ P70360 (320 Vdc)



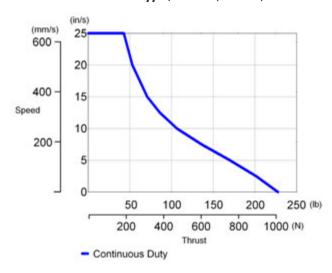
### **Column Loading and Critical Speed Limits for Screw-driven Configurations**


|    | Critical Speed (in/sec) | 15.0   | 11.3 | 7.1 | 4.9 | 3.6 | 2.7 | 2.1 | 1.4 | 1.0 | 0.8 | 0.6 | 0.5 |
|----|-------------------------|--------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 5A | Stroke (in)             | 6 - 12 | 18   | 24  | 30  | 36  | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a | 250 | 175 | 125 | 95  | 60  | 40  | 30  | 25  | 19  |
|    |                         |        |      |     |     |     |     |     |     |     |     |     |     |
|    | Critical Speed (in/sec) | 7.5    | 8.6  | 5.4 | 3.7 | 2.7 | 2.1 | 1.6 | 1.1 | 8.0 | 0.6 | 0.4 | 0.4 |
| 8A | Stroke (in)             | 6 - 12 | 18   | 24  | 30  | 36  | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a | n/a | n/a | 278 | 212 | 136 | 94  | 69  | 53  | 42  |

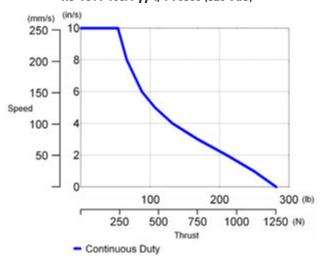
Notes:




### **Stepper Thrust Speed Curves**


### R3-T31T-70T/ P70360 (320 Vdc)




### R3-T31T-102B-yy-I/ P70360 (320 Vdc)



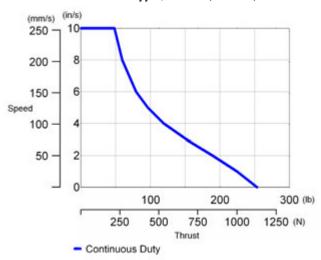
### R3-T31T-102B-yy-P/ P70360 (320 Vdc)



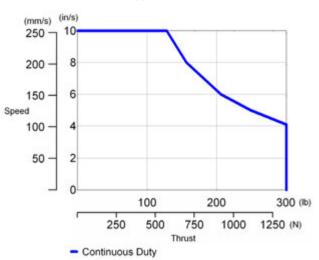
### R3-T31T-105A-yy-I/ P70360 (320 Vdc)



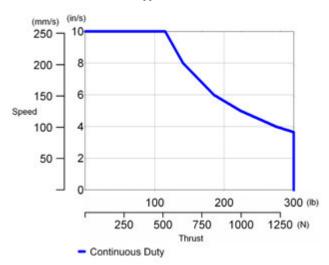
### **Column Loading and Critical Speed Limits for Screw-driven Configurations**


|    | Critical Speed (in/sec) | 30.0   | 23.6 | 16.2 | 11.8 | 9.0 | 7.1 | 4.7 | 3.3 | 2.5 | 1.9 | 1.6 |  |
|----|-------------------------|--------|------|------|------|-----|-----|-----|-----|-----|-----|-----|--|
| 2B | Stroke (in)             | 6 - 18 | 24   | 30   | 36   | 42  | 48  | 60  | 72  | 84  | 96  | 108 |  |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | 300 | 190 | 130 | 95  | 72  | 56  |  |
|    |                         |        |      |      |      |     |     |     |     |     |     |     |  |
|    | Critical Speed (in/sec) | 15.0   | 11.3 | 7.1  | 4.9  | 3.6 | 2.7 | 2.1 | 1.4 | 1.0 | 0.8 | 0.6 |  |
| 5A | Stroke (in)             | 6 - 12 | 18   | 24   | 30   | 36  | 42  | 48  | 60  | 72  | 84  | 96  |  |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | 250  | 175 | 125 | 95  | 60  | 40  | 30  | 25  |  |

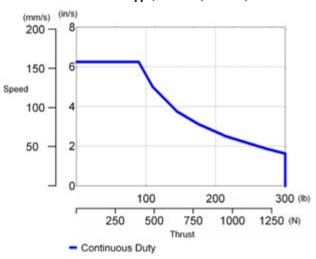
Notes:




### **Stepper Thrust Speed Curves**


### R3-T31T-105A-yy-P/ P70360 (320 Vdc)




### R3-T31T-105B-yy-I/ P70360 (320 Vdc)



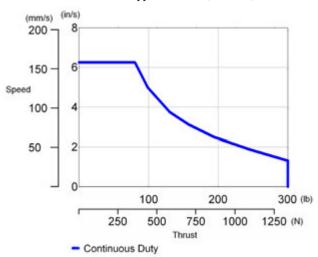
### R3-T31T-105B-yy-P/ P70360 (320 Vdc)



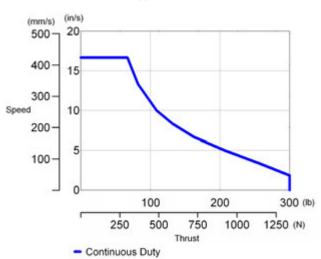
### R3-T31T-108A-yy-I/ P70360 (320 Vdc)



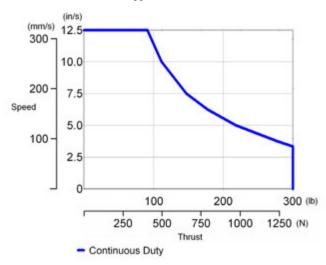
### **Column Loading and Critical Speed Limits for Screw-driven Configurations**


|    | Critical Speed (in/sec) | 15.0   | 11.3 | 7.1 | 4.9 | 3.6 | 2.7 | 2.1 | 1.4 | 1.0 | 8.0 | 0.6 | 0.5 |
|----|-------------------------|--------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 5A | Stroke (in)             | 6 - 12 | 18   | 24  | 30  | 36  | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a | 250 | 175 | 125 | 95  | 60  | 40  | 30  | 25  | 19  |
|    |                         |        |      |     |     |     |     |     |     |     |     |     |     |
|    | Critical Speed (in/sec) | 15.0   | 9.4  | 6.5 | 4.7 | 3.6 | 2.8 | 1.9 | 1.3 | 1.0 | 0.8 | 0.6 |     |
| 5B | Stroke (in)             | 6 - 18 | 24   | 30  | 36  | 42  | 48  | 60  | 72  | 84  | 96  | 108 | 8   |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a | n/a | n/a | 300 | 190 | 130 | 95  | 72  | 56  |     |

Notes:




### **Stepper Thrust Speed Curves**


#### R3-T31T-108A-yy-P/ P70360 (320 Vdc)

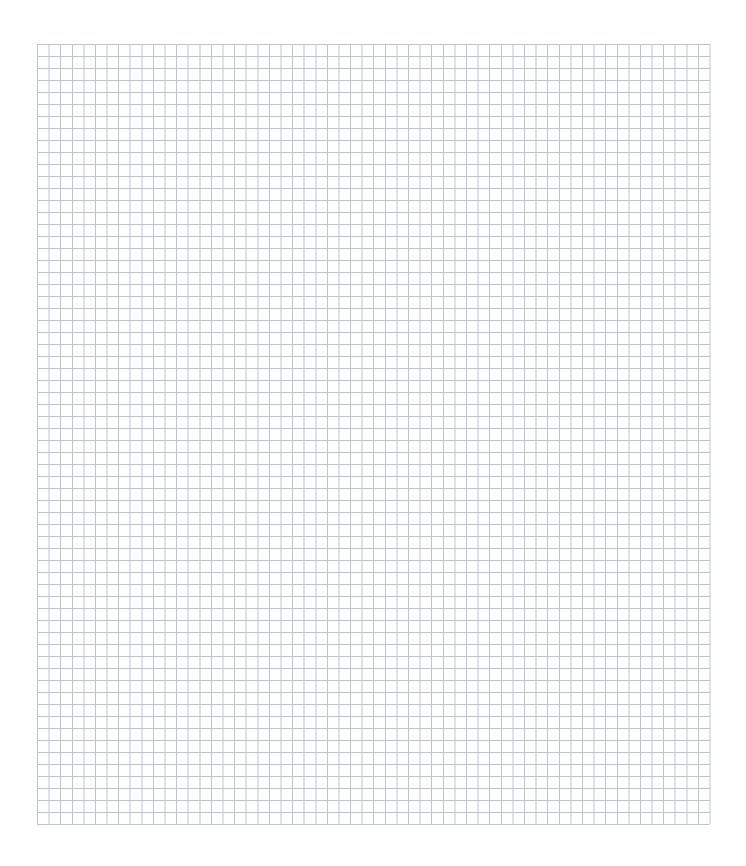


### R3-T31T-152B-yy-P/ P70360 (320 Vdc)



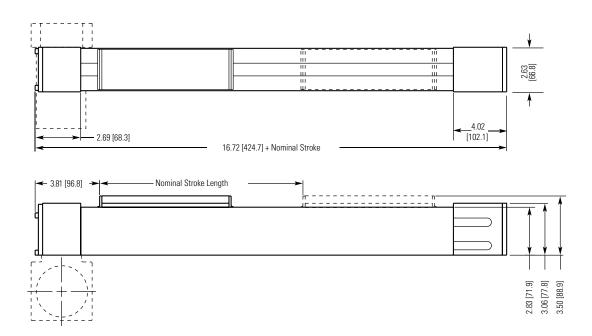
### R3-T31T-202B-yy-P/ P70360 (320 Vdc)



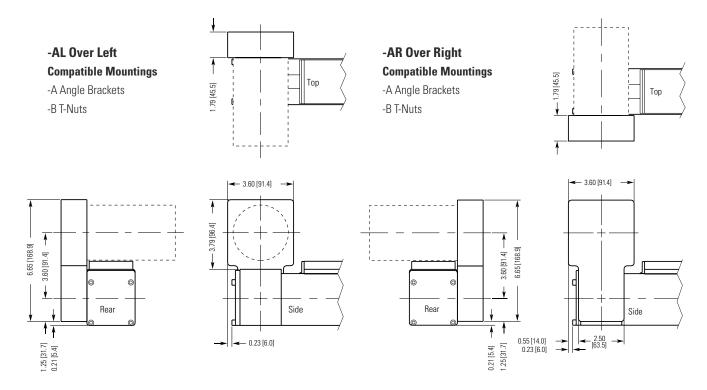

### Column Loading and Critical Speed Limits for Screw-driven Configurations

|    | Critical Speed (in/sec) | 30.0   | 23.6 | 16.2 | 11.8 | 9.0 | 7.1 | 4.7 | 3.3 | 2.5 | 1.9 | 1.6 |   |
|----|-------------------------|--------|------|------|------|-----|-----|-----|-----|-----|-----|-----|---|
| 2B | Stroke (in)             | 6 - 18 | 24   | 30   | 36   | 42  | 48  | 60  | 72  | 84  | 96  | 108 | ı |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | 300 | 190 | 130 | 95  | 72  | 56  | ı |
|    |                         |        |      |      |      |     |     |     |     |     |     |     |   |
|    | Critical Speed (in/sec) | 7.5    | 8.6  | 5.4  | 3.7  | 2.7 | 2.1 | 1.6 | 1.1 | 0.8 | 0.6 | 0.4 |   |
| 8A | Stroke (in)             | 6 - 12 | 18   | 24   | 30   | 36  | 42  | 48  | 60  | 72  | 84  | 96  |   |
|    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | 278 | 212 | 136 | 94  | 69  | 53  |   |

Notes:

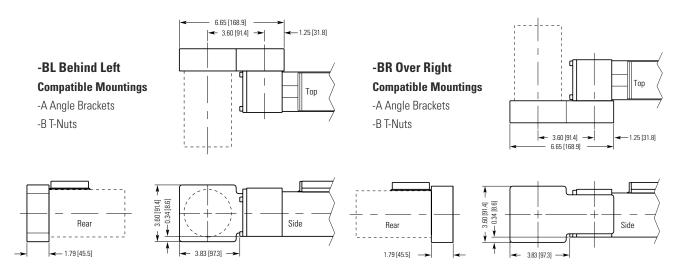

# Notes

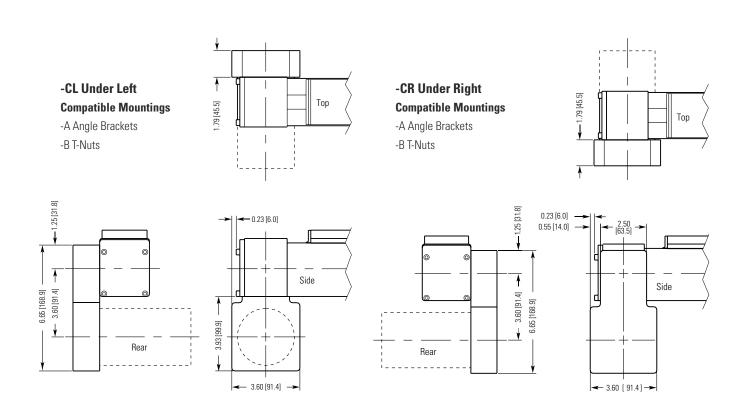






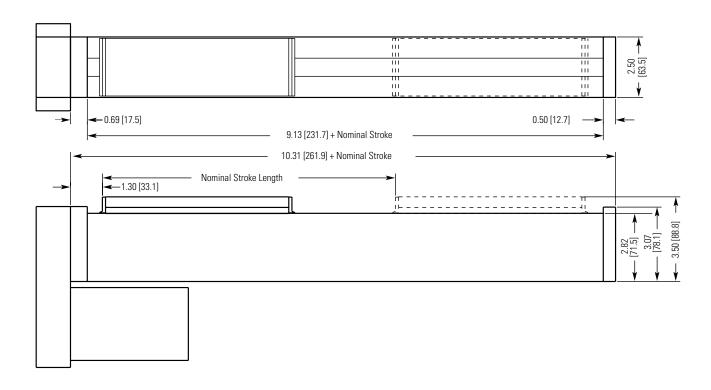

### **Belt Drive Overall Dimensions**

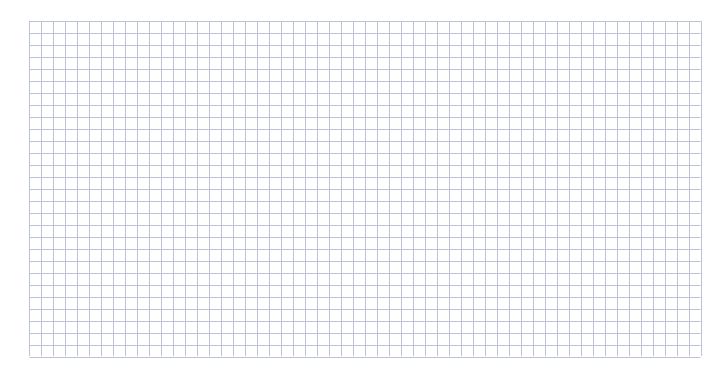




## **Belt Drive Orientation Options with Dimensions**






## **Belt Drive Orientation Options with Dimensions**








### **Overall Dimensions Screw Drive**





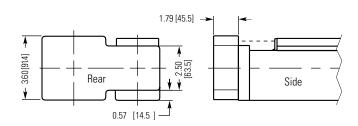


## **Screw Drive Orientation Options with Dimensions**

### -PL Parallel Left Side Compatible Mountings

-A Angle Brackets

-B T-Nuts


-C Flanges

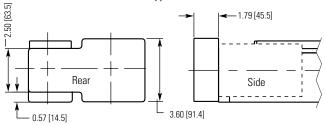
6.65 [168.9]

\*\*A 3.60[914] \*\*

\*\*L.25 [31.7]

\*\*Out



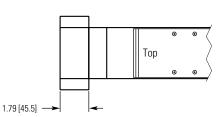

### -PR Parallel Right Side Compatible Mountings

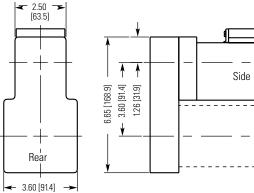
-A Angle Brackets

-B T-Nuts

-C Flanges

3.60 [91.4]

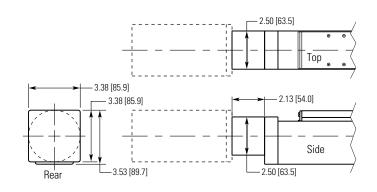




### -P Parallel Below Compatible Mountings

-A Angle Brackets

-B T-Nuts

-C Flanges






### -I In-Line Compatible Mountings

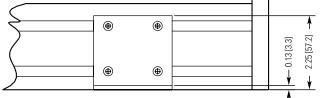
-A Angle Brackets

-B T-Nuts



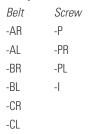


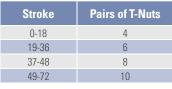
## **Mounting Option Dimensions**

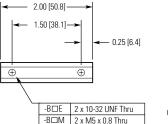

### -A Adjustable Angle Brackets Compatible Motor Orientations

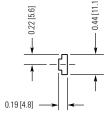
| Belt | Screw |
|------|-------|
| -AR  | -P    |
| -AL  | -PR   |
| -BR  | -PL   |
| -BL  | -1    |
| -CR  |       |
|      |       |

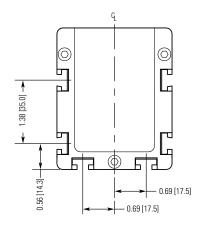
-CL


| Stroke | No. of Angle<br>Brackets |
|--------|--------------------------|
| 0-18   | 4                        |
| 19-36  | 6                        |
| 37-48  | 8                        |
| 49-72  | 10                       |


### 





### -B Adjustable T-Nuts

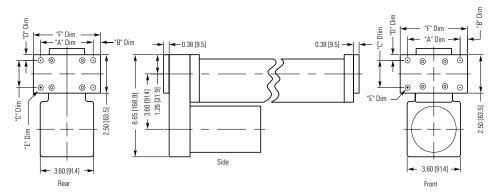

### **Compatible Motor Orientations**







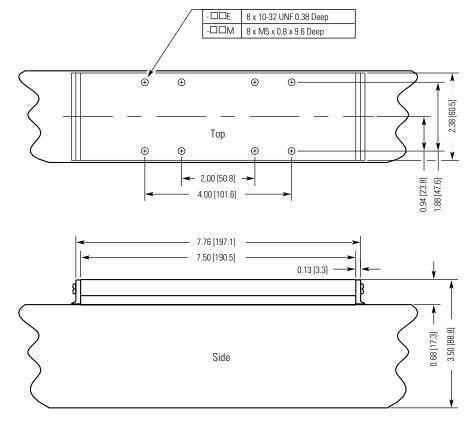





### -C Front & Rear Rectangular Flanges

### **Compatible Motor Orientations**

| Belt | Screv |
|------|-------|
| N/A  | -P    |


| Dimensions | -C □ E<br>Enlish (in) | -C 🗆 M<br>Enlish (in) |
|------------|-----------------------|-----------------------|
| Α          | 3.44                  | 90.0                  |
| В          | 0.34                  | 12.5                  |
| С          | 1.63                  | 45.0                  |
| D          | 0.44                  | 9.2                   |
| Е          | 0.38                  | 9.0                   |
| F          | 4.13                  | 115.0                 |





## **Carriage Dimensions**

### - □ S □ Single Carriage Option



### - □ Dnn □ Dual Carriage Option

(nn is the distance between carriage centers.

Omit for screw-driven actuators.)

Increase carriage capacity by supporting the load at two separate locations.

For screw-driven actuators, the second carriage is attached to the internal rail bearings, but is not driven by the lead screw. For belt-driven actuators, the second carriage is attached to the internal rail bearings and is also rigidly fixed to the driven carriage. In this case, the distance between carriage centers needs to be specified in the part number.

 Available actuators travel will be reduced by the distance between carriage centers. The minumum distance between carriage centers is 10 in [250 mm].





## **General Specifications**

| Travel Lengths                   | 6, 12, 18, 24, 30, 36, 42, 48                                                                                | , 60, 72, 84, 96, 108 inches     |                                |                                  |  |  |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|----------------------------------|--|--|--|--|--|
| Construction Materials           |                                                                                                              |                                  |                                |                                  |  |  |  |  |  |
| Bearing Housing                  | 6063 T-6 aluminum, hardco                                                                                    | at anodized                      |                                |                                  |  |  |  |  |  |
| Guide Housing                    | 6063 T-6 aluminum, hardco                                                                                    | at anodized                      |                                |                                  |  |  |  |  |  |
| Carriage Assembly                | 6061 T-6 aluminum, hardco                                                                                    | at anodized                      |                                |                                  |  |  |  |  |  |
| Internal Rail Bearings           | Recirculating ball on precis                                                                                 | ion ground rail                  |                                |                                  |  |  |  |  |  |
| Lead Screw or Belt               |                                                                                                              |                                  |                                |                                  |  |  |  |  |  |
| Support Bearing                  | Angular contact, high thrust ball bearings                                                                   |                                  |                                |                                  |  |  |  |  |  |
| Ball screw; ballnut              | 1.0" diameter hardened alloy steel screw; alloy steel, heat treated ballnut                                  |                                  |                                |                                  |  |  |  |  |  |
| Belt Drive                       | 1.5" wide L pitch urethane with steel reinforcement cords                                                    |                                  |                                |                                  |  |  |  |  |  |
| Flexible Seal                    | Stainless steel band with elastomeric seal                                                                   |                                  |                                |                                  |  |  |  |  |  |
| Motor                            | AKM® servo motor or T ser                                                                                    | ies stepper                      |                                |                                  |  |  |  |  |  |
| Weight (approx, without options) | Screw-driven Positione                                                                                       | rs                               | Belt-driven                    |                                  |  |  |  |  |  |
| R4-T32                           | 32 + 0.85 x (inches stroke) lb                                                                               | 14.5 + 0.39 x (inches stroke) kg | 32 + 0.64 x (inches stroke) lb | 14.5 + 0.29 x (inches stroke) kg |  |  |  |  |  |
| R4-T41                           | 40 + 0.85 x (inches stroke) lb                                                                               | 18.2 + 0.39 x (inches stroke) kg | 40 + 0.64 x (inches stroke) lb | 18.2 + 0.29 x (inches stroke) kg |  |  |  |  |  |
| R4-AKM42                         | 30 + 0.85 x (inches stroke) lb                                                                               | 13.6 + 0.39 x (inches stroke) kg | 30 + 0.64 x (inches stroke) lb | 13.6 + 0.29 x (inches stroke) kg |  |  |  |  |  |
| R4-AKM52                         | 36 + 0.85 x (inches stroke) lb                                                                               | 16.4 + 0.39 x (inches stroke) kg | 36 + 0.64 x (inches stroke) lb | 16.4 + 0.29 x (inches stroke) kg |  |  |  |  |  |
| <b>Environmental Operation</b>   |                                                                                                              |                                  |                                |                                  |  |  |  |  |  |
| Temperature Range                | -20° to 140°F [-28° to 60°C]                                                                                 |                                  |                                |                                  |  |  |  |  |  |
| Moisture/Contaminants            | IP 44 rated: Splash-proof, protected against ingress of solid particles greater than 0.040" [1 mm] diameter. |                                  |                                |                                  |  |  |  |  |  |





### **R4 Series Inertia**

### **Inertia Equations:**

Rotary Inertia (lb-in-s<sup>z</sup>, reflected to the motor) = A + B x Stroke + C x Load + D

Linear Inertia (lb, reflected to the carriage) = [[A + B x Stroke + D]/C] + Load

### where:

A = Inertia of zero length slide (lb-in-s<sup>2</sup>)

**C** = Inertia adder per pound of payload (lb-in-s<sup>2</sup>/lb)

 $D = Motor inertia (lb-in-s^z)$ 

Stroke = Total stroke length in inches (in).

**Load** = Payload in pounds (lb)

**B** = Inertia adder per inch of stroke length ( $lb-in-s^2/in$ )

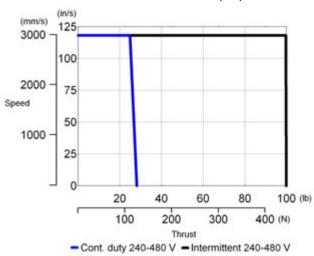
Same as stroke length entered into part number

| Belt Driven<br>Models  | Motors             | Ratio | Belt (in)                    | A<br>(Ib-in-s²) | B<br>(lb-in-s²/in) | C<br>(lb-in-s²/lb) |
|------------------------|--------------------|-------|------------------------------|-----------------|--------------------|--------------------|
| R410T                  | AKM42, 52          | 1:1   |                              | 1.88 E-02       | 4.32 E-05          | 3.67 E-03          |
| R415T                  | AKM42, 52          | 1.5:1 |                              | 8.50 E-03       | 1.92 E-05          | 1.63 E-03          |
| R420T                  | AKM42, 52, T32, 41 | 2:1   | 1.5 wide                     | 6.06 E-03       | 1.06 E-05          | 9.02 E-04          |
| R430T                  | AKM42, 52, T41     | 3:1   | 1.5 Wide                     | 2.32 E-03       | 4.71 E-06          | 4.01 E-04          |
| R450T                  | AKM42, 52, T32, 41 | 5:1   |                              | 1.07 E-03       | 1.62 E-06          | 1.38 E-04          |
| R4100T                 | AKM42, 52, T41     | 10:1  |                              | 4.40 E-04       | 4.21 E-07          | 3.60 E-05          |
| Screw Driven<br>Models | Motors             | Ratio | Screw<br>dia. x<br>lead (in) | A<br>(Ib-in-s²) | B<br>(lb-in-s²/in) | C<br>(lb-in-s²/lb) |
| R4101B                 | AKM42, 52, T32, 41 | 1:1   |                              | 2.17 E-03       | 7.12 E-05          | 6.56 E-05          |
| R4151B                 | AKM42, 52, T32, 41 | 1.5:1 |                              | 1.04 E-03       | 3.17 E-05          | 2.92 E-05          |
| R4201B                 | AKM42, 52, T32, 41 | 2:1   | 1 x 1                        | 6.63 E-04       | 1.78 E-05          | 1.64 E-05          |
| R4501B                 | AKM42, 52, T32, 41 | 5:1   |                              | 4.32 E-04       | 2.72 E-06          | 2.51 E-06          |
| R41001B                | AKM42, T32, 41     | 10:1  |                              | 2.75 E-04       | 7.12 E-07          | 6.48 E-07          |
| R4104B                 | AKM42, 52, T32     | 1:1   |                              | 1.80 E-03       | 7.12 E-05          | 4.10 E-06          |
| R4154B                 | AKM42, 52, T41     | 1.5:1 | 1 x 0.25                     | 8.99 E-04       | 3.17 E-05          | 1.83 E-06          |
| R4204B                 | AKM42, 52          | 2:1   | 1 X U.Z3                     | 5.84 E-04       | 1.78 E-05          | 1.02 E-06          |
| R4504B                 | AKM42, 52          | 5:1   |                              | 4.20 E-04       | 2.72 E-06          | 1.62 E-07          |

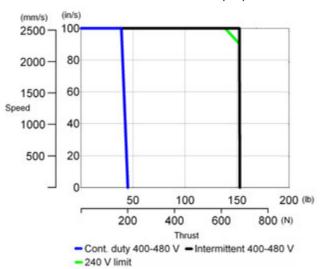
| Motor | D<br>(Ib-in-s²) |
|-------|-----------------|
| AKM42 | 1.28 E-03       |
| AKM52 | 5.51 E-03       |
| T32   | 2.37 E-03       |
| T41   | 4.89 E-03       |

### **Metric Conversions:**

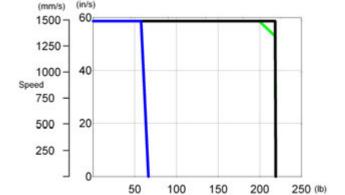
1 mm = 0.03937 in


1 kg = 2.205 lb

1 lb-in- $s^2$  = 1129 kg-cm<sup>2</sup> = 1.152 kg-cm- $s^2$ 




### **Servo Thrust Speed Curves**


#### R4-AKM42G-xxx-20T AKD (6 A)



#### R4-AKM42G-xxx-30T AKD (6 A)



#### R4-AKM42G-xxx-50T AKD (6 A)

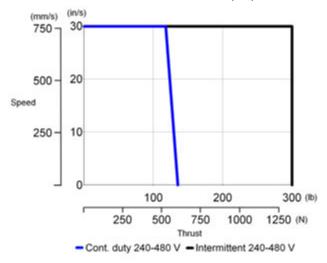


400

200

Thrust

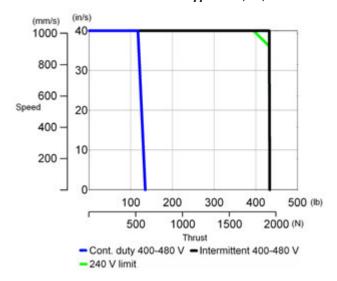
Cont. duty 400-480 V Intermittent 400-480 V


240 V limit

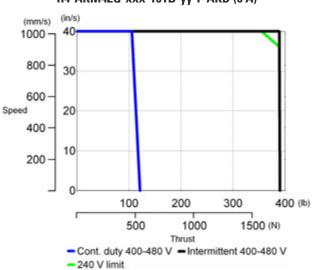
600

800

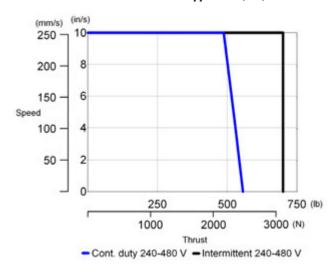
1000 (N)


#### R4-AKM42G-xxx-100T AKD (6 A)

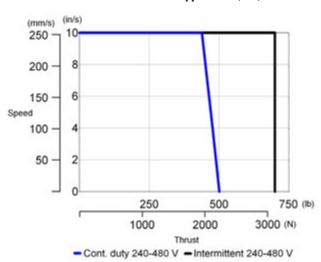





## **Servo Thrust Speed Curves**


### R4-AKM42G-xxx-101B-yy-I AKD (6 A)




### R4-AKM42G-xxx-101B-yy-P AKD (6 A)



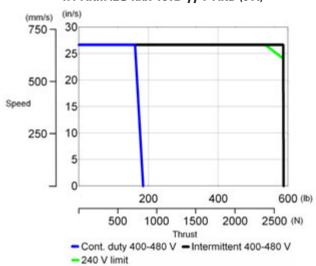
### R4-AKM42G-xxx-104B-yy-I AKD (6 A)



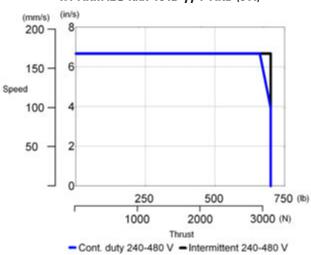
### R4-AKM42G-xxx-104B-yy-P AKD (6 A)



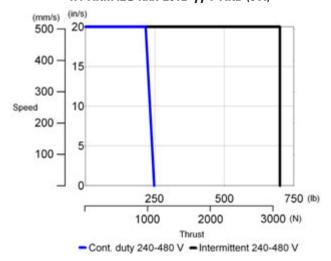
### **Column Loading and Critical Speed Limits for Screw-driven Configurations**


|    | Critical Speed (in/sec) | 40.0   | 35  | 28  | 20  | 14  | 11  | 8.5 | 6.9 |
|----|-------------------------|--------|-----|-----|-----|-----|-----|-----|-----|
| 1B | Stroke (in)             | 6 - 36 | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
|    |                         |        |     |     |     |     |     |     |     |
|    | Critical Speed (in/sec) | 10.0   | 8.8 | 7.1 | 4.9 | 3.6 | 2.7 | 2.1 | 1.7 |
| 4B | Stroke (in)             | 6 - 36 | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | n/a | n/a | n/a |

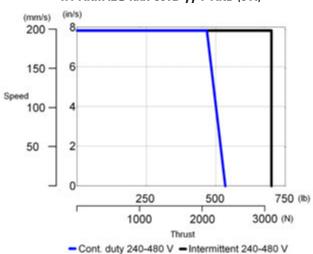
Notes




### **Servo Thrust Speed Curves**







### R4-AKM42G-xxx-154B-yy-P AKD (6 A)



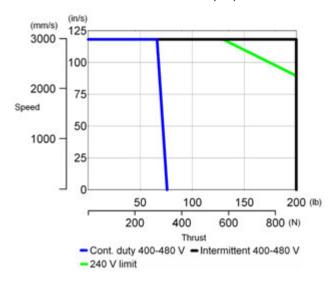
### R4-AKM42G-xxx-201B-yy-P AKD (6 A)



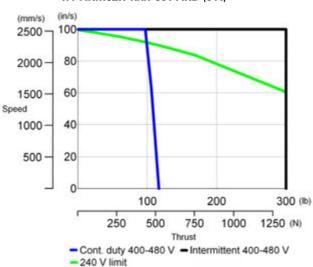
### R4-AKM42G-xxx-501B-yy-P AKD (6 A)



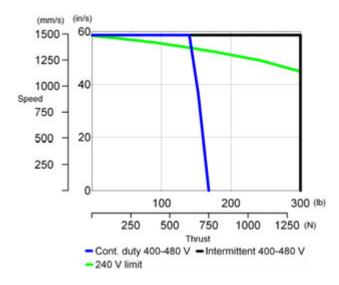
### **Column Loading and Critical Speed Limits for Screw-driven Configurations**


|    | Critical Speed (in/sec) | 40.0   | 35  | 28  | 20  | 14  | 11  | 8.5 | 6.9 |
|----|-------------------------|--------|-----|-----|-----|-----|-----|-----|-----|
| 1B | Stroke (in)             | 6 - 36 | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
|    |                         |        |     |     |     |     |     |     |     |
|    | Critical Speed (in/sec) | 10.0   | 8.8 | 7.1 | 4.9 | 3.6 | 2.7 | 2.1 | 1.7 |
| 4B | Stroke (in)             | 6 - 36 | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | n/a | n/a | n/a |

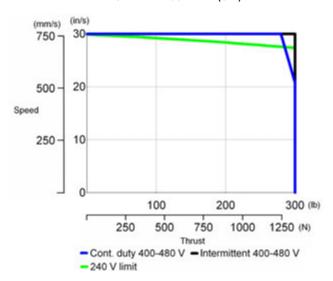
Notes:




## **Servo Thrust Speed Curves**


#### **R4-AKM52H-xxx-20T AKD (6 A)**

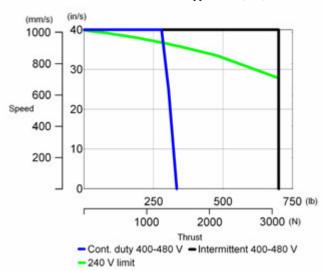



### **R4-AKM52H-xxx-30T AKD (6 A)**

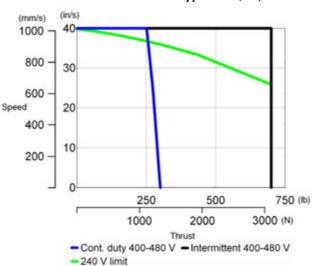


#### R4-AKM52H-xxx-50T AKD (6 A)

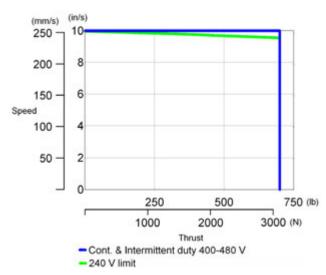



#### R4-AKM52H-xxx-100T AKD (6 A)

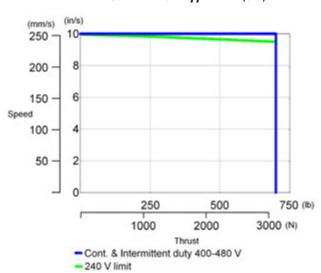





### **Servo Thrust Speed Curves**







### R4-AKM52H-xxx-101B-yy-P AKD (6 A)

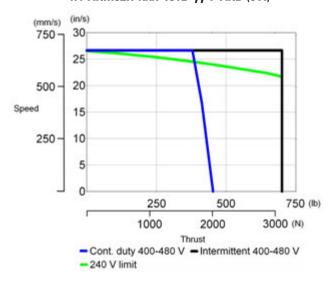




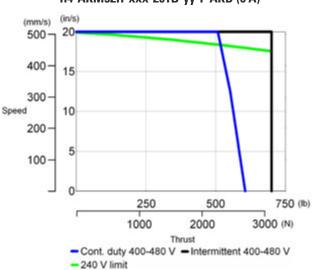


#### R4-AKM52H-xxx-104B-yy-P AKD (6 A)




### **Column Loading and Critical Speed Limits for Screw-driven Configurations**

|    | •                       | •      |     |     |     |     | •   |     |     |
|----|-------------------------|--------|-----|-----|-----|-----|-----|-----|-----|
|    | Critical Speed (in/sec) | 40.0   | 35  | 28  | 20  | 14  | 11  | 8.5 | 6.9 |
| 1B | Stroke (in)             | 6 - 36 | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
|    |                         |        |     |     |     |     |     |     |     |
|    | Critical Speed (in/sec) | 10.0   | 8.8 | 7.1 | 4.9 | 3.6 | 2.7 | 2.1 | 1.7 |
| 4B | Stroke (in)             | 6 - 36 | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | n/a | n/a | n/a |



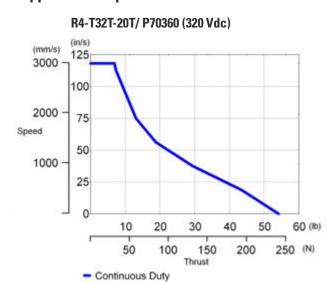

## **Servo Thrust Speed Curves**

### R4-AKM52H-xxx-151B-yy-P AKD (6 A)



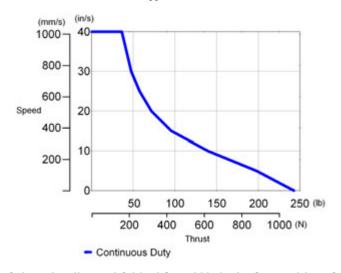
### R4-AKM52H-xxx-201B-yy-P AKD (6 A)




### **Column Loading and Critical Speed Limits for Screw-driven Configurations**

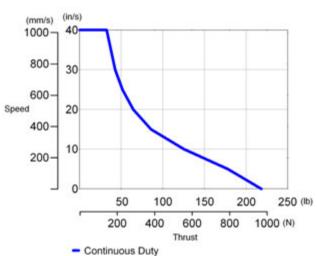
|  | Critical Speed (in/sec) | 40.0                   | 35     | 28  | 20  | 14  | 11  | 8.5 | 6.9 |     |
|--|-------------------------|------------------------|--------|-----|-----|-----|-----|-----|-----|-----|
|  | 1B                      | Stroke (in)            | 6 - 36 | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|  |                         | Column Load Limit (lb) | n/a    | n/a | n/a | n/a | n/a | n/a | n/a | n/a |

Notes:




### **Stepper Thrust Speed Curves**




### R4-T32T-50T/ P70360 (320 Vdc) (mm/s) 60 1500 1000-40 20 500 25 100 125 (lb) 100 200 300 400 500 (N) Thrust

### R4-T32T-101B-yy-I/ P70360 (320 Vdc)

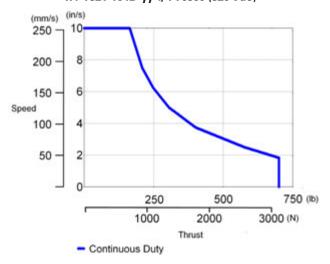


### R4-T32T-101B-yy-P/ P70360 (320 Vdc)

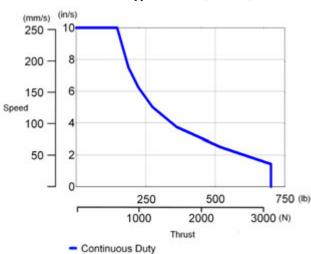
Continuous Duty



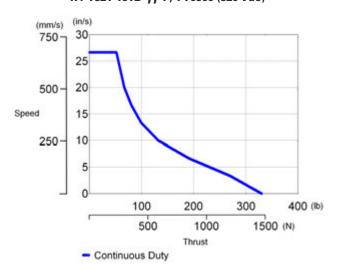
### Column Loading and Critical Speed Limits for Screw-driven Configurations


| 1B | Critical Speed (in/sec) | 40     | 35  | 28  | 20  | 14  | 11  | 8.5 | 6.9 |
|----|-------------------------|--------|-----|-----|-----|-----|-----|-----|-----|
|    | Stroke (in)             | 6 - 36 | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | n/a | n/a | n/a |

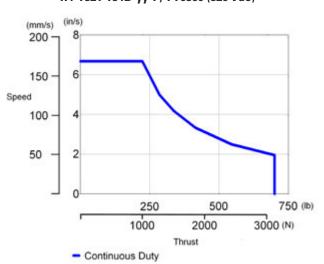
Notes




## **Stepper Thrust Speed Curves**


### R4-T32T-104B-yy-I/ P70360 (320 Vdc)




### R4-T32T-104B-yy-P/ P70360 (320 Vdc)



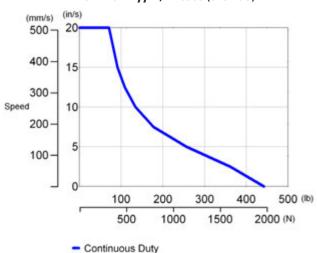
### R4-T32T-151B-yy-P/ P70360 (320 Vdc)



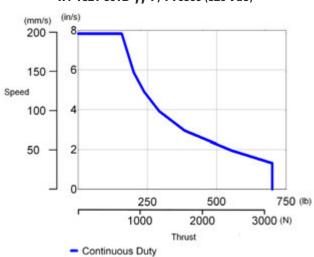
### R4-T32T-154B-yy-P/ P70360 (320 Vdc)



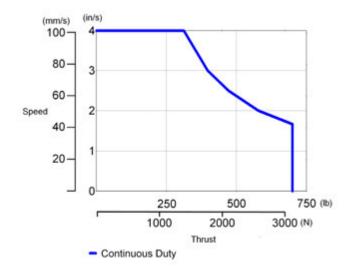
### **Column Loading and Critical Speed Limits for Screw-driven Configurations**


|    | Critical Speed (in/sec) | 40     | 35  | 28  | 20  | 14  | 11  | 8.5 | 6.9 |
|----|-------------------------|--------|-----|-----|-----|-----|-----|-----|-----|
| 1B | Stroke (in)             | 6 - 36 | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
|    |                         |        |     |     |     |     |     |     |     |
|    | Critical Speed (in/sec) | 10.0   | 8.8 | 7.1 | 4.9 | 3.6 | 2.7 | 2.1 | 1.7 |
| 4B | Stroke (in)             | 6 - 36 | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | n/a | n/a | n/a |

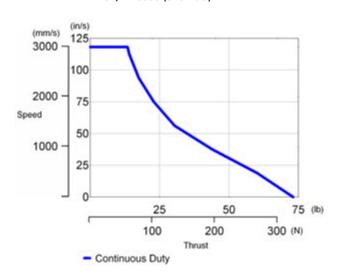
Notes:




### **Stepper Thrust Speed Curves**


### R4-T32T-201B-yy-P/ P70360 (320 Vdc)




### R4-T32T-501B-yy-P/P70360 (320 Vdc)

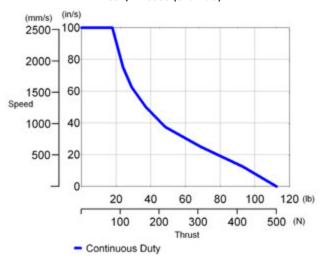


### R4-T32T-1001B-yy-I/ P70360 (320 Vdc)

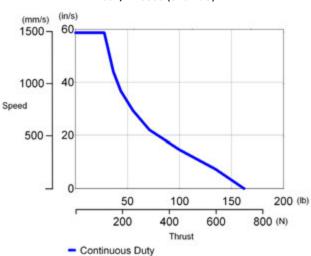


#### R4-T41T-20T/ P70360 (320 Vdc)

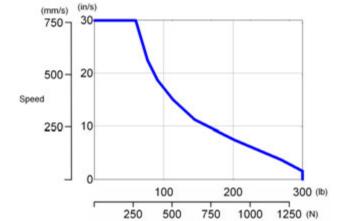



### **Column Loading and Critical Speed Limits for Screw-driven Configurations**

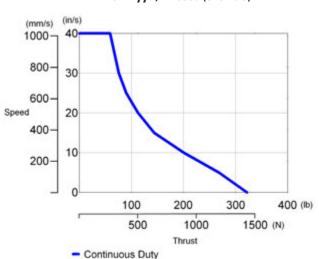
|    | Critical Speed (in/sec) | 40     | 35  | 28  | 20  | 14  | 11  | 8.5 | 6.9 |
|----|-------------------------|--------|-----|-----|-----|-----|-----|-----|-----|
| 1B | Stroke (in)             | 6 - 36 | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | n/a | n/a | n/a |




### **Stepper Thrust Speed Curves**


### R4-T41T-30T/ P70360 (320 Vdc)




### R4-T41T-50T/ P70360 (320 Vdc)



### R4-T41T-100T/ P70360 (320 Vdc)



### R4-T41T-101B-yy-I/ P70360 (320 Vdc)



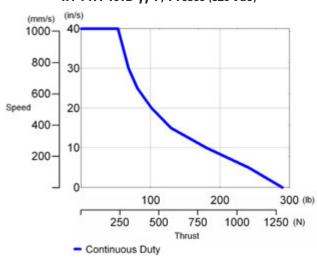
### **Column Loading and Critical Speed Limits for Screw-driven Configurations**

Thrust

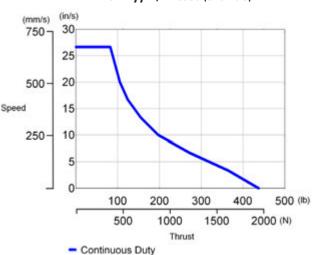
|    | Critical Speed (in/sec) | 40     | 35  | 28  | 20  | 14  | 11  | 8.5 | 6.9 |
|----|-------------------------|--------|-----|-----|-----|-----|-----|-----|-----|
| 1B | Stroke (in)             | 6 - 36 | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|    | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | n/a | n/a | n/a |

Notes:

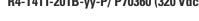
Column loads listed as "n/a" exceed the maximum force the positioner is rated for.

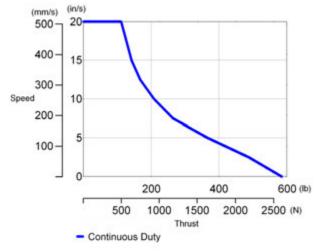

- Continuous Duty

### **R4 Series Rodless Actuator**

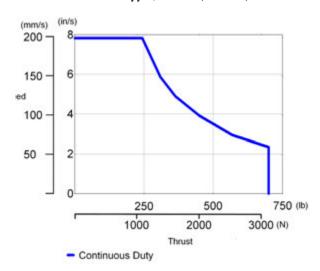



### **Stepper Thrust Speed Curves**


### R4-T41T-101B-yy-P/ P70360 (320 Vdc)




### R4-T41T-151B-yy-P/ P70360 (320 Vdc)



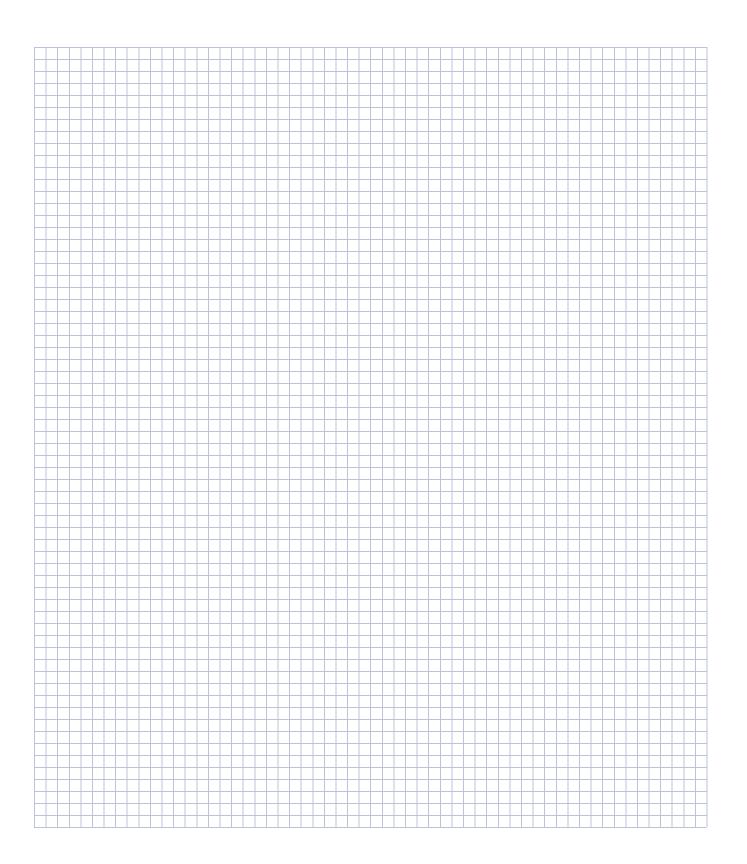

### R4-T41T-201B-yy-P/ P70360 (320 Vdc)





### R4-T41T-501B-yy-P/ P70360 (320 Vdc)

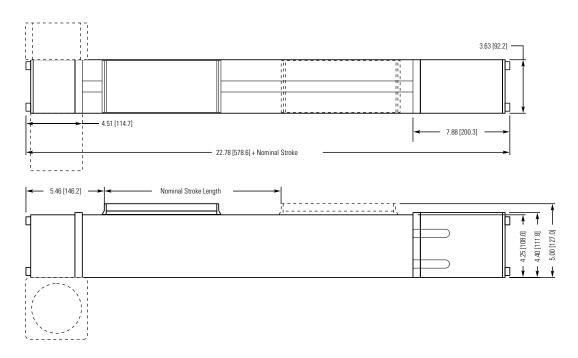



### **Column Loading and Critical Speed Limits for Screw-driven Configurations**

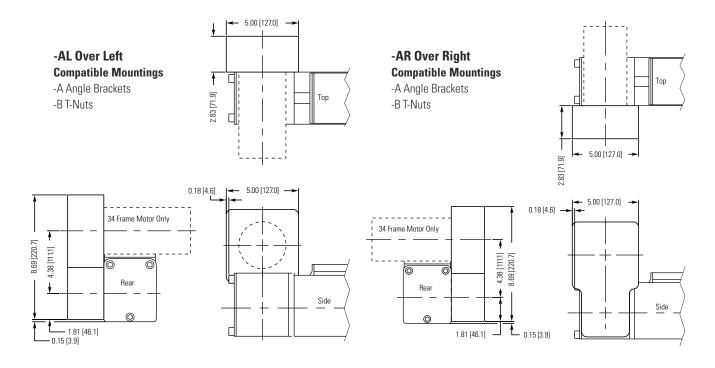
|   |   | Critical Speed (in/sec) | 40     | 35  | 28  | 20  | 14  | 11  | 8.5 | 6.9 |
|---|---|-------------------------|--------|-----|-----|-----|-----|-----|-----|-----|
| 1 | B | Stroke (in)             | 6 - 36 | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|   |   | Column Load Limit (lb)  | n/a    | n/a | n/a | n/a | n/a | n/a | n/a | n/a |

Column loads listed as "n/a" exceed the maximum force the positioner is rated for.

### Notes





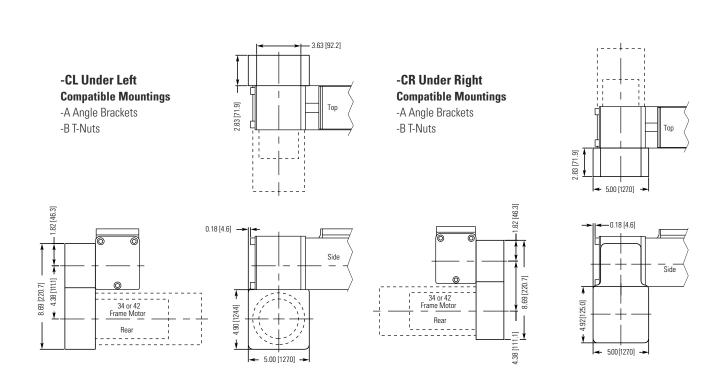


### **R4 Series Rodless Actuator**



### **Belt Drive Overall Dimensions**



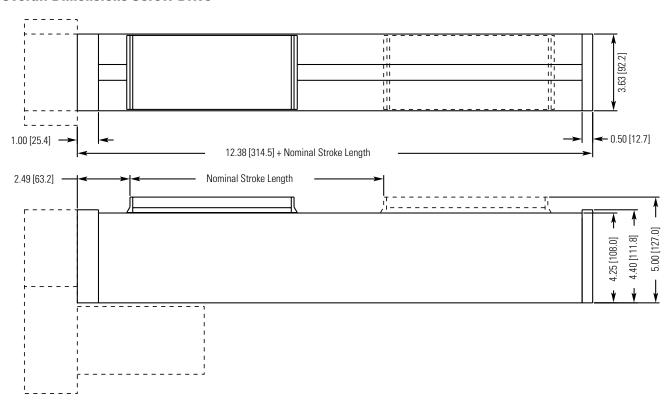
### **Belt Drive Orientation Options with Dimensions**

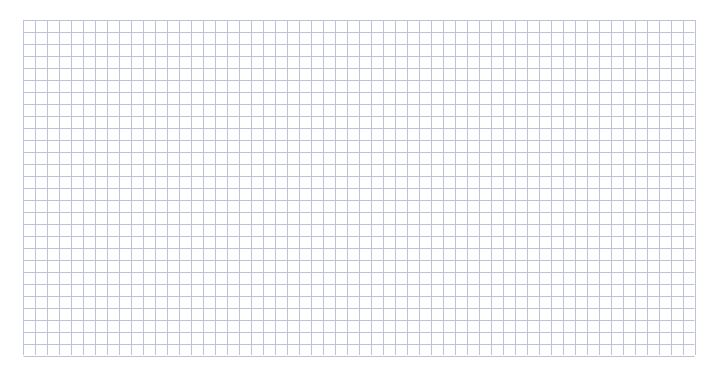





4.56 [115.7] →

### **Belt Drive Orientation Options with Dimensions**


# -BL Behind Left Compatible Mountings -A Angle Brackets -B T-Nuts -BR Behind Right Compatible Mountings -A Angle Brackets -B T-Nuts -BR Behind Right Compatible Mountings -A Angle Brackets -B T-Nuts -B T-Nuts -BR Behind Right Compatible Mountings -A Angle Brackets -B T-Nuts -B T-Nut




### **R4 Series Rodless Actuator**



### **Overall Dimensions Screw Drive**

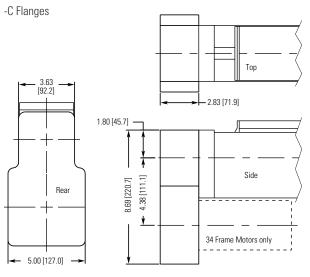






### **Screw Drive Orientation Options with Dimensions**

#### -PL Parallel Left Side -PR Parallel Right Side **Compatible Mountings Compatible Mountings** -A Angle Brackets -A Angle Brackets -B T-Nuts -B T-Nuts 1.80 [45.8] -C Flanges -C Flanges 4.38 [111.1] 8.67 [220.2] 34 or 42 Frame Motors 8.69 [220.7] 4.38 [111.1] 34 or 42 Frame Motors Тор 1.83 [46.4] 2.83 [71.9]


3.63 [92.2]

Side

### -P Parallel Below Compatible Mountings

- -A Angle Brackets
- -B T-Nuts

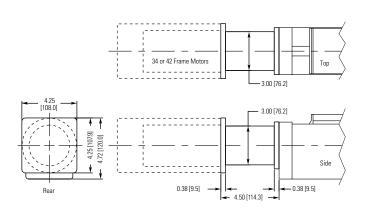
5.00 [127.0]



3.63 [92.2]

**1** € 0.78 [19.9]

### -I In-Line


### **Compatible Mountings**

Rear

5.00 [127.0]

0.10 [2.5]

- -A Angle Brackets
- -B T-Nuts



### **R4 Series Rodless Actuator**



### **Mounting Option Dimensions**

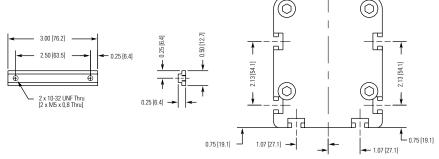
### -A Adjustable Angle Brackets **Compatible Motor Orientations**

| Belt | Screw |
|------|-------|
| -AR  | -P    |
| -AL  | -PR   |
| -BR  | -PL   |
| -BL  | -     |
| -CR  |       |
|      |       |

| -UL    |                |
|--------|----------------|
| Stroke | No. of<br>Brac |
| 0-18   | 4              |
|        |                |

| Stroke | No. of Angle<br>Brackets |
|--------|--------------------------|
| 0-18   | 4                        |
| 19-36  | 6                        |
| 37-48  | 8                        |
| 49-72  | 10                       |
| 73-108 | 12                       |

### 4 x 0.28 Thru [4 x 7mm Thru] $\oplus$ Φ ← 2.50 [63.5] → - 0.25 [6.4] 3.00 [76.2] 3.25 [82.6]

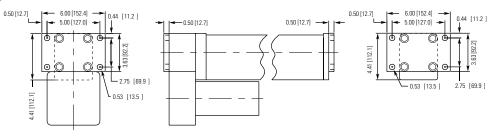

### -B Adjustable T-Nuts

### **Compatible Motor Orientations**

| Belt | Screw |
|------|-------|
| -AR  | -P    |
| -AL  | -PR   |
| -BR  | -PL   |
| -BL  | -     |
| -CR  |       |



| Stroke | Pairs of T-Nuts |
|--------|-----------------|
| 0-18   | 4               |
| 19-36  | 6               |
| 37-48  | 8               |
| 49-72  | 10              |
| 73-108 | 12              |




### -C Front & Rear Rectangular Flanges

Screw Driven Models Only

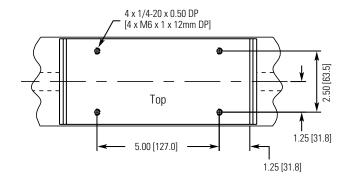
### **Compatible Motor Orientations**

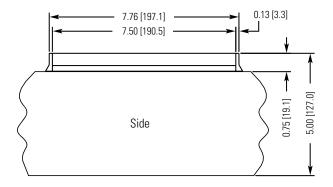
Belt Screw -P N/A





### **Carriage Dimensions**


### - □ S □ Single Carriage Option


### - □ Dnn □ Duel Carriage Option

(nn is the distance between carriage centers. Omit for screw-driven actuator.)

Increase carriage capacity by supporting the load at two separate locations. For screw-driven actuators, the second carriage is attached to the internal rail bearings, but is not driven by the leadscrew. For belt-driven actuators, the second carriage is attached to the internal rail bearings and is also rigidly fixed to the driven carriage. In this case, the distance between carriage centers needs to be specified in the part number.

 Available actuator travel will be reduced by the distance between carriage centers. The minimum distance between carriage centers is 10 in [250 mm]







### R Series Options & Accessories



### **R Series Options**

In addition to mounting styles and motor orientation options as detailed in the outline drawing sections, a number of other options are available.

### **Screw Mounted Holding Brake** (BS24 standard, others are special options)

(When requiring a brake, the motor mounted holding brake is recommended when using an AKM servo motor)

| Ontion | Voltago | Torque (Ib-in) |    |    |  |  |
|--------|---------|----------------|----|----|--|--|
| Option | Voltage | R2A            | R3 | R4 |  |  |
| BS24   | 24 Vdc  | 20             | 20 | 75 |  |  |
| BS115  | 115 Vac | 20             | 20 | 75 |  |  |
| BS230  | 230 Vac | 20             | 20 | 75 |  |  |

| AKM mounted brake for reference | AKM2x | AKM4x | AKM5x |
|---------------------------------|-------|-------|-------|
| Torque (Ib-in)                  | 12.6  | 46.9  | 128   |

Note: For screw based systems multiply motor brake torque by reducer ratio to determine torque at screw.

### Water Resistant Option (R2A special option)

This option provides custom sealing at joints, along with the breather option and accessories as outlined by the VR or VL options.

WR Water resistant seal option right WL Water resistant seal option left

#### **Lube Port** (R3 and R4 special option)

Lubrication ports allow easy re-lubrication of moving parts

GR Lube port, right side GL Lube port, left side

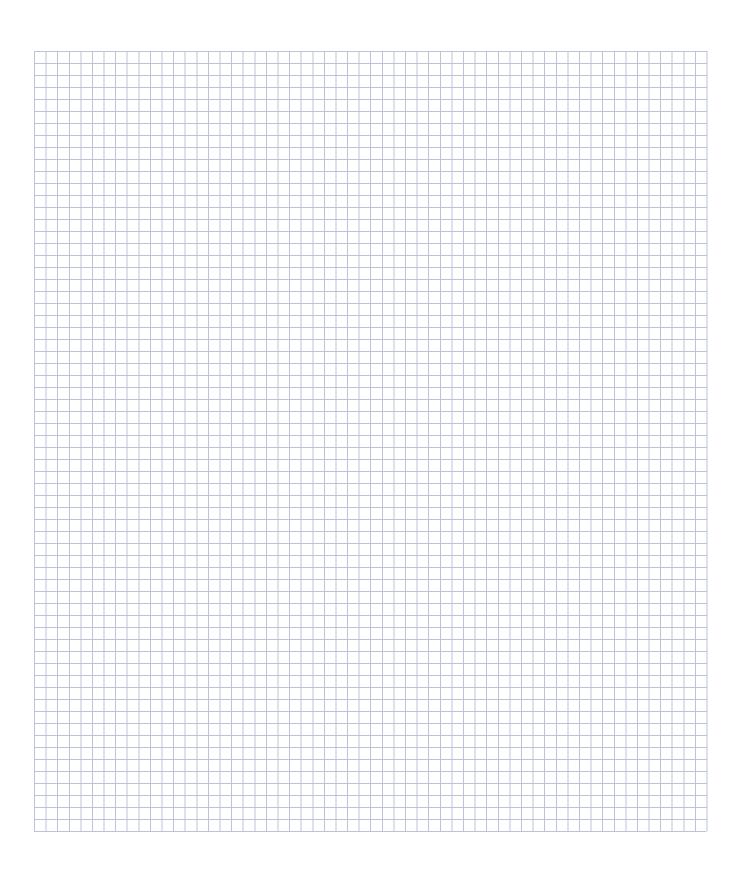
### **Breather Vent** (R4 special option)

VR Breather vent, fitting, tubing, left side VL Breather vent, fitting, tubing, right side

### **Dual Carriage** (R3 and R4 standard option)

Dxx Dual carriage (screw driven models only) xx = center distance between carriages in inches

### **R Series Accessories**


#### Position Sensors (order separately)

Position sensors are available for indication of stopping position, for changing direction or speed, end-of-travel sensing, etc. End-of-travel limit switches are recommended for all positioners to prevent accidental hard stops. Assume the loss of one inch of travel on each end of the positioner that a sensor is placed.

RPS-1 Mechanical reed switch, open
RPS-2 Mechanical reed switch, closed
RP1 Hall Effect switch (open), 12 ft. cable
RP1-25 Hall Effect switch (open), 25 ft. cable
RP2 Hall Effect switch (closed), 12 ft. cable
RP2-25 Hall Effect switch (closed), 25 ft. cable

### Notes







### AKD® Servo Drive

Our AKD series is a complete range of Ethernet-based servo drives that are fast, feature-rich, flexible and integrate quickly and easily into any application. AKD ensures plug-and-play commissioning for instant, seamless access to everything in your machine. And, no matter what your application demands, AKD offers industry-leading servo performance, communication options, and power levels, all in a smaller footprint.

This robust, technologically advanced family of drives delivers optimized performance when paired with our best-in-class components, producing higher quality results at greater speeds and more uptime. With Kollmorgen servo components, we can help you increase your machine's overall equipment effectiveness (OEE) by 50%.



### The Benefits of AKD Servo Drive

| Optimized Performance in Seconds                                                           | Auto-tuning is one of the best and fastest in the industry                                                                                                                                                         |  |  |  |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                            | <ul> <li>Automatically adjusts all gains, including observers</li> </ul>                                                                                                                                           |  |  |  |  |
|                                                                                            | <ul> <li>Immediate and adaptive response to dynamic loads</li> </ul>                                                                                                                                               |  |  |  |  |
|                                                                                            | <ul> <li>Precise control of all motor types</li> </ul>                                                                                                                                                             |  |  |  |  |
|                                                                                            | • Compensation for stiff and compliant transmission and couplings                                                                                                                                                  |  |  |  |  |
| Greater Throughput and Accuracy                                                            | <ul> <li>Up to 27-bit-resolution feedback yields unmatched precision<br/>and excellent repeatability</li> </ul>                                                                                                    |  |  |  |  |
|                                                                                            | <ul> <li>Very fast settling times result from a powerful dual processor<br/>system that executes industry-leading and patent pending servo<br/>algorithms with high resolution</li> </ul>                          |  |  |  |  |
|                                                                                            | <ul> <li>Advanced servo techniques such as high-order observer and<br/>bi-quad filters yield industry-leading machine performance</li> </ul>                                                                       |  |  |  |  |
|                                                                                            | <ul> <li>Highest bandwidth torque-and-velocity loops. Fastest digital<br/>current loop in the market</li> </ul>                                                                                                    |  |  |  |  |
| Easy-to-use Graphical User Interface (GUI) for Faster<br>Commissioning and Troubleshooting | <ul> <li>Six-channel real-time software oscilloscope commissions<br/>and diagnoses quickly</li> </ul>                                                                                                              |  |  |  |  |
|                                                                                            | <ul> <li>Multi-function Bode Plot allows users to quickly evaluate performance</li> </ul>                                                                                                                          |  |  |  |  |
|                                                                                            | <ul> <li>Auto-complete of programmable commands saves looking up<br/>parameter names</li> </ul>                                                                                                                    |  |  |  |  |
|                                                                                            | <ul> <li>One-click capture and sharing of program plots and parameter<br/>settings allow you to send machine performance data instantly</li> </ul>                                                                 |  |  |  |  |
|                                                                                            | <ul> <li>Widest range of programming options in the industry</li> </ul>                                                                                                                                            |  |  |  |  |
| Flexible and Scalable to Meet any Application                                              | • 3 to 48 Arms continuous current; 9 to 96 Arms peak                                                                                                                                                               |  |  |  |  |
|                                                                                            | <ul> <li>Very high power density enables an extremely small package</li> </ul>                                                                                                                                     |  |  |  |  |
|                                                                                            | <ul> <li>True plug-and-play with all standard Kollmorgen servo motors<br/>and actuators</li> </ul>                                                                                                                 |  |  |  |  |
|                                                                                            | <ul> <li>Supports a variety of single and multi-turn feedback devices—<br/>Smart Feedback Device (SFD), EnDat2.2, 01, BiSS, analog Sine/<br/>Cos encoder, incremental encoder, HIPERFACE®, and resolver</li> </ul> |  |  |  |  |
|                                                                                            | <ul> <li>Tightly integrated Ethernet motion buses without the need to<br/>add large hardware: EtherCAT®, SynqNet®, Modbus®TCP,<br/>EtherNet/IP™, PROFINET® RT, SERCOS® III, and CANopen®</li> </ul>                |  |  |  |  |
|                                                                                            | <ul> <li>Scalable programmability from base torque-and-velocity through<br/>multi-axis master</li> </ul>                                                                                                           |  |  |  |  |
|                                                                                            |                                                                                                                                                                                                                    |  |  |  |  |

### AKD® Servo Drive



The AKD servo drive delivers cutting-edge technology and performance with one of the most compact footprints in the industry. These feature-rich drives provide a solution for nearly any application, from basic torque-and-velocity applications, to indexing, to multi-axis programmable motion with embedded Kollmorgen Automation Suite™. The versatile AKD sets the standard for power density and performance.







Industry-leading power density

### **General Specifications**

| 120 / 240 Vac<br>1 & 3 Phase<br>(85 -265 V) | Continuous<br>Current<br>(Arms) | Peak<br>Current<br>(Arms) | Drive Continuous<br>Output Power<br>Capacity<br>(Watts) | (W  | al Regen<br>atts)<br>nms) | Height<br>mm<br>(in) | Width<br>mm<br>(in) | Depth<br>mm<br>(in) | Depth with Cable<br>Bend Radius<br>mm<br>(in) |
|---------------------------------------------|---------------------------------|---------------------------|---------------------------------------------------------|-----|---------------------------|----------------------|---------------------|---------------------|-----------------------------------------------|
| AKD-x00306                                  | 3                               | 9                         | 1100                                                    | 0   | 0                         | 168<br>(6.61)        | 59<br>(2.32)        | 156<br>(6.14)       | 184<br>(7.24)                                 |
| AKD-x00606                                  | 6                               | 18                        | 2000                                                    | 0   | 0                         | 168<br>(6.61)        | 59<br>(2.32)        | 156<br>(6.14)       | 184<br>(7.24)                                 |
| AKD-x01206                                  | 12                              | 30                        | 4000                                                    | 100 | 15                        | 196<br>(7.72)        | 78<br>(3.07)        | 187<br>(7.36)       | 215<br>(8.46)                                 |
| AKD- <b>x</b> 02406                         | 24                              | 48                        | 8000                                                    | 200 | 8                         | 247<br>(9.72)        | 100<br>(3.94)       | 228<br>(8.98)       | 265<br>(10.43)                                |
| 240/480 Vac<br>3 Phase<br>(187-528 V)       | Continuous<br>Current<br>(Arms) | Peak<br>Current<br>(Arms) | Drive Continuous<br>Output Power<br>Capacity<br>(Watts) | (W  | al Regen<br>atts)<br>ams) | Height<br>mm<br>(in) | Width<br>mm<br>(in) | Depth<br>mm<br>(in) | Depth with Cable<br>Bend Radius<br>mm<br>(in) |
| AKD-x00307                                  | 3                               | 9                         | 2000                                                    | 100 | 33                        | 256<br>(10.08)       | 70<br>(2.76)        | 185<br>(7.28)       | 221<br>(8.70)                                 |
| AKD-x00607                                  | 6                               | 18                        | 4000                                                    | 100 | 33                        | 256<br>(10.08)       | 70<br>(2.76)        | 185<br>(7.28)       | 221<br>(8.70)                                 |
| AKD- <b>x</b> 01207                         | 12                              | 30                        | 8000                                                    | 100 | 33                        | 256<br>(10.08)       | 70<br>(2.76)        | 185<br>(7.28)       | 221<br>(8.70)                                 |
| AKD-x02407                                  | 24                              | 48                        | 16,000                                                  | 200 | 23                        | 306<br>(12.01)       | 105<br>(4.13)       | 228<br>(8.98)       | 264<br>(10.39)                                |
| AKD- <b>x</b> 04807                         | 48                              | 96                        | 35,000                                                  | -   | -                         | 385<br>(15.16)       | 185<br>(7.28)       | 225<br>(8.86)       | 260<br>(10.23)                                |

Note: For complete AKD model nomenclature, refer to page 122.

















### AKM® Servo Motor

Kollmorgen's AKM family of servo motors gives you unprecedented choice and flexibility from a wide range of standard products so you can select the best servo motor for your application. By pairing AKM servo motors with our family of plug-and-play AKD® servo drives, selecting the right motion control products has never been easier. Pick from thousands of servo motor/servo drive combinations outlined in this selection guide or go to our website to find the best solution for your application.

Standard AKM servo motors and AKD servo drives offer the best of both worlds – the exact specifications of a custom solution with the faster delivery times and lower cost of a standard catalog product. For your truly unique motion control applications, work with our engineering team to customize a solution for your machine design. Either way, standard product or customized, we can help you choose the motion control solution that meets your exact requirements.

### The Benefits of AKM® Servo Motor

| Best-in-Class Performance                                         | <ul> <li>Industry-leading motor power density</li> </ul>                                                                       |  |  |  |  |  |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                   | • Same size AKM/AKD system delivers up to 47% more shaft power                                                                 |  |  |  |  |  |
|                                                                   | <ul> <li>Compensation for stiff and compliant transmissions and couplings</li> </ul>                                           |  |  |  |  |  |
|                                                                   | Exceptionally low cogging                                                                                                      |  |  |  |  |  |
| • Flexibility to Find an Exact-fit Solution in a Standard Product | <ul> <li>AKM offers 28 frame-stack combinations and 120 standard windings<br/>in a single motor line</li> </ul>                |  |  |  |  |  |
|                                                                   | • 4.8 million possible AKM part number combinations and growing                                                                |  |  |  |  |  |
|                                                                   | <ul> <li>Simplifies or eliminates mechanical modifications and engineering<br/>adaptation</li> </ul>                           |  |  |  |  |  |
|                                                                   | <ul> <li>Available with single cable technology with digital feedback (Digital<br/>Resolver SFD3 or HIPERFACE® DSL)</li> </ul> |  |  |  |  |  |
|                                                                   | <ul> <li>Washdown and Food Grade options for AKM</li> </ul>                                                                    |  |  |  |  |  |
|                                                                   | <ul> <li>Higher torque models up to 180 Nm of continuous torque</li> </ul>                                                     |  |  |  |  |  |
| Ease-of-Use and Faster Commissioning                              | Plug-and-play motor recognition drive commissioning                                                                            |  |  |  |  |  |
|                                                                   | <ul> <li>Reduce cycle time and sensor-and-wiring costs by eliminating traditional<br/>homing methods</li> </ul>                |  |  |  |  |  |
|                                                                   | Reduction in set-up time for each servo system                                                                                 |  |  |  |  |  |

### AKM® Servo Motor Series



### AKM Motors Offer Extremely High Torque Density and High Acceleration

The AKM high-performance motor series offers a wide range of mounting, connectivity, feedback and other options. These motors offer superb flexibility to meet application needs with:





#### **Features**

### **Torque**

0.16 to 180 Nm continuous stall torque (1.4 to 1590 lb-in) in 28 frame/ stack combinations. Specific torques are often available from multiple frame sizes to optimize mounting and inertia matching capabilities.

### Speed

Speeds up to 8000 rpm meet high speed application requirements. Windings tailored to lower speeds are also available.

AKM motors can be applied to all standard global voltages. Windings are specifically tailored to work with drives powered by 75 Vdc, 120, 240, 400 or 480 Vac.

#### Mounting

Multiple mounting standards are available to meet common European, North American, and Japanese standards.

### **Feedback**

AKM motors include resolver, encoder (commutating), Sine-Absolute encoder or SFD (Smart Feedback Device) feedback options to meet specific application requirements.

### **Smoothness**

Smooth performance results from low-cog, low-harmonic distortion magnetic designs.

### Connectivity

Rotatable IP65 connectors, straight IP67 connectors or low cost IP20 Molex plugs are both available to provide flexibility. Single connectors/ plugs (combined power and feedback) are also available to minimize motor and cable cost (SFD and DSL only).

### **Thermal**

Windings are rated conservatively at 100°C rise over a 40°C ambient while using 155°C (class F) insulation materials. Motors meet applicable UL, CSA, and CE requirements and include thermistors.

### **Additional Options:**

- Holding Brakes
- Shaft sealing options available
- Feedback devices
- Shaft and mounting variations
- Custom windings
- Connectivity

### **Kollmorgen Cables Offer the Complete Solution**



Kollmorgen offers complete cable solutions for connecting drives and motors. This includes static, low cost cable sets for simple applications to high bend, high flex, hybrid cables that combine feedback and power in one cable. Not sure which cable offering would best suit your needs? No problem. Kollmorgen Customer Support is available to discuss cable options and what makes the most sense for your machine.



### **Kollmorgen AKM Configurable Servo Motor Features**



# AKM® Brushless Servo System Specific 3 (2240) Sales@servo2go.com

### AKM11, 13, and 23 Servo Motor Performance with AKD Servo Drive

| AKM Servo Motor           | AKM11B 120/240 Vac | AKM13C 120/240 Vac | AKM23D 120/240 Vac |
|---------------------------|--------------------|--------------------|--------------------|
| Servo Drive               | AKD                | AKD                | AKD                |
| Drive [lc/lp] Arms        | 3.0 / 9.0          | 3.0 / 9.0          | 3.0 / 9.0          |
| Feedback Type             | SFD                | SFD                | SFD                |
| T Cont Stall [lb-in (Nm)] | 1.62 (0.183)       | 3.62 (0.409)       | 10.3 (1.16)        |
| T Peak Stall [lb-in (Nm)] | 6.26 (0.707)       | 15.3 (1.73)        | 34.0 (3.84)        |
| RPM Max 240 Vac           | 8000               | 8000               | 6540               |
| Drive                     | AKD-x00306         | AKD-x00306         | AKD-00306          |
| Motor                     | AKM11B-CNC         | AKM13C-CNC         | AKM23D-BNC         |
| Motor/Brake               | -                  | -                  | AKM23D-B2C         |
| Value Line Cables*        |                    |                    |                    |
| Power                     | VP-507BEAN-xx-x    | VP-507BEAN-xx-x    | VP-507BEAN-xx-x    |
| Power/Brake               | VF-DA0474N-xx-x    | VF-DA0474N-xx-x    | VP-508CFAN-xx-x    |
| SFD Feedback              | VF-RA2474N-xx-x    | VF-RA2474N-xx-x    | VF-DA0474N-xx-x    |
| Resolver Feedback         | -                  | -                  | VF-RA2474N-xx-x    |
| Sine Encoder Feedback     | -                  | -                  | VF-SB4474N-xx-x    |

<sup>\*</sup>Value Line Cables are not suitable for flexing applications. For flexing applications request information about Performance Line Cables. Cable part number suffix xx-x indicates cable length in meters. Example: suffix 03-0 equals 3.0 meters. Available lengths include 1.0, 3.0, 6.0, 9.0, or 12.0 meters.

### **AKM11, 13, and 23 Mechanical Specifications**

|                                                     | AKM11           | AKM13          | AKM23            |
|-----------------------------------------------------|-----------------|----------------|------------------|
| Motor Inertia [Ib-in-s² (kg-cm²)]<br>(based on SFD) | 1.5E-5 (0.0169) | 4.0E-5 (0.045) | 0.00019 (0.22)   |
| Brake Inertia [lb-in-s² (kg-cm²)]<br>(additional)   | -               | -              | 0.000011 (0.012) |
| Motor Weight [lb (kg)]                              | 0.77 (0.35)     | 1.4 (0.63)     | 3.0 (1.38)       |







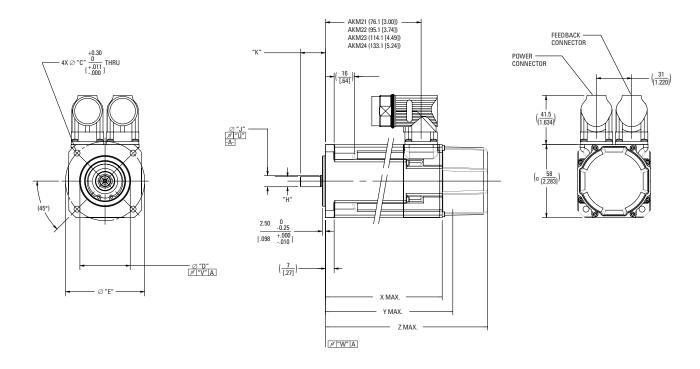
### AKM42 and 52 Servo Motor Performance with AKD Servo Drive

| AKM Servo Motor           | AKM42G 120/240 Vac | AKM52H 120/240 Vac | AKM52H 400/800 Vac |  |
|---------------------------|--------------------|--------------------|--------------------|--|
| Servo Drive               | AKD                | AKD                | AKD                |  |
| Drive [lc/lp] Arms        | 6.0 / 18.0         | 6.0 / 18.0         | 6.0 / 18.0         |  |
| Feedback Type             | SFD                | SFD                | SFD                |  |
| T Cont Stall [lb-in (Nm)] | 31.2 (3.53)        | 75.0 (8.48)        | 75.0 (8.48)        |  |
| T Peak Stall [lb-in (Nm)] | 97.0 (11.0)        | 191 (21.6)         | 191 (21.6)         |  |
| RPM Max 240 Vac           | 4460               | 2390               | 4780               |  |
| Drive                     | AKD-x00606         | AKD-x00606         | AKD-x00607         |  |
| Motor                     | AKM42G-BNC         | AKM52H-BNC         | AKM52H-BNC         |  |
| Motor/Brake               | AKM42G-B2C         | AKM52H-B2C         | AKM52H-B2C         |  |
| Value Line Cables*        |                    |                    |                    |  |
| Power                     | VP-507BEAN-xx-x    | VP-507BEAN-xx-x    | VP-507BEAN-XX-X    |  |
| Power/Brake               | VP-508CFAN-xx-x    | VP-508CFAN-xx-x    | VP-508CFAN-XX-X    |  |
| SFD Feedback              | VF-DA0474N-xx-x    | VF-DA0474N-xx-x    | VF-DA0474N-XX-X    |  |
| Resolver Feedback         | VF-RA2474N-xx-x    | VF-RA2474N-xx-x    | VF-RA2474N-XX-X    |  |
| Sine Encoder Feedback     | VF-SB4474N-xx-x    | VF-SB4474N-xx-x    | VF-SB4474N-XX-X    |  |

<sup>\*</sup>Value Line Cables are not suitable for flexing applications. For flexing applications request information about Performance Line Cables. Cable part number suffix xx-x indicates cable length in meters. Example: suffix 03-0 equals 3.0 meters. Available lengths include 1.0, 3.0, 6.0, 9.0, or 12.0 meters.

### **AKM42 and 52 Mechanical Specifications**

|                                                     | AKM42           | AKM52          |
|-----------------------------------------------------|-----------------|----------------|
| Motor Inertia [lb-in-s² (kg-cm²)]<br>(based on SFD) | 0.0013 (1.5)    | 0.0055 (6.2)   |
| Brake Inertia [lb-in-s² (kg-cm²)]<br>(additional)   | 0.00006 (0.068) | 0.00015 (0.17) |
| Motor Weight [lb (kg)]                              | 7.5 (3.39)      | 12.8 (5.8)     |






Because Motion Matters®

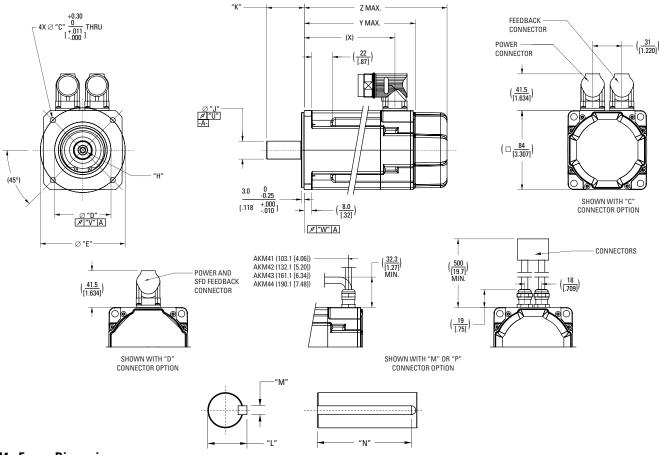
# AKM Brushless Servo System Specific 1978-378-0249 sales@servo2go.com www.servo2go.com

### **AKM2x Frame Outline Drawings**



### **AKM2x Frame Dimensions**

| Mounting<br>Flange-Shaft | "C"     | "D"     | "E"     | "H"     | "J"      | "K"     | "U"      | "V"     | "W"     |
|--------------------------|---------|---------|---------|---------|----------|---------|----------|---------|---------|
| EF                       | 5.10    | 38.10   | 66.68   | 8.64    | 9.525    | 20.57   | 0.051    | 0.10    | 0.10    |
|                          | [0.201] | [1.500] | [2.625] | [0.340] | [0.3750] | [0.810] | [0.0020] | [0.004] | [0.004] |


| (X MAX)<br>("C" Connector Option W/<br>Resolver) | Y MAX  | Z MAX<br>(W/ BRAKE) | MODEL |
|--------------------------------------------------|--------|---------------------|-------|
| 86.2                                             | 95.4   | 129.5               | AKM21 |
| [3.39]                                           | [3.76] | [5.10]              |       |
| 105.2                                            | 114.4  | 148.5               | AKM22 |
| [4.14]                                           | [4.50] | [5.85]              |       |
| 124.2                                            | 133.4  | 167.5               | AKM23 |
| [4.89]                                           | [5.25] | [6.59]              |       |
| 143.2                                            | 152.4  | 186.5               | AKM24 |
| [5.64]                                           | [6.00] | [7.34]              |       |

Dimensions are in mm [inches].

<sup>\*</sup>Complete AKM series model nomenclature can be found on page 123.

# AKM® Brushless Servo System Specific 171 S49 sales@servo2go.com

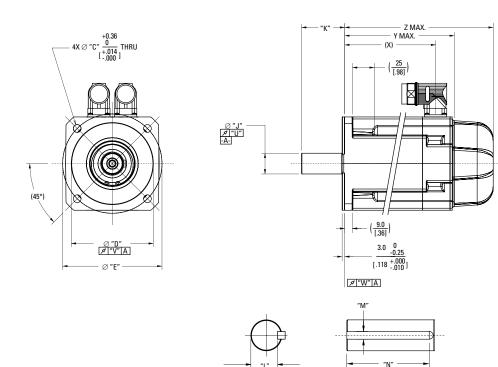
### **AKM4x Frame Outline Drawings**

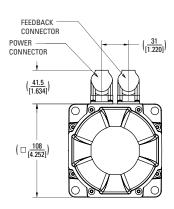


### **AKM4x Frame Dimensions**

| Mounting Flange-Shaft | "C"             | "D"                | "E"              | "H" | "J"                | "K"              | "L"              | "M"               | "N"              | "U"               | " <b>V</b> "    | "W"             |
|-----------------------|-----------------|--------------------|------------------|-----|--------------------|------------------|------------------|-------------------|------------------|-------------------|-----------------|-----------------|
| EK                    | 5.54<br>[0.218] | 73.025<br>[2.8750] | 98.43<br>[3.875] | -   | 12.700<br>[0.5000] | 31.75<br>[1.250] | 14.09<br>[0.555] | 3.175<br>[0.1250] | 19.05<br>[0.750] | 0.051<br>[0.0020] | 0.10<br>[0.004] | 0.10<br>[0.004] |

| (X)    | Y MAX  | Z MAX<br>(W/ BRAKE) | MODEL |
|--------|--------|---------------------|-------|
| 96.4   | 118.8  | 152.3               | AKM41 |
| [3.80] | [4.68] | [6.00]              |       |
| 125.4  | 147.8  | 181.3               | AKM42 |
| [4.94] | [5.82] | [7.14]              |       |
| 154.4  | 176.8  | 210.3               | AKM43 |
| [6.08] | [6.96] | [8.28]              |       |
| 183.4  | 205.8  | 239.3               | AKM44 |
| [7.22] | [8.10] | [9.42]              |       |


Dimensions are in mm [inches].


Product designed in metric.

English conversions provided for reference only.

# AKM Brushless Servo System Specific 378-0249 sales@servo2go.com www.servo2go.com

### **AKM5x Frame Outline Drawings**

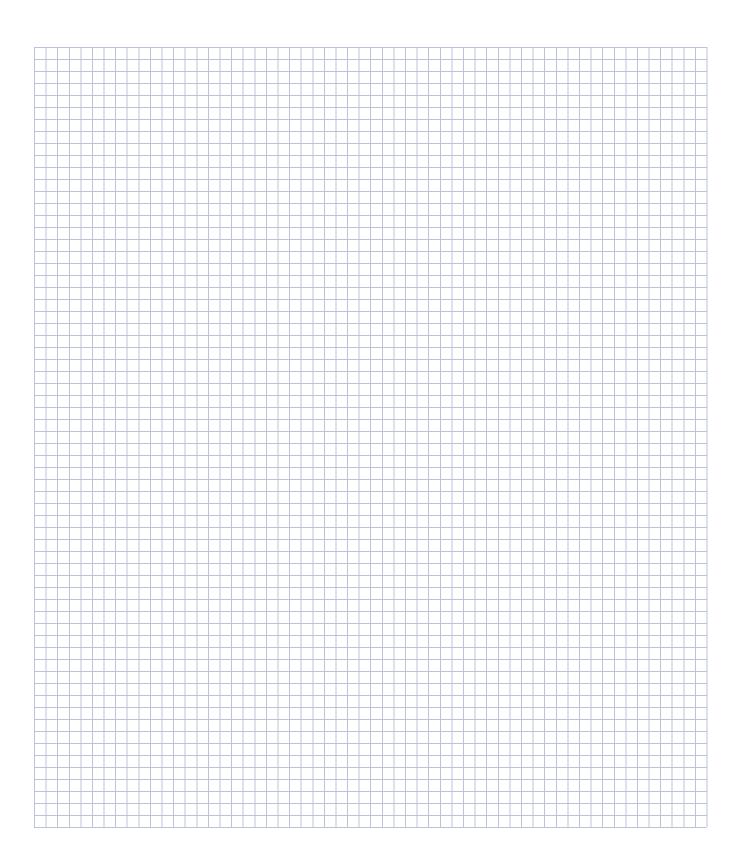




### **AKM5x Frame Dimensions**

| Mounting<br>Flange-Shaft | "C"     | "D"      | "E"     | "J"     | "K"    | "L"     | "M"      | "N"     | "U"      | " <b>v</b> " | "W"     |
|--------------------------|---------|----------|---------|---------|--------|---------|----------|---------|----------|--------------|---------|
| EK                       | 8.33    | 55.563   | 125.73  | 15.875  | 44.45  | 13.16   | 4.737    | 34.9    | 0.051    | 0.10         | 0.10    |
|                          | [0.328] | [2.1874] | [4.950] | [0.625] | [1.75] | [0.518] | [0.1865] | [1.375] | [0.0020] | [0.004]      | [0.004] |

| Z MAX<br>SINE ENCODER<br>(NO BRAKE) | Z MAX<br>SINE ENCODER<br>(W/ BRAKE) | (X)    | Y MAX  | Z MAX<br>(W/ BRAKE) | MODEL |
|-------------------------------------|-------------------------------------|--------|--------|---------------------|-------|
| 146.0                               | 189.0                               | 105.3  | 127.5  | 172.5               | AKM51 |
| [5.75]                              | [7.44]                              | [4.15] | [5.02] | [6.79]              |       |
| 177.0                               | 220.0                               | 136.3  | 158.5  | 203.5               | AKM52 |
| [6.97]                              | [8.66]                              | [5.37] | [6.24] | [8.01]              |       |


Dimensions are in mm [inches]. Product designed in metric.

English conversions provided for reference only.

<sup>\*</sup>Complete AKM series model nomenclature can be found on page 123.

### Notes





### P7000 Stepper Drive-Controller

SERVO GO.com

Toll Free Phone: 877-378-0240
Toll Free Fax: 877-378-0249
sales@servo2go.com
www.servo2go.com

P7000 stepper drives offer a unique level of system functionality, smoothness, high-speed performance and innovation unmatched in the industry.

The compact P7000 is designed to power Kollmorgen step motors ranging from NEMA size 17 up to NEMA size 42. Two power configurations are available for operation directly from AC power, or from a DC power supply.

There are two levels of control offered. The basic drive accepts step and direction inputs. P7000 drives are also available with an integrated position controller (-PN option). The drives are configured by either on-board dip switches, or with the P7000 tools software.

### Advanced P7000 Features Make it the Best Choice to Meet Your Application Requirements

### Multistepping™

Also known as auto-smoothing. The P7000 drive accepts full step pulse commands from the indexer and inserts fine micro-steps to smooth coarse low speed motion. This allows you to significantly upgrade machine performance without having to redesign machine control architecture.

### **Auto-Tuning**

Advanced current auto-tuning techniques provide outstanding lowspeed smoothness. The P7000 senses the motor's characteristics and automatically fine tunes itself to meet your high-performance needs. This reduces installation and set-up time.

#### **Mid-Band Anti-Resonance Control**

Reduces negative effects of mechanical resonance, allowing you to get more out of a smaller motor and virtually eliminating nuisance stalls and machine downtime.

### **Idle Current Reduction**

If you do not require the motor's full torque to hold a load at rest, you can select the right amount of current (torque) to reduce motor heating and power consumption. This increases the life of the system.

### **Dynamic Smoothing**

Quasi-S-curve algorithm reduces jerk, especially upon acceleration.

Increases mechanical life of the machine and reduces energy consumption.

### Intelligent Indexing Option (-PN)

Wizard-like P7000 helps you to develop and link motion tasks such as homing and conditional and unconditional indexing. You can be up-and-running quickly.

### **Modbus RTU Compatible**

The intelligent indexing option (-PN) supports Modbus RTU to control motion with an external interface device. External interfaces make controlling motion simple for machine operators.

#### P7000 Tools

The position node option allows you to configure up to 63 absolute or relative moves. You can specify the moves' distance, acceleration, velocity, and deceleration rates, or simply specify the distance and total time for the move - P7000 will perform the calculations automatically.

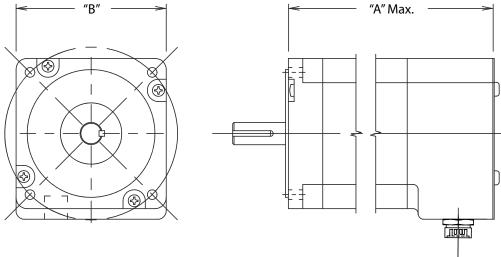
| Specifications         | Units     | P70530      | P70360         |
|------------------------|-----------|-------------|----------------|
| Input voltage range    | Volts     | 20 - 75 Vdc | 120 or 240 Vac |
| Continuous current     | Amps rms  | 5           | 2.5            |
| Microstep peak current | Amps peak | 7.1         | 3.5            |

Note: For complete P7000 Series model nomenclature, refer to page 124.





## Stepper Motor System Specification 877-378-0249 Sales @ Servo 200 com


### T22, T31, T32, T41 Stepper System Performance with P70360

| Motor | System<br>Voltage<br>[Vdc] | Continuous<br>Current<br>[Arms] | Continuous<br>Torque<br>[lb-in (Nm)] | Nmax.<br>[rpm] | Motor Inertia<br>[lb-in-s² (kg-cm²)] | Motor Weight<br>[lb (kg)] |
|-------|----------------------------|---------------------------------|--------------------------------------|----------------|--------------------------------------|---------------------------|
| CTP12 | 24                         | 1.0                             | 3.73 (0.422)                         | 1800           | 6.2E-5 (0.070)                       | 0.75 (0.34)               |
| GIFIZ | 36                         | 1.0                             | 4.02 (0.454)                         | 2400           | 0.ZE-3 (0.070)                       | 0.75 (0.54)               |
| T22V  | 160                        | 1.5                             | 17.5 (1.98)                          | 3000           | 0.000350 (0.395)                     | 2.2 (1.0)                 |
| T22T  | 320                        | 0.77                            |                                      | 3000           | 0.000300 (0.393)                     | 2.2 (1.0)                 |
| T31V  | 160                        | 2.8                             | 40.2 (4.54)                          | 3000           | 0.00127 (1.43)                       | 5.0 (2.27)                |
| T31T  | 320                        | 1.4                             | 40.2 (4.54)                          | 3000           | 0.00127 (1.43)                       | 5.0 (2.27)                |
| T32V  | 160                        | 3.2                             | 74.7 (0.44)                          | 3000           | 0 00227 /2 60\                       | 0.42.(2.02)               |
| T32T  | 320                        | 1.6                             | 74.7 (8.44)                          | 3000           | 0.00237 (2.68)                       | 8.42 (3.82)               |
| T41T  | 320                        | 2.8                             | 101 (11.4)                           | 3000           | 0.00489 (5.52)                       | 11.0 (5.0)                |

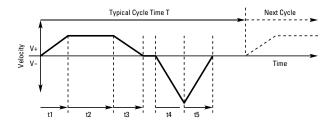
### **Cables options:**

See R series nomenclature page 121 for details about cable availability defined within positioner part number.

### **Typical Stepper Motor Frame Dimensions**



| Model | Square dimension "B"<br>[in (mm)] | "A" [in (mm)] |
|-------|-----------------------------------|---------------|
| CTP12 | 1.68 (42.67)                      | 1.90 (48.3)   |
| T22   | 2.240 (56.90)                     | 3.60 (77.72)  |
| T31   | 3.38 (85.85)                      | 4.44 (112.8)  |
| T32   | 3.38 (85.85)                      | 5.96 (151.4)  |
| T41   | 4.325 (109.9)                     | 5.20 (132.1)  |


### **Linear Sizing Calculations**



### **Move Profile**

Rotary and linear actuator selection begins with the calculation of speed, thrust and torque requirements. In order to determine the torque required, the acceleration of the mass being moved must be calculated. A "move profile", or a plot of load velocity vs. time, is sketched in order to simplify the peak acceleration and peak velocity calculations.

### **Typical Machine Cycle**



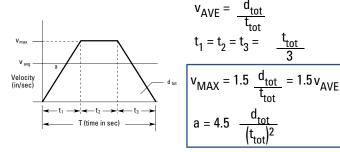
(1) Total distance, 
$$d_{tot} = v_{MAX} \left[ \frac{t_1}{2} + t_2 + \frac{t_3}{2} \right]$$

(2) Max velocity, 
$$v_{MAX} = \frac{d_{tot}}{\left(\frac{t_1 + t_3}{2}\right) + t_2}$$

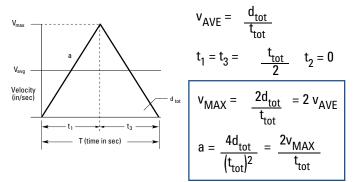
(3) Acceleration, 
$$a = \frac{V_{MAX}}{t_{ACCEL}}$$

The figure above is an example of a typical machine cycle, and is made up of two Move Profiles; the first is an example of a **trapezoidal profile**, while the second is a **triangular profile**. The horizontal axis represents time and the vertical axis represents velocity (linear or rotary). The load accelerates for a time  $(t_1)$ , has a constant velocity or slew section  $(t_2)$ , and decelerates to a stop  $(t_3)$ . There it dwells for a time, accelerates in the negative direction  $(t_4)$ , and decelerates back to a stop  $(t_5)$  without a slew region. The equations needed to calculate Peak Velocity and Acceleration for a general trapezoidal profile are shown in the figure. A triangular profile can be thought of as a trapezoidal profile where  $t_2 = 0$ .

The Move Profile sketch contains some important information:


- Peak acceleration is the steepest slope on the curve, in this case during t<sub>a</sub> or t<sub>c</sub>.
- Maximum velocity is at the highest or lowest point over the entire curve, here at the peak between t, and t<sub>c</sub>.
- Distance is equal to the area under the curve. Area above the time axis represents distance covered in the positive direction, while negative distance falls below this axis. The distance equation (1) is just a sum of the areas of two triangles and a rectangle.

### **Trapezoidal and Triangular Profiles**


A couple of assumptions can greatly simplify the general equations. For the Trapezoidal profile we assume  $t_1=t_2=t_3$ , and for the Triangular we assume  $t_3=t_4$ . Substituting these assumptions into equations (2) and (3) yields the equations shown in the figure below.

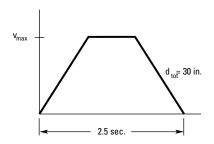
For a given distance (or area), a triangular profile requires lower acceleration than the trapezoidal profile. This results in a lower thrust requirement, and in turn, a smaller motor. On the other hand, the triangular profile's peak speed is greater than the trapezoidal, so for applications where the motor speed is a limiting factor, a trapezoidal profile is usually a better choice.

### **Trapezoidal Move Profile**



### **Triangular Move Profile**






### **Move Profile**

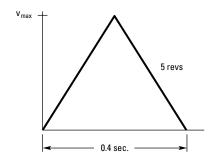
### **Example 1**

Calculate the peak acceleration and velocity for an object that needs to move 30 inches in 2.5 seconds. Assume a Trapezoidal Profile.

#### **Solution**



$$v_{AVE} = \frac{30 \text{ in}}{2.5 \text{ sec}} = 12 \text{ in/sec}$$


$$v_{MAX} = 1.5 \frac{d_{tot}}{t_{tot}} = 18 \text{ in/sec}$$

$$a = 4.5 \frac{d_{tot}}{(t_{tot})^2} = 21.6 \text{ in/sec}^2$$

#### Example 2

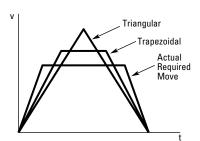
Calculate, in radians/sec, the peak acceleration and velocity for an cylinder that needs to move 5 revolutions in 0.4 seconds. Assume a Triangular Profile.

### **Solution**



$$d_{tot} = \frac{5 \text{ revs} \times 2\pi \text{ rad}}{\text{rev}} = 31.42 \text{ rad}$$

$$v_{AVE} = \frac{31.42 \text{ rad in}}{0.4 \text{ sec}} = 78.55 \frac{\text{rad}}{\text{sec}}$$


$$v_{MAX} = 2 v_{AVE} = 157.1 \frac{rad}{sec}$$

$$a = 4 \frac{d_{tot}}{T^2} = 785.5 \frac{rad}{sec^2}$$

### **Example 3**

This is an example of a case when triangular and trapezoidal move profiles are not adequate approximations. Assume a maximum positioner speed is 6 inches/sec. Sketch a move profile that will complete a 10 inch move in 2 seconds. What is the minimum allowable acceleration rate in inches/sec<sup>2</sup>?

### **Solution**



### **Triangular**

$$v_{AVE} = \frac{10 \text{ in}}{2 \text{ sec}} = 5 \text{ in/sec}$$

$$v_{MAX} = 2 \times v_{AVE} = 10 \text{ in/sec } (v_{MAX} > 6 \text{ in/sec} - \text{too fast})$$

### **Trapezoidal**

 $v_{MAX} = 1.5 \times v_{AVE} = 7.5 \text{ in/sec } (v_{MAX} > 6 \text{ in/sec} - \text{too fast})$ 

These are too fast, so we need to find t<sub>1</sub> as follows:

### **Required Profile**

$$d_{tot} = v_{MAX} \qquad \left( \frac{\left(t_1 + t_3\right)}{2} + t_2 \right)$$

$$\frac{d}{v_{M\Delta X}} \left( \frac{\left(t_{tot} - t_2\right)}{2} \right) + t_2 = \frac{t_{tot}}{2} + \frac{t_2}{2}$$

solving for tag

$$t_{_2} = \left( \begin{array}{c} \frac{d_{_{tot}}}{v_{_{MAX}}} - \frac{t_{_{tot}}}{2} \right) \times 2 = \left( \begin{array}{c} \underline{10 \; in} \\ \underline{6 \; in/sec} \end{array} - \begin{array}{c} \underline{2 \; sec} \\ \underline{2} \end{array} \right) \times 2$$

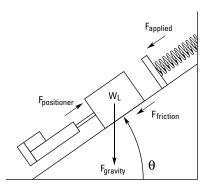
$$t_{2} = 1.33 \text{ sec}$$

Now assume  $t_1 = t_3$ , so

$$t_1 = (t_{tot} - t_2)/2 = 0.33 \text{ sec.}$$

Finally, calculate acceleration

$$a = \frac{v_{MAX}}{t_1} = \frac{6 \text{ in/sec}}{0.33 \text{ sec}} = 18 \frac{\text{in}}{\text{sec}^2}$$


### **Linear Sizing Calculations**



### **Thrust Calculation**

The thrust required to move a mass a given distance within a given time may be calculated by summing all of the forces that act on the mass. These forces generally fall within the following four categories:

- Gravity is important when something is being raised or lowered in a system. Lifting a mass vertically is one example, as is sliding something on an incline.
- Friction forces exist in almost all systems and must be considered.
- Applied forces come from springs, other actuators, magnets, etc., and are the forces that act on the mass other than friction, gravity, and the actuator's thrust. The spring shown in the figure below is an example of an Applied force.
- Actuator thrust is the required force, and is what we need to determine.



The figure above shows a general case where the force required by the actuator must be determined. All of the above forces are included, and it is important to note that all of these forces can change over time, so the thrust must be calculated for each section of the move profile. The worst case thrust and speed required should be used to pick the appropriate actuator. All of these forces added up  $(\Sigma)$  must be equal to mass  $\times$  acceleration, or:

$$\Sigma F = m \times a, or,$$
 (1)

$$F_{actuator} - F_{applied} - F_{friction} - F_{gravity} = ma = \left(\frac{W_t}{g}\right)a$$
 (2)

$$F_{actuator} = \left(\frac{W_t}{g}\right) a + F_{applied} + F_{friction} + F_{gravity}$$
 (3)

where 
$$W_t = W_{load} + W_{actuator}$$
 (4) 
$$F_{friction} = \mu W_L cos\theta, \quad and$$
 
$$F_{gravity} = W_L sin\theta$$

 $W_{actuator}$  becomes important when the acceleration force,  $(W_t/g)a$ , is a significant part of the thrust calculation. For simplicity, start by neglecting this weight, and calculate the required thrust without it. After selecting an actuator, add its mass to the mass of the load and recalculate. To make these equations clear, lets begin with an example.

### **Example 1**

We would like to move a 200 lb weight a distance of 10 inches in 2 seconds. The mass slides up and incline with a friction coefficient of 0.1 at an angle of 45°. There is a spring that will be in contact with the mass during the last 0.5 inch of travel and has a spring rate of 100 lb/in. What is the maximum thrust and velocity?

#### **Solution**

We need to look at the thrust requirement during each part of the move, and find the points of maximum thrust and maximum speed. Choosing a trapezoidal profile we calculate that  $v_{max}$  is 7.5 in/sec and the peak acceleration is 11.25 in/sec<sup>2</sup> (see Move Profile Section).

### **Acceleration Section:**

 $\begin{array}{ll} \text{Ma} &= 200 \text{ lb/386 in/sec}^2 \times 11.25 \text{ in/sec}^2 \\ &= 5.83 \text{ lb} \\ \\ \text{F}_{applied} &= 0 \text{ lb} \\ \text{F}_{friction} &= [200 \text{ lb} \times \cos{(45)}] \times 0.1 = 14.14 \text{ lb} \\ \text{F}_{gravity} &= 200 \text{ lb} \times \sin{(45)} = 141.4 \text{ lb} \\ \\ \text{F}_{total} &= 161 \text{ lb} \end{array}$ 

### **Slew Section:**

 $\begin{array}{ll} \text{Ma} & = 0 \text{ lb (since a=0)} \\ \text{F}_{applied} & = 0 \text{ lb} \\ \text{F}_{friction} & = [200 \text{ lb} \times \cos{(45)}] \times 0.1 = 14.14 \text{ lb} \\ \text{F}_{gravity} & = 200 \text{ lb} \times \sin{(45)} = 141.4 \text{ lb} \\ \text{F}_{total} & = 156 \text{ lb} \end{array}$ 

#### **Deceleration Section:**

 $\begin{array}{ll} \text{Ma} &= 200 \text{ lb/386 in/sec}^2 \times -11.25 \text{ in/sec}^2 \\ &= -5.83 \text{ lb} \\ \\ \text{F}_{applied} &= \text{K} \times \text{x} = 0.5 \text{ in} \times 100 \text{ lb/in} = 50 \text{ lb} \\ & (\text{worst case}) \\ \\ \text{F}_{friction} &= [200 \text{ lb} \times \cos{(45)}] \times 0.1 = 14.14 \text{ lb} \\ \\ \text{F}_{gravity} &= 200 \text{ lb} \times \sin{(45)} = 141.4 \text{ lb} \\ \\ \text{F}_{total} &= 200 \text{ lb} \end{array}$ 

So the worst case required thrust is <u>200 lb.</u> And the worst case velocity is <u>7.5 in/sec.</u>



### **Thrust Calculation**

#### **Actuator Mass**

In applications where the acceleration force,  $(\mathbf{W}_t/g)\mathbf{a}$ , is a significant part of the required thrust, the actuator mass  $(\mathbf{M})$  must be considered in the thrust calculation. After an actuator is chosen, the actuator weight (linear inertia),  $\mathbf{W}_{actuator}$ , is added to the weight of the load.  $\mathbf{W}_{actuator}$  can be determined using the tables and equation in the actuator data section.

To illustrate, we will use the previous example.

- The first step is to pick a linear actuator with the previously calculated thrust and speed capability. One such actuator is an R3-AKM23D-xxx-152B-12-P. This is an R3 Rodless Actuator with an AKM23 motor, a 1.5:1 gear reduction, 0.5 in. lead ball screw and a 12 inch stroke.
- 2. The next step is to look up the effective Actuator Linear Inertia in the tables located in the particular actuator section (do not include the "load" term in the equation). An entry from this table can be seen in the table below. The AKM42 motor inertia is 0.00128 lb-in-sec<sup>2</sup>. The effective actuator weight, calculated from the table is 241lb. See page 49 for the linear inertia equation.
- 3. The final step is to add this weight to the weight of the load,  $\mathbf{W}_{L}$ , and recalculate the peak thrust required for each section of the move profile (do not add this weight to the gravity or friction terms):

### **Acceleration Section:**

**Ma** =  $(241 \text{ lb} + 200 \text{ lb})/386 \text{ in/sec}^2 \times 11.25 \text{ in/sec}^2$ 

= 12.9 lb

 $\mathbf{F}_{\text{total}} = 12.9 + 14.14 + 141.4 = 168.4 \text{ lb}$ 

#### **Slew Section:**

 $\mathbf{Ma} = 0 \text{ lb (since a=0)}$ 

 $\mathbf{F}_{\text{total}} = 156 \text{ lb}$ 

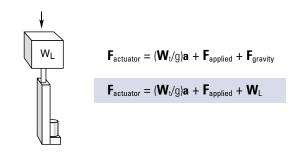
#### **Deceleration Section:**

**Ma** =  $414 \text{ lb/}386 \text{ in/sec}^2 \times -11.25 \text{ in/sec}^2$ 

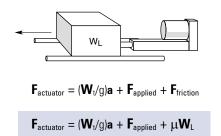
= -12.9 lb

 $\mathbf{F}_{\text{total}} = -12.9 + 50 + 14.14 + 141.4 = 192.6 \text{ lb}$ 

We can see from this calculation that the addition of this extra "acceleration weight" increases the thrust required during acceleration, but reduces the peak thrust required during deceleration. The R3-AKM42G-xxx-152B-12P/ AKD (6A) will work in the application.

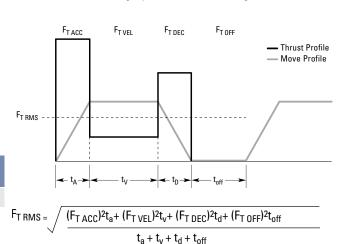

| Screw Driven<br>Models | Motors | Ratio | A<br>(lb-in-s²) | B<br>(Ib-in-s²/in) | C<br>(lb-in-s²/lb) |  |
|------------------------|--------|-------|-----------------|--------------------|--------------------|--|
| R3152B                 | AII*   | 1.5:1 | 9.80 E-05       | 3.17 E-05          | 7.29 E-06          |  |

| Motor | Motor Inertia<br>(lb-in-s²) |
|-------|-----------------------------|
| AKM42 | 1.28 E-03                   |


Inertia data extracted from the R3 series interia tables found on page 39.

### **Vertical and Horizontal Cases**

In a vertical system,  $\theta$  is 90°, sin90 = 1, and  $\boldsymbol{F}_{gravity}$  is equal to  $\boldsymbol{W}_L$ . Since cos90 = 0,  $\boldsymbol{F}_{friction} = 0$ .




In a horizontal system,  $\sin\theta$  = 0, so gravity would play no part ( $\textbf{F}_{gravity}$  = 0), and  $\cos\theta$  =1, so  $\textbf{F}_{friction}$  would be equal to  $\mu \textbf{W}_L$ , or 50 lb.



### **RMS Thrust**

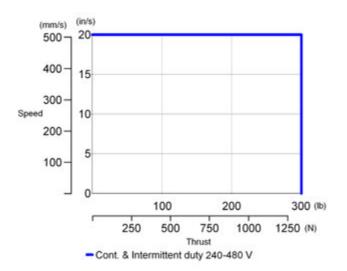
For all Servomotor applications, the RMS Thrust needs to be calculated. This thrust must fall within the continuous duty region of the linear actuator. Use the following equation when calculating RMS Thrust:

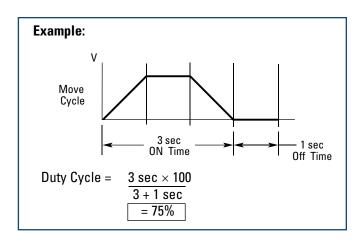


### **Linear Sizing Calculations**



### **Duty Cycle**


Duty Cycle is the ratio of motor-on time to total cycle time and is used to determine the acceptable level of running time so that the thermal limits of the motor or actuator components are not exceeded. Inefficiencies cause a temperature rise in a system, and when the temperature reaches a critical point, components fail. Letting the system to rest idle during the cycle allows these system components to cool. Duty Cycle is limited by lead screw and motor thermal limits. Use the following equation and example to determine Duty Cycle:


Duty 
$$\% = \frac{ON \text{ TIME}}{ON \text{ TIME} + OFF \text{ TIME}} \times 100$$

#### **Leadscrew Limitations**

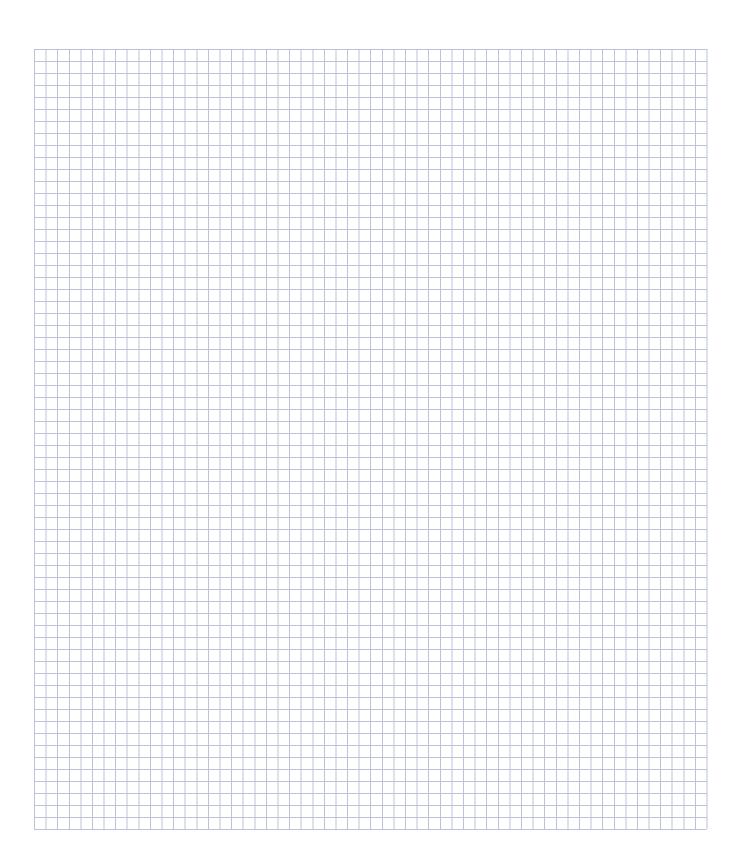
Cylinders with **lead screws** have sliding friction surfaces and are limited to a maximum 50% duty cycle regardless of motor capability. The friction in the lead screw causes rapid heating, and continuous operation is likely to end in a ruined nut or screw. For an actuator with **ball screws** the motor is the only duty-cycle limitation when used within the listed speed vs. thrust curves in the catalog.

#### R3-AKM42G-xxx-152B-yy-P AKD (6 A)





#### **Motor Type**


Electric motors incur heat losses via a number of paths, namely, friction, ohmic (I²R) losses in copper windings, hysteresis and eddy current induction in magnetic core materials, and proximity and/or skin effect in windings. As a result duty cycle can be limited by the motor winding temperature limitations.

### **Servo Motors**

Linear Actuators using AKM series motors must have their peak ( $F_{peak}$ ) and continuous ( $F_{RMS}$ ) thrust requirements determined to establish their safe operation within an application.  $F_{RMS}$  can be determined using the RMS Thrust equation in the Thrust Calculation section. Plotting  $F_{RMS}$  on the actuator Speed vs. Thrust curve indicates the allowable Duty Cycle. For ball screw actuators,  $F_{RMS}$  must fall within the continuous duty region, while for lead screws it must fall in the 50% duty region.  $F_{peak}$  must fall within remaining operating envelope. The speed vs. thrust curve left is an example of proper servo motor and actuator sizing for the previous example.

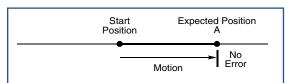
### Notes

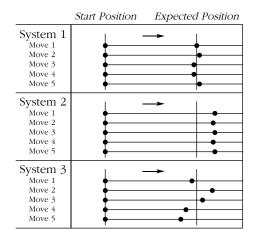




### **Linear Motion Terminology**




### **Linear Actuator Precision**


| Parameter         | Definition                                                                                                                                                      | Dominating Factors                                                                                                                                                                                   |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Absolute Accuracy | The maximum error between expected and actual position.                                                                                                         | <ul> <li>Accuracy of the motor/drive system</li> <li>Screw pitch error (lead accuracy)</li> <li>System backlash (drive train, screw and nut assembly)</li> </ul>                                     |
| Repeatability     | The ability of a positioning system to return to a location during operation when approaching from the same direction, at the same speed and deceleration rate. | <ul> <li>Angular repeatability of the motor/drive system</li> <li>System friction</li> <li>Changes in load, speed, and deceleration</li> <li>Angular resolution of the motor/drive system</li> </ul> |
| Resolution        | The smallest positioning increment achievable. In digital control systems, resolution is the smallest specifiable position increment.                           | <ul><li> Drive Train Reduction</li><li> Screw Pitch</li><li> Lead screw Assembly wear</li></ul>                                                                                                      |
| Backlash          | The amount of play (lost motion) between a set of moveable parts.                                                                                               | <ul><li> Drive train wear</li><li> Spaces between moving parts</li></ul>                                                                                                                             |

### **Accuracy and Repeatability**

Assume three linear positioning systems each attempt five moves from an absolute zero position to absolute position "A". The individual end positions of each move are charted on a linear scale below to demonstrate their accuracy and repeatability by displaying their proximities to the expected position.

### **Ideal System**





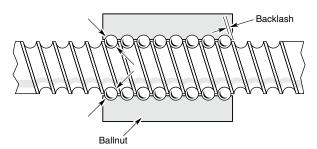
| Degree of Accuracy | Degree of<br>Repeatability | Comment                                                                                                                                 |
|--------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| High               | High                       | System 1 is both accurate and repeatable, the end positions are tightly grouped together and are close to the expected position.        |
| Low                | High                       | System 2 is inaccurate but repeatable, the end positions are tightly grouped around a point but are not close to the expected position. |
| Low                | Low                        | System 3 is neither accurate nor repeatable, the end positions are not tightly grouped and are not close to the expected position.      |



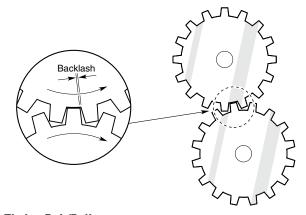
### **Linear Actuator Precision**

#### **Backlash**

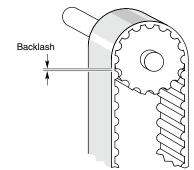
The clearance between elements in a drive train or lead screw assembly which produces a mechanical "dead band" or "dead space" when changing directions, is known as the **backlash** in a system.


In most mechanical systems, some degree of backlash is necessary to reduce friction and wear. In a Kollmorgen Linear Actuator System, system backlash will typically be 0.010-0.015 inches. Usually 0.006-0.008" is attributed to the ball screw / lead screw assembly. For ball screws this will remain constant throughout the life of a cylinder, while for lead screws it will increase with wear.

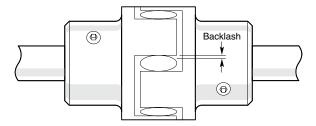
### **Reducing the Effects of Backlash**


- 1. Approach a stop position from the same direction.
- Apply a constant linear force on the cylinder thrust tube or carriage.
   This is done automatically for cylinders used in vertical orientations with a backdriving load.
- For programmable positioning devices it is possible to program out backlash by specifying a small incremental move (enough to take out the backlash) prior to making your normal moves in a particular direction.
- Use a preloaded nut on a ball screw to counteract the backlash. Contact Kollmorgen about the precision ground screw option which reduces backlash in the drive nut.
- 5. An inline positioner with the motor directly coupled to the ball screw has less backlash than parallel or reverse parallel units which utilize a gear train or drive belt/pulley.

### **Primary Sources of Backlash**


### 1. Ball screw/Lead screw Assembly




### 2. Drive Train (Gears, Timing Belt/Pulley)



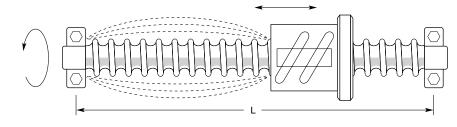
### 3. Timing Belt/Pulley



### 4. Coupling

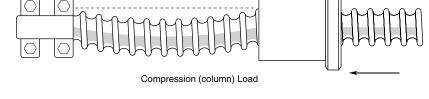


### **Linear Motion Terminology**




Thrust

### **Critical Speed and Column Loading**

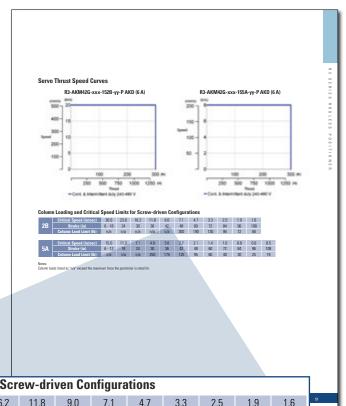

### **Critical Speed**

All ball screw systems have a rotational speed limit where harmonic vibrations occur. With Kollmorgen, this limit is a function of unsupported ball screw length. Operation beyond this critical speed will cause the ball screw to vibrate (whip violently) eventually bending or warping the screw.



### **Column Strength**

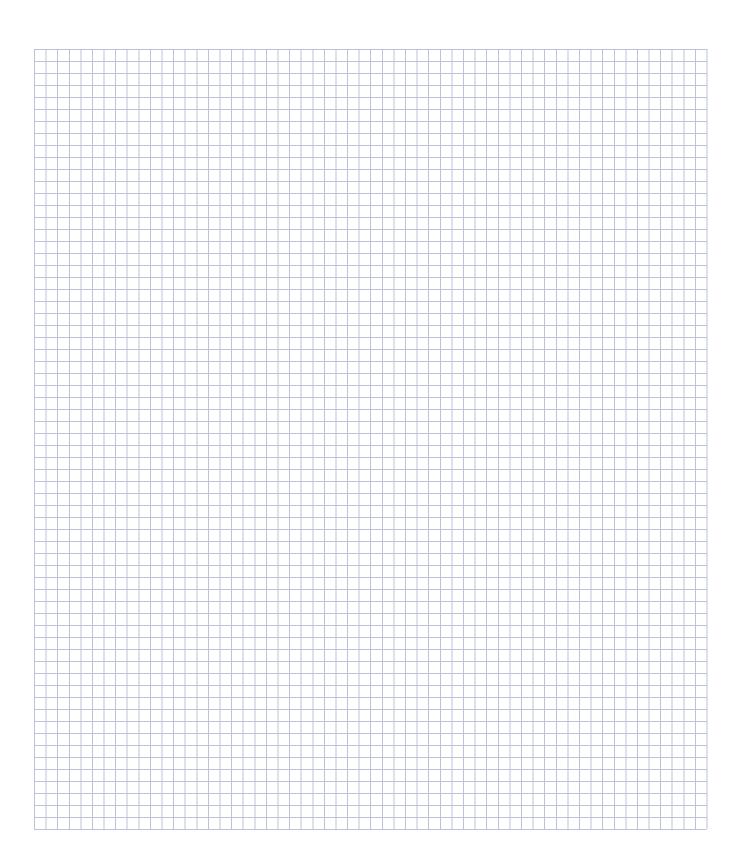
All ball screws have a maximum column loading limit which causes the screw to compress as load increases. In Kollmorgen this limit is a function of unsupported leadscrew length. Exceeding this limit will cause the ball screw to buckle and become permanently damaged.




### **Determining the Limits**

Critical Speed and Column Loading information for each screw type (i.e. 2B, 5A, 8A, 5B ...) can be found at the bottom of each "Performance" page in the particular linear positioner's section.

### **Example**


Find the Column Load and Critical Speed limits for a R3-AKM42G-xxx-152B-yy-P, 60 inch stroke rodless positioner. The positioner data can be found on the page with the force speed curve. Reading off the chart at the bottom of page, the limits are 190 lb and 4.7 in/sec. The usable speed/thrust is restricted to less than these values as seen in the thrust vs. speed curve.



| Column Loading and Critical Speed Limits for Screw-driven Configurations |    |                         |        |      |      |      |     |     |     |     |     |     |     |
|--------------------------------------------------------------------------|----|-------------------------|--------|------|------|------|-----|-----|-----|-----|-----|-----|-----|
|                                                                          |    | Critical Speed (in/sec) | 30.0   | 23.6 | 16.2 | 11.8 | 9.0 | 7.1 | 4.7 | 3.3 | 2.5 | 1.9 | 1.6 |
|                                                                          | 2B | Stroke (in)             | 6 - 18 | 24   | 30   | 36   | 42  | 48  | 60  | 72  | 84  | 96  | 108 |
|                                                                          |    | Column Load Limit (lb)  | n/a    | n/a  | n/a  | n/a  | n/a | 300 | 190 | 130 | 95  | 72  | 56  |

# Notes





# Glossary of Motion Control Terminal Servo Go.com WWW.servo 200.com

#### **Absolute Move**

A move referenced from a fixed absolute zero position.

#### Acceleration

The change in velocity as a function of time, going from a lower speed to a higher speed.

#### **Accuracy**

An absolute measurement defining the difference between expected and actual position.

#### **Lead Screw**

A screw which uses a threaded screw design with sliding surfaces between the screw and nut.

#### **Backdrive**

Tendency of a cylinder to creep out of its set position due to an applied load or force.

#### **Backlash**

The amount of play (lost motion) between a set of moveable parts when changing the direction of travel. Typically seen in drive trains, ball/lead screws, & bearings.

#### **Ball screw**

A screw assembly which uses a ball nut which houses one or more circuits of recirculating steel balls which roll between the nut and screw.

#### **Bearing**

A support device which allows a smooth, low friction motion between two surfaces loaded against each other.

#### **Bushing**

A cylindrical metal sleeve inserted into a machine part to reduce friction between moving parts.

#### **Closed Loop**

A positioning system which employs feedback information to regulate the output response.

#### Cogging

Motor torque variations which occur at low speeds due to a weak magnetic field.

#### **Critical Speed**

Rotational speed of a ball screw at which vibrations (whipping) will occur.

#### Current

The flow of charge through a conductor.

#### Cycle

One complete extension and retraction of a positioner.

#### **Deceleration**

The change in velocity as a function of time, going from a higher speed to a lower speed.

#### **Drive Ratio**

The ratio of motor revolutions per ball/lead screws revolution.

#### **Drive Train**

The arrangement by which the motor is coupled to the ball/lead screws. Typically provided by gears, timing belt/pulley or direct coupling.

#### **Duty Cycle**

The ratio of motor on time and total cycle time within a given cycle of operation.

Duty Cycle (%) = 
$$\frac{\text{Motor ON Time}}{\text{Total Cycle Time}}$$
 X 100

#### **Dwell Time**

Time within a move cycle where no motion occurs.

#### Efficiency

Ratio of output power vs. input power.

#### **Electric Cylinder**

A self contained system which converts rotary motion (from a motor) to linear motion.

#### **Encoder**

An electromechanical device which produces discrete electrical pulses directly related to the angular position of the input shaft, providing high resolution feedback data on position, velocity, and direction.

#### Force

The action of one body on another which tends to change the state of motion of that body. Typically described in terms of magnitude, direction, and point of application.

#### **Friction**

The resistance to motion of two surfaces that touch.

#### **Helical Gear**

Gears with teeth that spiral around the gear.

#### **Incremental Move**

A move referenced from the current set position.

#### Inertia

Property of an object that resists a change in motion. It is dependent on the mass and shape of the object. The greater an object's mass, the greater its inertia, and the more force is necessary to accelerate and decelerate.

#### Lead

The linear distance a nut will travel with one revolution of the Ball / Lead Screw.

#### **Screw Assembly**

Device which converts rotary motion to linear motion.

#### Mass

The quantity of matter that an object contains.

#### Microprocessor

A device that incorporates many or all functions of a computer in a single integrated circuit. Used to perform calculations and logic required to do motion or process control.

#### Moment (Load)

Rotational forces applied to a linear axis, typically expressed as yaw, pitch, and roll.

#### **Motion Profile**

A method of describing a move operation in terms of time, position, and velocity. Typically velocity is characterized as a function of time or distance which results in a triangular or trapezoidal profile.

#### Motor

A device which converts electrical energy into mechanical energy.

#### **Non-Volatile Memory**

Memory that does not lose information on loss of power.



#### **Open Loop**

A positioning system which does not employ feedback information.

#### Overshoot

The amount by which a parameter being controlled exceeds the desired value. Typically referring to velocity or position in servo systems.

#### Pitch

The number of revolutions a Ball / Lead Screw must turn for the nut to travel one inch (single start only).

PLC (Programmable Logic Controller)

A programmable device which utilizes "ladder" logic to control a bank of inputs and outputs which are interfaced to external devices.

#### **Power**

How much work is done in a specific amount of time.

#### Repeatability

The ability of a positioning system to return to an exact location during operation (from the same direction with the same load and speed).

#### Resistance

The opposition to the flow of charge through a conductor.

#### Resolution

The smallest positioning increment achievable. In digitally programmed systems it is the smallest specifiable positioning increment.

#### Resonance

Oscillatory behavior in a mechanical body when operated or subjected to a periodic force occurring at its natural frequency.

#### **RS232C**

A method of Serial Communication where data is encoded and transmitted on a single line in a sequential time format.

#### Servo Motor

A motor which is used in closed loop systems where feedback is used to control motor velocity, position, or torque.

#### **Stepper Motor**

Motor which translates electrical pulses into precise mechanical movements. Through appropriate drive circuitry, controlling the rate and quantity of pulses will control the motor's velocity and position.

#### **Thrust**

The measurement of linear force.

#### Torque

A measure of angular force which produces rotational motion.

#### Velocity (Speed)

The change in position as a function of time.

#### Voltage

Difference in electrical potential between two points.

#### Weight

Force of gravity acting on a body.

Determined by multiplying the mass of the object by the acceleration due to gravity.

# Conversion Tables



#### **Torque**

| AB      | dyne-cm               | gm-cm                  | oz-in                  | kg-cm                   | lb-in                  | N-m                     | lb-ft                  | kg-m                   |
|---------|-----------------------|------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|------------------------|
| dyne-cm | 1                     | 1.019x10 <sup>-2</sup> | 1.416x10 <sup>-5</sup> | 1.0197x10 <sup>-6</sup> | 8.850x10 <sup>-7</sup> | <b>10</b> <sup>-7</sup> | 7.375x10 <sup>-6</sup> | 1.019x10 <sup>-6</sup> |
| gm-cm   | 980.665               | 1                      | 1.388x10 <sup>-2</sup> | 10-3                    | 8.679x10 <sup>-4</sup> | 9.806x10 <sup>-5</sup>  | 7.233x10 <sup>-5</sup> | 10-5                   |
| oz-in   | 7.061x10 <sup>4</sup> | 72.007                 | 1                      | 7.200x10 <sup>-2</sup>  | 6.25x10 <sup>-2</sup>  | 7.061x10 <sup>-3</sup>  | 5.208x10 <sup>-3</sup> | 7.200x10 <sup>-4</sup> |
| kg-cm   | 9.806x10 <sup>5</sup> | 1000                   | 13.877                 | 1                       | 0.8679                 | 9.806x10 <sup>-2</sup>  | 7.233x10 <sup>-2</sup> | 10-2                   |
| lb-in   | 1.129x10 <sup>6</sup> | 1.152x10 <sup>3</sup>  | 16                     | 1.152                   | 1                      | 0. <b>112</b>           | 8.333x10 <sup>-2</sup> | 1.152x10 <sup>-2</sup> |
| N-m     | 10 <sup>7</sup>       | 1.019x10 <sup>4</sup>  | 141.612                | 10.197                  | 8.850                  | 1                       | 0.737                  | 0. <b>102</b>          |
| lb-ft   | 1.355x10 <sup>7</sup> | 1.382x10 <sup>4</sup>  | 192                    | 13.825                  | 12                     | 1.355                   | 1                      | 0. <b>138</b>          |
| kg-m    | 9.806x10 <sup>7</sup> | 10 <sup>5</sup>        | 1.388x10 <sup>3</sup>  | 100                     | 86.796                 | 9.806                   | 7.233                  | 1                      |

#### Inertia (Rotary)

| AB                             | gm-cm²                | oz-in²                | gm-cm-s²              | kg-cm²                | lb-in²                 | oz-in-s²              | lb-ft²                | kg-cm-s²                | lb-in-s²              | lb-ft-s² or<br>slug-ft-s² |
|--------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|-------------------------|-----------------------|---------------------------|
| gm-cm²                         | 1                     | 5.46x10 <sup>-2</sup> | 1.01x10 <sup>-3</sup> | 10 <sup>-3</sup>      | 3.417x10 <sup>-4</sup> | 1.41x10 <sup>-5</sup> | 2.37x10 <sup>-6</sup> | 1.01x10⁻⁴               | 8.85x10 <sup>-7</sup> | 7.37x10 <sup>-4</sup>     |
| oz-in²                         | 182.9                 | 1                     | 0.186                 | 0. <b>182</b>         | 0.0625                 | 2.59x10 <sup>-3</sup> | 4.34x10 <sup>-4</sup> | 1.86x10 <sup>-4</sup>   | 1.61x10 <sup>-4</sup> | 1.34x10 <sup>-5</sup>     |
| gm-cm-s²                       | 980.6                 | 5.36                  | 1                     | 0 <b>.9806</b>        | 0.335                  | 1.38x10 <sup>-2</sup> | 2.32x10 <sup>-3</sup> | <b>10</b> <sup>-3</sup> | 8.67x10 <sup>-4</sup> | 7.23x10 <sup>-5</sup>     |
| kg-cm²                         | 1000                  | 5.46                  | 1.019                 | 1                     | 0.3417                 | 1.41x10 <sup>-2</sup> | 2.37x10 <sup>-3</sup> | 1.019x10 <sup>-3</sup>  | 8.85x10 <sup>-4</sup> | 7.37x10 <sup>-5</sup>     |
| lb-in²                         | 2.92x10 <sup>3</sup>  | 16                    | 2.984                 | 2.925                 | 1                      | 4.14x10 <sup>-2</sup> | 6.94x10 <sup>-3</sup> | 2.96x10 <sup>-3</sup>   | 2.59x10 <sup>-3</sup> | 2.15x10 <sup>-4</sup>     |
| oz-in-s²                       | 7.06x10 <sup>4</sup>  | 386.08                | 72.0                  | 70.615                | 24.13                  | 1                     | 0.1675                | 7.20x10 <sup>-2</sup>   | 6.25x10 <sup>-2</sup> | 5.20x10 <sup>-3</sup>     |
| lb-ft²                         | 4.21x10 <sup>5</sup>  | 2304                  | 429.71                | 421.40                | 144                    | 5.967                 | 1                     | 0. <b>4297</b>          | 0.3729                | 3.10x10 <sup>-2</sup>     |
| kg-cm-s²                       | 9.8x10⁵               | 5.36x10 <sup>3</sup>  | 1000                  | 980.66                | 335.1                  | 13.887                | 2.327                 | 1                       | 0.8679                | 7.23x10 <sup>-2</sup>     |
| lb-in-s²                       | 1.129x10 <sup>4</sup> | 6.177x10 <sup>3</sup> | 1.152x10 <sup>3</sup> | 1.129x10 <sup>3</sup> | 386.08                 | 16                    | 2.681                 | 1.152                   | 1                     | 8.33x10 <sup>-2</sup>     |
| <b>lb-ft-s</b> <sup>2</sup> or | 1.355x10 <sup>7</sup> | 7.41x10⁴              | 1.38x10 <sup>4</sup>  | 1.35x10⁴              | 4.63x10 <sup>3</sup>   | 192                   | 32.17                 | 13.825                  | 12                    | 1                         |
| slua-ft²                       |                       |                       |                       |                       |                        |                       |                       |                         |                       |                           |



#### **Angular Velocity**

| AB    | deg/s | rad/s                   | rpm   | rps                     |
|-------|-------|-------------------------|-------|-------------------------|
| deg/s | 1     | 1.75 x 10 <sup>-2</sup> | 0.167 | 2.78 x 10 <sup>-3</sup> |
| rad/s | 57.3  | 1                       | 9.55  | 0. <b>159</b>           |
| rpm   | 6     | 0. <b>105</b>           | 1     | 1.67 x 10 <sup>-2</sup> |
| rps   | 360   | 6.28                    | 60    | 1                       |

#### **Linear Velocity**

| AB     | in/min | ft/min         | in/sec | ft/sec                 | mm/sec | m/sec                  |
|--------|--------|----------------|--------|------------------------|--------|------------------------|
| in/min | 1      | 0. <b>0833</b> | 0.0167 | 1.39 x10 <sup>-3</sup> | 0.42   | 4.2 x10 <sup>-4</sup>  |
| ft/min | 12     | 1              | 0.2    | 0. <b>0167</b>         | 5.08   | 5.08 x10 <sup>-3</sup> |
| in/sec | 60     | 5              | 1      | 0.083                  | 25.4   | 0.0254                 |
| ft/sec | 720    | 60             | 12     | 1                      | 304.8  | 0 <b>.3048</b>         |
| cm/sec | 23.62  | 1.97           | 0.3937 | 0. <b>0328</b>         | 10     | 0.01                   |
| m      | 2362.2 | 196.9          | 39.37  | 3.281                  | 1000   | 1                      |

| Abbrev | viate | d Terms        |       |   |                 | Metric | Prefixe | 3                |               |
|--------|-------|----------------|-------|---|-----------------|--------|---------|------------------|---------------|
| С      | =     | Celsius        | lb(f) | = | pound force     | Name   | Abbre   | viation          | Multiple      |
| cm     | =     | centimeter     | lb(m) | = | pound mass      | Giga   | G       | 10 <sup>9</sup>  | 1,000,000,000 |
| F      | =     | Fahrenheit     | min   | = | minute          | Mega   | M       | 10 <sup>6</sup>  | 1,000,000     |
| ft     | =     | foot           | mm    | = | millimeter      | Kilo   | k       | 10 <sup>3</sup>  | 1,000         |
| g      | =     | gravity        | m     | = | meter           | Hecto  | h       | 10 <sup>2</sup>  | 100           |
| gm     | =     | gram           | N     | = | Newton          | deka   | da      | 10¹              | 10            |
| gm(f)  | =     | gram force     | oz(f) | = | ounce force     | _      | _       | 10°              | 1             |
| hp     | =     | horse power    | oz(m) | = | ounce mass      | deci   | d       | 10-1             | .1            |
| in     | =     | inch           | rad   | = | radians         | centi  | С       | 10-2             | .01           |
| kg     | =     | kilogram       | rpm   | = | revs per minute | milli  | m       | 10 <sup>-3</sup> | .001          |
| kg(f)  | =     | kilogram force | rps   | = | revs per second | micro  | μ       | 10-6             | .000001       |
| kw     | =     | kilowatt       | s     | = | seconds         | nano   | n       | 10 <sup>-9</sup> | .000000001    |

# **Conversion Tables**



(To convert from A to B, multiply by entry in table)

|   | _ |   | _ | 4 | L |
|---|---|---|---|---|---|
| L | e | Ш | u | u | Ш |

| AB         | in                     | ft                     | micron (μm)           | mm    | cm                   | m                    |
|------------|------------------------|------------------------|-----------------------|-------|----------------------|----------------------|
| in         | 1                      | 0.0833                 | 2.54x10 <sup>4</sup>  | 25.4  | 2.54                 | 0.0254               |
| ft         | 12                     | 1                      | 3.048x10 <sup>5</sup> | 304.8 | 30.48                | 0.3048               |
| micron(μm) | 3.937x10 <sup>-7</sup> | 3.281x10 <sup>-6</sup> | 1                     | 0.001 | 1.0x10 <sup>-4</sup> | 1.0x10 <sup>-6</sup> |
| mm         | 0.03937                | 0.00328                | 1000                  | 1     | 0.1                  | 0.001                |
| cm         | 0.3937                 | 0.03281                | 1.0x10⁴               | 10    | 1                    | 0.01                 |
| m          | 39.37                  | 3.281                  | 1.0x10 <sup>6</sup>   | 1000  | 100                  | 1                    |

#### Mass

| AB    | gm    | kg              | slug                   | lb(m)                  | oz(m)   |
|-------|-------|-----------------|------------------------|------------------------|---------|
| gm    | 1     | 0. <b>001</b>   | 6.852x10 <sup>-5</sup> | 2.205x10 <sup>-3</sup> | 0.03527 |
| kg    | 1000  | 1               | 6.852x10 <sup>-2</sup> | 2.205                  | 35.274  |
| slug  | 14590 | 14.59           | 1                      | 32.2                   | 514.72  |
| lb(m) | 453.6 | 0 <b>.45359</b> | 0.0311                 | 1                      | 16      |
| oz(m) | 28.35 | 0. <b>02835</b> | 1.94x10 <sup>-3</sup>  | 0. <b>0625</b>         | 1       |

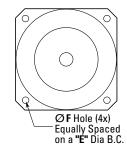
#### Force

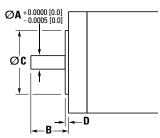
| В     |                         |         |                         |           |         |       |
|-------|-------------------------|---------|-------------------------|-----------|---------|-------|
| A     | lb(f)                   | N       | dyne                    | oz(f)     | kg(f)   | gm(f) |
| lb(f) | 1                       | 4.4482  | 4.448 x 10 <sup>5</sup> | 16        | 0.45359 | 453.6 |
| N     | 0.22481                 | 1       | 100.000                 | 3.5967    | 0.10197 |       |
| dyne  | 2.248 x10 <sup>-6</sup> | 0.00001 | 1                       | 3.59x10⁻⁵ |         | 980.6 |
| oz(f) | 0.0625                  | 0.27801 | 2.78x10 <sup>4</sup>    | 1         | 0.02835 | 28.35 |
| kg(f) | 2.205                   | 9.80665 | 1.0010.3                | 35.274    | 1       | 1000  |
| gm(f) | 2.205x10 <sup>-3</sup>  |         | 1.02x10 <sup>-3</sup>   | 0.03527   | 0.001   | I     |

Note:  $lb(f) = 1slug \ x \ 1 \ ft/s^2$   $N = 1kg \ x \ 1 \ m/s^2$   $dyne = 1gm \ x \ 1 \ cm/s^2$ 

#### **Power**

| A B         | Watts         | kw                      | hp(english)             | hp(metric)              | ft-lb/s                | in-lb/s |
|-------------|---------------|-------------------------|-------------------------|-------------------------|------------------------|---------|
| Watts       | 1             | 1 x 10 <sup>-3</sup>    | 1.34 x 10 <sup>-3</sup> | 1.36 x 10 <sup>-3</sup> | 0.74                   | 8.88    |
| kw          | 1000          | 1                       | 1.34                    | 1.36                    | 738                    | 8880    |
| hp(english) | 746           | 0.746                   | 1                       | 1.01                    | 550                    | 6600    |
| hp(metric)  | 736           | 0.736                   | 0.986                   | 1                       | 543                    | 6516    |
| ft-lb/s     | 1.35          | 1.36 x 10 <sup>-3</sup> | 1.82 x 10 <sup>-3</sup> | 1.84 x 10 <sup>-3</sup> | 1                      | 12      |
| in-lb/s     | <b>0</b> .113 | 1.13 x 10 <sup>-4</sup> | 1.52 x 10 <sup>-4</sup> | 1.53 x 10 <sup>-</sup>  | 8.3 x 10 <sup>-2</sup> | 1       |


# NEMA and Material Specifications Servo Goldon www.servo2go.com www.servo2go.com


| <b>Material Der</b> | sities     |        |        | Friction Coefficients                                |           |
|---------------------|------------|--------|--------|------------------------------------------------------|-----------|
|                     | oz/in³     | lb/in³ | gm/cm³ | (Sliding)                                            | $\mu_{s}$ |
| Aluminum            | 1.57       | 0.098  | 2.72   | Steel on Steel                                       | 0.58      |
| Brass               | 4.96       | 0.31   | 8.6    | Steel on Steel (Greased)                             | 0.15      |
| Bronze              | 4.72       | 0.295  | 8.17   | Aluminum on Steel                                    | 0.45      |
| Copper              | 5.15       | 0.322  | 8.91   | Copper on Steel                                      | 0.36      |
| Plastic             | 0.64       | 0.04   | 1.11   | Brass on Steel                                       | 0.40      |
| Steel               | 4.48       | 0.28   | 7.75   | Plastic on Steel                                     | 0.2       |
| Hard Wood           | 0.46       | 0.029  | 0.8    | Linear Bearings                                      | 0.001     |
| Soft Wood           | 0.28       | 0.018  | 0.48   |                                                      |           |
| Mechanism Ef        | ficiencies |        |        | Temperature                                          |           |
| Lead Screw (        | Bronze N   | lut)   | 0.4    | °F = (1.8 x °C) + 32                                 |           |
| Lead Screw (        |            |        | 0.5    | °C = 0.555 (°F - 32)                                 |           |
| Ball Screw          |            | •      | 0.9    | Gravity                                              |           |
| Helical Gear        |            |        | 0.7    | (Acceleration Constant)                              |           |
| Spur Gear           |            |        | 0.6    | $g = 386 \text{ in/s}^2 = 32.2 \text{ ft/s}^2 = 9.8$ | m/s²      |
| Timing Belt/P       | ullev      |        | 0.9    |                                                      |           |

#### **NEMA Standard Motor Dimensions**

| Dimension (in)           | NEMA<br>17 | NEMA<br>23 | NEMA<br>34 | NEMA<br>42 |  |
|--------------------------|------------|------------|------------|------------|--|
| "A" Motor Shaft Diameter | 0.197      | 0.250      | 0.375      | 0.625      |  |
| "B" Motor Shaft Length*  | 0.945      | 0.810      | 1.250      | 1.380      |  |
| "C" Pilot Diameter       | 0.866      | 1.500      | 2.875      | 2.186      |  |
| "D" Pilot Length*        | 0.080      | 0.062      | 0.062      | 0.062      |  |
| "E" Mounting Bolt Circle | 1.725      | 2.625      | 3.875      | 4.950      |  |
| "F" Bolt Hole Size       | 0.127      | 0.195      | 0.218      | 0.218      |  |

<sup>\*</sup> These dimensions can be less than value indicated.





# **Application Worksheet**

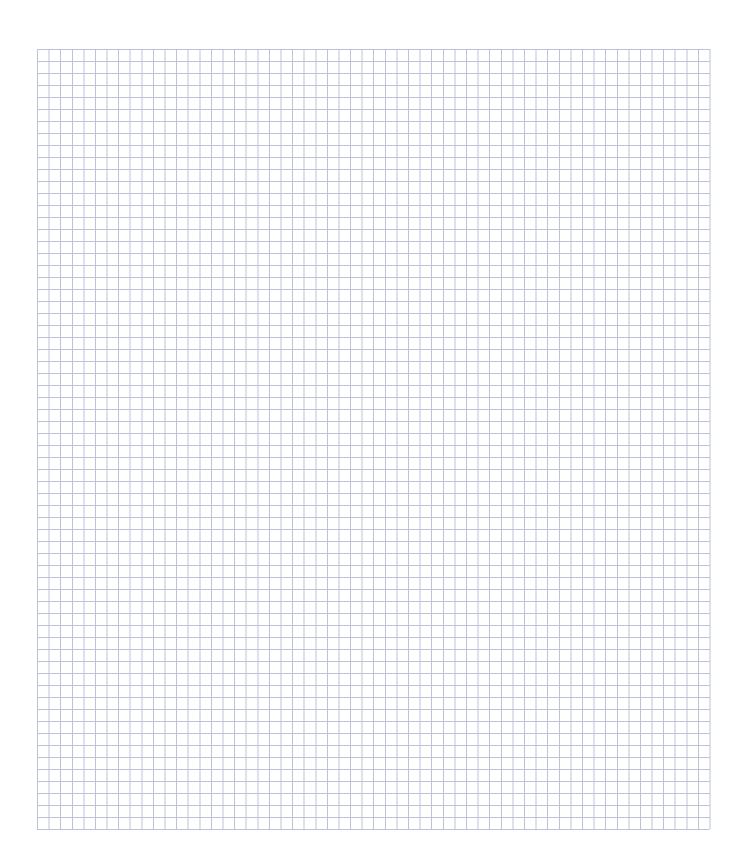


For selection assistance, fax, to your local Kollmorgen Distributor or directly to Kollmorgen

| Prepared By Name                                        |                                                                  | Prepared For Name |
|---------------------------------------------------------|------------------------------------------------------------------|-------------------|
| Company                                                 |                                                                  | Company           |
| Phone                                                   |                                                                  | Phone             |
| Fax                                                     |                                                                  | Fax               |
| Email                                                   |                                                                  | E-mail            |
| Address                                                 |                                                                  | Address           |
| User's primary business                                 |                                                                  |                   |
|                                                         |                                                                  |                   |
| Type of machine Kollmorgen                              | product to be used on $\_$                                       |                   |
| Current Kollmorgen user?  Project Time Frame  Proposal/ | Vol                                                              | ume Requirements  |
| •                                                       |                                                                  | <b>2</b> :        |
|                                                         |                                                                  | 3:                |
| Action Required  Demo Recommend product                 | <ul><li>□ Price quotation</li><li>□ Call me to discuss</li></ul> |                   |
| Please include drawi<br>additional information          |                                                                  |                   |



| ☐ Electric Cylinde                                                                                                                    | er or                                                                           | Rodle                    | ess Actuator                  |                                  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|-------------------------------|----------------------------------|--|
| Loads                                                                                                                                 |                                                                                 |                          |                               |                                  |  |
| Payload                                                                                                                               | Carriage Loads<br>(Rodless only)                                                | N                        | 1 <sub>y</sub> P <sub>n</sub> | Orientation                      |  |
| Weight lb  ☐ Payload Externally Supported,                                                                                            | Mp                                                                              | b-in Mr.G.               | Mp                            | ☐ Vertical                       |  |
| by (rails, etc.)                                                                                                                      | M <sub>r</sub>                                                                  |                          |                               | ☐ Horizontal ☐ Inclined          |  |
| Hold Position: ☐ After move ☐ Power off                                                                                               | M <sub>y</sub>  <br>Side Load                                                   | \$ W                     |                               | (angle from<br>horizontal plane) |  |
| Motion                                                                                                                                |                                                                                 |                          |                               |                                  |  |
| Travel                                                                                                                                | Speed (WCM=Worst-                                                               | ·                        | Precision                     |                                  |  |
| Stroke Length Required in (= usable travel distance + min. 2 inches                                                                   | WCM Distance Time for WCM                                                       |                          |                               | in                               |  |
| for limit switches)                                                                                                                   | or                                                                              | 360                      | •                             | in                               |  |
| Shortest Move in                                                                                                                      | Max. Speed                                                                      |                          | Resolution                    |                                  |  |
|                                                                                                                                       | Min. Speed<br>Complete Move Profile                                             |                          | Straightness/F                | atness in                        |  |
| Thrust Calculation (See Engineering Section in this catalog for assistance)                                                           |                                                                                 |                          |                               |                                  |  |
| Thrust                                                                                                                                |                                                                                 |                          |                               |                                  |  |
| Thrust = Force <u>ACCELERATED MASS</u> + Force <u>FRICTION</u> + Force <u>GRAVITY</u> + Force <u>EXTERNAL</u>                         |                                                                                 |                          |                               |                                  |  |
| lb = lb + lb + lb + lb                                                                                                                |                                                                                 |                          |                               |                                  |  |
| Duty Cycle/Life                                                                                                                       |                                                                                 |                          |                               |                                  |  |
| Duty Cycle                                                                                                                            | Required Life                                                                   |                          |                               |                                  |  |
| Total Cycle Time sec. Extend/Retract Cycles per day Units: ☐ Inches ☐ Meters ☐ Cycles ☐ Months ☐ Years                                |                                                                                 |                          |                               |                                  |  |
| Sum of Move Times sec. Move Distance per cycle Minimum Life   Complete Move Profile Chart (see next page) Maintenance / Lube Interval |                                                                                 |                          |                               |                                  |  |
| Complete Move Profile Chart (see next page)  Maintenance/Lube Interval                                                                |                                                                                 |                          |                               |                                  |  |
| Environment                                                                                                                           |                                                                                 |                          |                               |                                  |  |
| Operating Temperature  ☐ Normal 32-140°F [0-60°C]                                                                                     | Contaminants (Ch                                                                |                          | Liquid:                       |                                  |  |
| ☐ High Temp °F/°C                                                                                                                     | ☐ non-abrasive                                                                  | $\ \square$ coarse chips | ☐ Dripping                    | ☐ Non-corrosive                  |  |
|                                                                                                                                       | □ Low Temp. □ °F/°C □ abrasive □ fine dust □ Mist/Spray □ Corrosive □ Splashing |                          |                               |                                  |  |
| Conditions  ☐ Washdown ☐ Outdoor                                                                                                      | Conditions<br>☐ Washdown   ☐ Outdoor   ☐ Vacuum   ☐ C                           |                          |                               | ure                              |  |


# **Application Worksheet**



| + Speed (     | )                                                                                          | o want to indicate loa<br>el axes with proper sca                   | ale and units. |                                  | Axes of Motion Single Multiple #    |
|---------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------|----------------------------------|-------------------------------------|
|               |                                                                                            |                                                                     |                | ( )<br>Time<br>or<br>Distance    | Synchronized  Interface  ☐ Fieldbus |
| Control Metho |                                                                                            | Network                                                             |                | _                                | ☐ Encoder ☐ Linear Potentiometer    |
| ☐ Manual J    | _                                                                                          | <ul><li>□ Digital (Step &amp; Dig</li><li>□ Analog Torque</li></ul> |                | Analog Velocity  Analog Position | ☐ Other<br>Resolution Required      |
| Limit Swi     | Limit Switches ☐ Analog Torque ☐ Analog Position ☐ Programmable (Basic) ☐ IEC61131 Control |                                                                     |                | Input Functions                  |                                     |
| Description   | of Applicati                                                                               | ion                                                                 |                |                                  | Output Functions                    |

# Notes





## Model Nomenclature



#### **Rodless Actuators R-Series with AKM Servo Motors**

| R Series Motor Type*  R3 — AKM42G                                                                                                                                                                                        | Motor Drive Options Ratio                                               | Type Len | roke<br>ngth<br>2 – | Motor<br>Orientation                                          | Mounting Engli<br>Style Carriage Met                                                                                                    | tric Option                                   | ı                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|---------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|
| R Series R2A, R3, R4                                                                                                                                                                                                     |                                                                         |          |                     | Options*                                                      |                                                                                                                                         | <u>.                                     </u> | Available                                                               |
| Motor Type*                                                                                                                                                                                                              | Available                                                               |          |                     |                                                               | Vdc brake on lead screv option only, n/a with inli                                                                                      |                                               | R2A, R3, R4                                                             |
| AKM23C = AKM23C-EFxxx-00 brushless servo<br>AKM23D = AKM23D-EFxxx-00 brushless servo<br>AKM42E = AKM42E-EKxxx-00 brushless servo<br>AKM42G = AKM42G-EKxxx-00 brushless servo<br>AKM52G = AKM52G-EKxxx-00 brushless servo | R2A, R3<br>R2A, R3<br>R3, R4<br>R3, R4<br>R4                            |          |                     | MF3 or<br>BS115 = 1<br>(Screw<br>MF3 or<br>BS230 = 2          | "C" options) 15 Vdc brake on lead sc option only, n/a with in "C" options) 30 Vdc brake on lead sc                                      | rew<br>line models,                           | R2A, R3, R4<br>R2A, R3, R4                                              |
| AKM52H = AKM52H-EKxxx-00 brushless servo                                                                                                                                                                                 | R4                                                                      |          |                     | (Screw<br>MF3 or                                              | option only, n/a with in "C" options)                                                                                                   | line models,                                  |                                                                         |
| Motor Options —                                                                                                                                                                                                          | — Available ————————————————————————————————————                        |          |                     | WR = Wat<br>WL = Wat                                          | er resistant seal option<br>er resistant seal option                                                                                    |                                               | R2A<br>R2A                                                              |
| B■■ = Rotatable IP65 connectors C■■ = 0.5 m shielded cables w/ IP65 connectors C■■ = Rotatable IP65 connectors                                                                                                           | AKM2<br>AKM4, AKM5                                                      |          |                     | GL = Lube<br>DC1 = Idle                                       | port, right side<br>port, left side<br>r carriage between drive                                                                         | en carriage                                   | R3, R4<br>R3, R4<br>R2A                                                 |
| ■ N ■ = No brake<br>■ 2 ■ = 24 Vdc power-off holding brake                                                                                                                                                               | AKM2, AKM4, AKM5<br>AKM2, AKM4, AKM5                                    |          |                     |                                                               | n-motor end<br>r carriage between driv                                                                                                  | en carriage                                   | R2A                                                                     |
| R = Resolver 2 = 2048 LPR incremental comm. encoder C = Smart Feedback Device (SFD)                                                                                                                                      | AKM2, AKM4, AKM5<br>AKM2, AKM4, AKM5<br>AKM2, AKM4, AKM5                |          |                     | and mo<br>VR = Brea                                           | tor end<br>ther vent, fitting, tubing<br>her vent, fitting, tubing,                                                                     | , right side                                  | R4<br>R4                                                                |
| Drive Ratio                                                                                                                                                                                                              | – Available                                                             |          |                     | C0 = No m<br>S = Stub s                                       |                                                                                                                                         |                                               | R2A, R3, R4<br>R2A                                                      |
| 10 = 1.0:1 drive belt/pulley<br>15 = 1.5:1 drive belt/pulley                                                                                                                                                             | R2A, R3, R4<br>R2A, R3, R4                                              |          |                     | English/<br>(carriage/r                                       |                                                                                                                                         |                                               | Available                                                               |
| 20 = 2.0:1 drive belt/pulley<br>30 = 3.0:1 drive belt/pulley<br>50 = 5:1 helical gear                                                                                                                                    | R2A, R3, R4<br>R4<br>R3, R4                                             |          |                     | E = English                                                   | carriage & mounting dime<br>c carriage & mounting c                                                                                     | ensions<br>dimensions                         | R2A, R3, R4<br>R2A, R3, R4                                              |
| 70 = 7:1 helical gear<br>100 = 10:1 helical gear                                                                                                                                                                         | R3<br>R3                                                                |          |                     | Carriage                                                      |                                                                                                                                         |                                               | Available                                                               |
| g .                                                                                                                                                                                                                      |                                                                         |          |                     | (omit this t                                                  | field for R2A models)                                                                                                                   |                                               |                                                                         |
| Linear Drive Type                                                                                                                                                                                                        | - Available                                                             | +        |                     | S = Single<br>Dxx = Dua                                       |                                                                                                                                         |                                               | R3, R4<br>R3, R4                                                        |
| 5A = 5 pitch (0.2" lead) lead screw<br>8A = 8 pitch (0.125" lead) lead screw<br>1B = 1 pitch (1" lead) ball screw                                                                                                        | R2A, R3<br>R2A, R3<br>R4                                                |          |                     |                                                               | nter distance between d<br>es – contact customer s                                                                                      |                                               | is)                                                                     |
| 2B = 2 pitch (0.5" lead) ball screw<br>4B = 4 pitch (0.25" lead) ball screw                                                                                                                                              | R2A, R3<br>R4                                                           |          |                     | Mountin                                                       | · ,                                                                                                                                     |                                               | Available                                                               |
| 5B = 5 pitch (0.2" lead) ball screw<br>T = Tangential drive belt                                                                                                                                                         | R2A, R3<br>R2A, R3, R4                                                  |          |                     | MS1 = Sic                                                     | nt & rear rectangular fla<br>le end angles<br>justable feet                                                                             | inges                                         | R2A<br>R2A<br>R2A                                                       |
| Stroke Length**                                                                                                                                                                                                          | - Available                                                             |          |                     | MS6 = Sid                                                     | e tapped mounting hole<br>ngle brackets                                                                                                 | )S                                            | R2A<br>R3, R4                                                           |
| 6 = 6" of total stroke                                                                                                                                                                                                   | R2A, R3, R4                                                             |          |                     | B = Adjust                                                    | able T-nuts                                                                                                                             |                                               | R3, R4                                                                  |
| 12 = 12" of total stroke<br>18 = 18" of total stroke                                                                                                                                                                     | R2A, R3, R4<br>R2A, R3, R4                                              |          |                     |                                                               | & rear rectangular flang                                                                                                                | es es                                         | R3, R4                                                                  |
| 24 = 24" of total stroke<br>30 = 30" of total stroke                                                                                                                                                                     | R2A, R3, R4<br>R2A, R3, R4                                              |          |                     | Belt option                                                   | rientation                                                                                                                              |                                               | Available                                                               |
| 36 = 36" of total stroke<br>42 = 42" of total stroke<br>48 = 48" of total stroke<br>54 = 54" of total stroke<br>60 = 60" of total stroke                                                                                 | R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4 |          |                     | AR = Moto<br>BR = Moto<br>CR = Moto<br>AL = Moto<br>BL = Moto | or housing rotated above<br>or housing rotated behin<br>or housing rotated under<br>or housing rotated above<br>r housing rotated behin | nd/right<br>r/right<br>e/left<br>d/left       | R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4 |
| 66 = 66" of total stroke<br>72 = 72" of total stroke                                                                                                                                                                     | R2A, R3, R4<br>R2A, R3, R4                                              |          |                     |                                                               | r housing rotated under                                                                                                                 | /left                                         | R2A, R3, R4                                                             |
| 84 = 84" of total stroke<br>96 = 96" of total stroke<br>108 = 108" of total stroke<br>Custom lengths available in the increment of 1"                                                                                    | R3, R4<br>R3, R4<br>R3, R4                                              |          |                     | P = Motor<br>PR = Moto                                        | <i>ions</i><br>mounted inline<br>mounted parallel<br>ir mounted parallel/righ<br>r mounted parallel/left                                | t                                             | R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4                |

Note: Options shown in blue text are considered standard.

<sup>\*</sup> Contact customer support for AKM combinations outside of those listed.

\*\* For custom lengths round up to next standard incremental plus add standard cut fee.

\*\*\* Contact customer support if C0 is not selected.



#### **Rodless Actuators R Series with Stepper Motors**

| R Series Stepper Type  R3 - T22                                                                                                                                                                                                                                                                                                      | oe* Ratio Type Lei                                                                                                                  | oke Motor Mounting English/ Cable Option  2 — P — A S E — CO                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R Series R2A, R3, R4                                                                                                                                                                                                                                                                                                                 |                                                                                                                                     | Options***  Available                                                                                                                                                                                                                                                                                                                                                                             |
| Motor Type*                                                                                                                                                                                                                                                                                                                          | Available                                                                                                                           | BS24 = 24 Vdc brake on lead screw R2A, R3, R4 (Screw option only, n/a with inline models,                                                                                                                                                                                                                                                                                                         |
| T22V = T22NSLE-LDN-SS-02 stepper<br>T22T = T22NSLS-LDN-SS-02-stepper<br>T31x = N31HSFH-LSS-SS-02 stepper<br>T32x = N32HSFS-LEK-SS-02 stepper<br>T41T = N41HSFS-LSS-SS-03 stepper<br>where: X = V (for 160 Vdc) or T (for 320 Vdc)                                                                                                    | R2A, R3<br>R2A, R3<br>R2A, R3<br>R4<br>R4                                                                                           | MF3 or "C" options)  BS115 = 115 Vdc brake on lead screw (Screw option only, n/a with inline models, MF3 or "C" options)  BS230 = 230 Vdc brake on lead screw (Screw option only, n/a with inline models,                                                                                                                                                                                         |
| Drive Ratio  10 = 1.0:1 drive belt/pulley 15 = 1.5:1 drive belt/pulley 20 = 2.0:1 drive belt/pulley 30 = 3.0:1 drive belt/pulley 50 = 5:1 helical gear 70 = 7:1 helical gear 100 = 10:1 helical gear                                                                                                                                 | Available — R2A, R3, R4 R2A, R3, R4 R2A, R3, R4 R3, R4 R3, R4 R3, R4 R3                                                             | MF3 or "C" options)  WR = Water resistant seal option right  WL = Water resistant seal option left  R2A  GR = Lube port, right side  GL = Lube port, left side  B3, R4  DC1 = Idler carriage between driven carriage  and non-motor end  DC2 = Idler carriage between driven carriage  R2A  and motor end  VR = Breather vent, fitting, tubing, right side  R4                                    |
| Linear Drive Type  5A = 5 pitch (0.2" lead) lead screw 8A = 8 pitch (0.125" lead) lead screw 1B = 1 pitch (1" lead) ball screw 2B = 2 pitch (0.5" lead) ball screw 4B = 4 pitch (0.25" lead) ball screw 5B = 5 pitch (0.2" lead) ball screw T = Tangential drive belt                                                                | Available R2A, R3 R2A, R3 R4 R2A, R3 R4 R2A, R3 R4 R2A, R3 R2A, R3                                                                  | VL = Breather vent, fitting, tubing, left side Q = 12' quick disconnect stepper cable C0 = No motor cable C25 = 25' quick disconnect stepper cable C50 = 50' quick disconnect stepper cable C50 = 50' quick disconnect stepper cable S = Stub shaft R2A, R3, R4 R2A  English/Metric Available                                                                                                     |
| Stroke Length** 6 = 6" of total stroke 12 = 12" of total stroke 18 = 18" of total stroke 24 = 24" of total stroke                                                                                                                                                                                                                    | Available<br>R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4                                                               | (carriage/mounting)  E = English carriage & mounting dimensions  M = Metric carriage & mounting dimensions  R2A, R3, R4  R2A, R3, R4  R2A, R3, R4  R2A, R3, R4  Available  (omit this field for R2A models)                                                                                                                                                                                       |
| 30 = 30" of total stroke 36 = 36" of total stroke 42 = 42" of total stroke 48 = 48" of total stroke 54 = 54" of total stroke 60 = 60" of total stroke 66 = 66" of total stroke 72 = 72" of total stroke 84 = 84" of total stroke 96 = 96" of total stroke 108 = 108" of total stroke custom lengths available in the increment of 1" | R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4<br>R3, R4<br>R3, R4<br>R3, R4 | S = Single carriage  Dxx = Dual carriage  (xx = center distance between dual carriages in inches — contact customer support for lengths)  Mounting Style  MF3 = Front & rear rectangular flanges  MS1 = Side end angles  MS5 = Adjustable feet  MS6 = Side tapped mounting holes  A = Side angle brackets  R3, R4  R3, R4  R3, R4  R3, R4  R4  R4  R5  R5  R6  R7  R6  R6  R7  R6  R7  R6  R7  R7 |
| Motor Orientation  Belt options  AR = Motor housing rotated above/right BR = Motor housing rotated behind/right CR = Motor housing rotated under/right AL = Motor housing rotated above/left BL = Motor housing rotated behind/left CL = Motor housing rotated under/left                                                            | Available  R2A, R3, R4                                      | B = Adjustable T-nuts R3, R4<br>C = Front & rear rectangular flanges R3, R4                                                                                                                                                                                                                                                                                                                       |
| Screw options I = Motor mounted inline P = Motor mounted parallel PR = Motor mounted parallel/right PL = Motor mounted parallel/left                                                                                                                                                                                                 | R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4<br>R2A, R3, R4                                                                            | * Contact customer support for AKM combinations outside of those listed.  ** For custom lengths round up to next standard incremental plus add standard cut fee.  *** Contact customer support if C0 is not selected.  Note: Options shown in blue text are considered standard.                                                                                                                  |

### Model Nomenclature



#### **AKD® Servo Drive**

AKD - B 003 06 - NB AN - 0000**AKD Series Variants** Version 0000 = Standard B = Base drive C = Central power supply for AKD-N (Requires CB Extention) Drive Version Connectivity\* Availability N = Decentralized drive (Requires DB, DF, or DS Extention) AN = Analog command B, P, T P = Position indexer (motion tasking) CN = CANopen® T = AKD BASIC Language Programmable drive (Requires IC or NB C, M, N, P  $EC = EtherCAT^{\otimes}$ EI = EtherNet/IPTMM = Multi-axis Master Drive (Requires MC Extension option, PN - PROFINET® Р and EC Connectivity option) В  $SQ = SynqNet^{\circledR}$ Current Rating \*Motion Tasking is included as a free 003 = 3 Ampupgrade with CN, EC, EI and PN 006 = 6 Amp010 = 10kW (for AKD-C, this field refers to power.)

Voltage

012 = 12 Amp

024 = 24 Amp

048 = 48 Amp

 $06 = 120/240 \text{ Vac } 1\emptyset/3\emptyset$  (24 Amp Drive: 240 Vac 3Ø only)

07 = 240/480 Vac 3Ø (Version C: 07 = 400/480 Vac 3Ø | Version N: 07 = 560/680 Vdc)

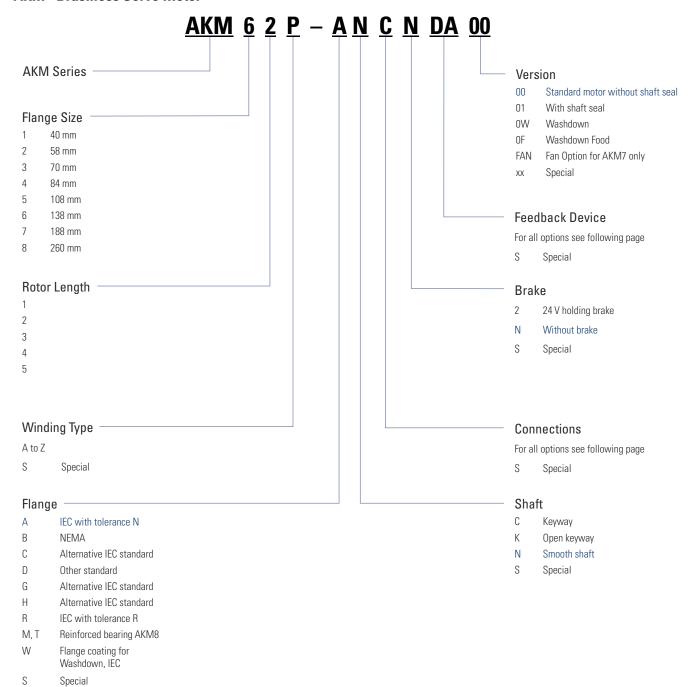
Extension

CB = without extention (AKD-C version only)

DB = hybrid motor cable (AKD-N version only)

DF = additional EtherCAT® port + feedback connector (AKD-N version only)

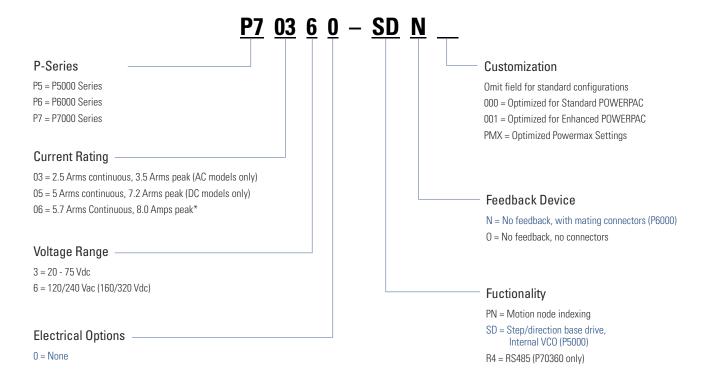
DS = local STO + feedback connector (AKD-N version only)


IC = Expanded I/O version and SD card slot (AKD-T version only)

NB = Without extensions

Note: Options shown in blue text are considered standard.




#### **AKM®** Brushless Servo Motor



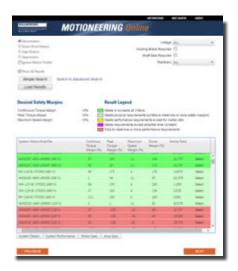
### Model Nomenclature



#### **P-Series Stepper Drive**



## MOTIONEERING® Online





MOTIONEERING® Online — Kollmorgen has revamped, modernized and put online one of the most respected applications sizing programs of the last 20 years. You now can access this application sizing and selection tool wherever you have access to the internet. MOTIONEERING Online is just a start of a series of releases that will empower you to optimize solutions for your toughest applications. Sizing frameless motors and drive systems has never been easier. Using a mechanism project concept for collecting and saving multiple axes of load information, MOTIONEERING® Online can automatically calculate application results and compare against a catalog of systems - recommending the most optimized set of Kollmorgen system solutions available.

Versatile units-of-measure selection options for mechanism and motion profile data-entry, with the ability to convert data into other available units, makes this a convenient international tool. A user-friendly Help file teaches program functions and algorithms used to provide results.

#### **Mechanism Projects**

- Direct drive entry, lead screw, conveyor
- Rack and pinion, nip rolls
- Direct Drive Rotary
- · Electric Cylinder
- · Direct data entry





#### **Solution Set Search Screen**

- · Color-coded indication of system's ability to meet application requirements
- Review system components specifications
- Save, print, or create a pdf application report
- Evaluate system performance curve with application points

#### **MOTIONEERING® Online Features:**

- Inertia Calculator lets you build up inertia based on odd shapes by additive or subtractive methods
- Custom Motion Profile easy to add entire segments or copy segments to repeat
- Environmental Factor takes into account your ambient temperature
- Project by Project Units You can tailor your units on a project by project basis, or use the global units settings

#### **MOTIONEERING Online Supported Browsers**

IE. Chrome, Firefox, Safari

# SERVOZGO.com Toll Free Phone: 877-378-0240

About Kollmorgen

Since its founding in 1916, Kollmorgen's innovative solutions have brought big ideas to life, kept the world safer, and improved peoples' lives. Today, its world-class knowledge of motion systems and components, industry-leading quality, and deep expertise in linking and integrating standard and custom products continually delivers breakthrough motion solutions that are unmatched in performance, reliability, and ease-of-use. This gives machine builders around the world an irrefutable marketplace advantage and provides their customers with ultimate peace-of-mind.

sales@servo2go.com www.servo2go.com

