

Because Motion Matters[™]

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Kollmorgen. Every solution comes from a real understanding of OEM challenges facing machine designers and users.

The ever-escalating demands of the marketplace mean increased pressure on machine designers and users at every turn. Time constraints. Demands for better performance. Having to think about the next-generation machine even before the current one is built. While expectations are enormous, budgets are not. Kollmorgen's innovative motion solutions and broad range of quality products help engineers not only overcome these challenges but also build truly differentiated machines.

Because motion matters, it's our focus. Motion can distinctly differentiate a machine and deliver a marketplace advantage by improving its performance. This translates to overall increased efficiency for your application. Perfectly deployed machine motion can make your customer's machine more reliable and efficient, enhance accuracy and improve operator safety. Motion also represents endless possibilities for innovation. We've always understood this potential, and thus have kept motion at our core, relentlessly developing products that offer precision control of speed, accuracy and position in machines that rely on complex motion.

KOLLMORGEN

Because Motion Matters™

Removing the Barriers of Design, Sourcing, and Time

At Kollmorgen, we know that OEM engineers can achieve a lot more when obstacles aren't in the way. So, we knock them down in three important ways:

Integrating Standard and Custom Products

The optimal solution is often not clear-cut. Our application expertise allows us to modify standard products or develop totally custom solutions across our whole product portfolio so that designs can take flight.

Providing Motion Solutions, Not Just Components

As companies reduce their supplier base and have less engineering manpower, they need a total system supplier with a wide range of integrated solutions. Kollmorgen is in full response mode with complete solutions that combine programming software, engineering services and best-in-class motion components.

Global Footprint

With direct sales, engineering support, manufacturing facilities, and distributors across North America, Europe, Middle East, and Asia, we're close to OEMs worldwide. Our proximity helps speed delivery and lend support where and when they're needed.

Financial and Operational Stability

Kollmorgen is part of Danaher Corporation, our \$13B parent company. A key driver in the growth of all Danaher divisions is the Danaher Business System, which relies on the principle of "kaizen" – or continuous improvement. Using world-class tools, cross-disciplinary teams of exceptional people evaluate processes and develop plans that result in superior performance.

Table of Contents

Direct Drive Linear (DDL) Motor	4
AKD™ Servo Drive	10
Co-Engineering Capabilities	14
Direct Drive Linear Motor Summary	15
DDL Ironless - Non-cooled Data and Dimensions	
IL06 Series	18
IL12 Series	20
IL18 Series	22
IL24 Series	26
Ironless Magnet Ways	28
DDL Ironcore Data and Dimensions	
ICD05 Series	32
ICD10 Series	34
ICD Magnet Ways	36
DDL Ironcore - Non-cooled Data and Dimensions	
IC11 Series	40
IC22 Series	42
IC33 Series	46
IC44 Series	50
DDL Ironcore - Water-cooled Data and Dimensions	
IC11 Series	54
IC22 Series	56
IC33 Series	60
IC44 Series	64
Ironcore Magnet Ways	68
Wiring and Output	70
High Flex Cable Sets	72
Application Sizing	74
Model Nomenclature	78
MOTIONEERING [®] Application Engine	81

oll Free Phone: 877-378-024(Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Direct Drive Linear Motor

Our direct drive linear motor series provide new dimension in performance with high throughput, accuracy, and zero maintenance. The product line are frameless, permanent magnet, three phase, brushless servomotors. The product line consists of two fundamental constructions, lronless (slotless) and lroncore. Ironless motors have no attractive force between the framless components and zero cogging for the ultra smooth motion. Ironcore motors provide the highest force per frame size. The feature a patented anti-cogging design which yields extremely smooth operation.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

The Benefits of Direct Drive Linear Motor

• Zero Maintenance with Greater Accuracy and Higher Bandwidth	Smoother velocity and reduced audible noise
	 Power transmission without backlash
	 Transmission elements such as couplings, toothed belts, ball/lead screws, rack & pinions, and other fitted components can be eliminated
	 No gears or screws, no lubrication required
	Improved machine reliability
• Wide Range of Sizes and Force to Cover any Linear Application	Increased performance for the entire system
	• Flat, compact drive solution
	 Easily mix / match motors and drives
	• Real-life acceleration up to 10 G
• Simplified, High Force Permanent Magnet Design	 Higher bandwidth and faster response than ball/lead screws or rack & pinion solutions
	 Rapid indexing of heavy loads with peak force up to 12,500 N (2,800 lb)
	• Reduced audible noise, fewer parts and lower cost of ownership

• More compact machine design

Direct Drive Linear Motor Overview

Sold & Serviced By:

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Kollmorgen Direct Drive Linear DDL Motor Series

Kollmorgen supplied its first linear motors in the late 1970's for use in precision X-Y tables and coating systems. These were brush DC motors using the Kollmorgen patented push-through commutator bar method. This led to development in the early 1980's of the brushless versions of the linear motor which were used in film processing applications where smooth, high stiffness, linear motion was required. During the past 30 years, advances in permanent magnet material, power semiconductors, and microprocessor technology have been the enablers for increased performance and lower costs for linear motors.

DDL motors series comply with the Low Voltage Directive 73/23/EEC for installation in a machine. Safety depends upon installing and configuring motor per the manufacturer's recommendations. The machine in which this product is to be installed must conform to the provisions of EC directive 89/336/EEC. The installer is responsible for ensuring that the end product complies with all the relevant laws in the country where the equipment is installed.

Standard Product Features

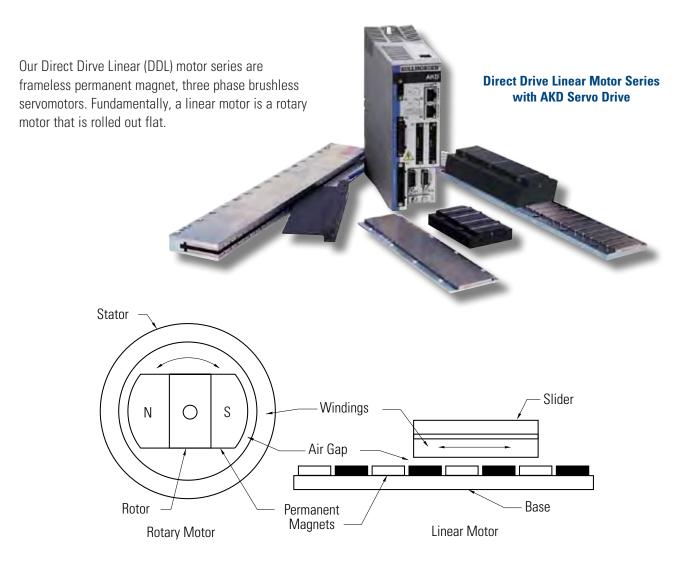
Ironless:

- Peak force 60 to 1600 N (13.6 to 360 lbf)
- Continuous force 21 to 450 N (4.6 to 101lbf)
- Zero cogging
- Zero attractive force
- Smooth motion for speed as low as 1 micron/second (0.00004 in/sec)
- Low mass coil assembly for high acceleration

Ironcore:

- Peak force IC series: 320 to 8407 N (71.9 to 1890 lbf)
- Continuous force IC series: 144 to 6916 N (32.4 to 1555 lbf)
- Peak force ICD series: 165 to 1099 N (38 to 254 lbf)
- Continuous force ICD series: 57.0 to 315 N (12.8 to 70.8 lbf)
- Patented anti-cogging technique for minimal cogging without magnet skewing
- High motor constant (Km)
- High force density
- ICD series advantage:
- Very low profile
- Low attraction force
- Suitable to replace many Ironless applications

All Motors:


- Zero contact, zero maintenance, brushless design
- 3 phase sinusoidal commutation
- Peak accelerations easily above 10 G
- High position accuracy and resolution
- Very low settling time
- Low thermal losses
- Modular magnet design

Standard Options:

- Hall effect feedback
- Thermal protection
 - Thermistor
 - Thermostat (Ironcore)
- Supplemental air or water cooling (Ironcore)
- Cable options
- Magnet way covers for easy cleaning (Ironcore)
- FM approved, hazardous environment

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Rotary Motor Rolled Out Flat

The two primary components of permanent magnet brushless rotary motors are the stator (primary coils) and the rotor (secondary or rotating magnets). In brushless linear motors the rotor is rolled out flat to become the magnet track (also called the magnet way). The primary coils of the rotary motor are rolled out flat to become the coil assembly (also sometimes called the slider).

In most brushless linear motor applications it is typical for the magnet way to be stationary and the coil assembly to be in motion, because of the relative masses of the two components. But it is also perfectly acceptable and sometimes advantageous to reverse this arrangement. The basic electromagnetic operating principles are the same in either case and are identical to those of a rotary motor.

Direct Drive Linear Motor Overview

Direct Drive Linear Motor Options

Two types of linear motors are available, **Ironcore** and **Ironless**. Each one provides characteristics and features that are optimal depending upon the application. Ironcore motors have coils wound on silicon steel laminations, to maximize the generated force, with a single sided magnet way.

Using a patented electromagnetic design, DDL linear motors have the highest rated force per size, a high Km motor constant (equals low thermal losses), and low cogging forces without the need for skewing of the magnets. The high thrust forces possible with these motors make them ideal for accelerating and moving high masses, and maintaining stiffness during machining or process forces. Ironless motors have no iron, or slots for the coils to be wound on.

Therefore, these motors have zero cogging, a very light mass, and absolutely no attractive forces between the coil assembly and the magnet way. These characteristics are ideal for applications requiring very low bearing friction, high acceleration of lighter loads, and for maximizing constant velocity, even at ultra low speeds. The modular magnet ways consists of a double row of magnets to maximize the generated thrust force and to providea flux return path for the magnetic circuit.

Feedback Types

All brushless motors require feedback for commutation. The conventional rotary motor typically utilizes a resolver mounted on the rear of the motor or Hall effect devices mounted integrally in the coil windings. For a linear motor, commutation feedback can also be accomplished with a variety of methods. Digital or linear Hall effect devices are available from Kollmorgen for the DDL motor series which allow the drive electronics to commutate the linear motors in a manner identical to rotary motors.

For exceptionally smooth motion requirements, sinusoidal drive electronics such as the Kollmorgen's AKD series, using digital Hall effects, provide sinusoidal drive currents to the motor for the best constant force and velocity performance. As an alternative, it is typical for linear motor applications to have a linear encoder present in the system for position feedback. It is increasingly common today for drive amplifiers, such as the AKD Digital amplifier, to derive the necessary commutation information directly from this linear encoder, either with or without supplemental digital Hall effect devices on startup. Other types of feedback used on linear motor applications include linear Inductosyns, laser interferometers, and LVDT.

≲

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Advantages

Wide Speed Range

Since the frameless parts of the linear motor are non-contact, and no limitations of a mechanical transmission are present, both very high speeds and very low speeds are easily obtainable. Speeds are truly not limited by the motor. Instead, by eliminating the mechanical transmission, speed becomes limited by other elements in the system such as the linear bearings, and the achievable bandwidth from any feedback devices. Application speeds of greater than 5 meters per second (200 in./sec.) or less than 1 micron per second (.00004 in./sec.) are typically achievable. In comparison, mechanical transmissions such as ball screws are commonly limited to linear speeds of 0.5 to 0.7 meters per second (20-30 in./sec.) because of resonances and wear. In addition to a wide speed range, linear motors, both ironcore and ironless, have excellent constant velocity characteristics, typically better than ± 0.01% speed variation.

High System Dynamics

In addition to high speed capability, direct drive linear motors are capable of very high accelerations. Limited only by the system bearings, accelerations of 3 to 5 G are quite typical for the larger motors and accelerations exceeding 10 G are easily achievable for smaller motors.

Easy Selection process:

- 1. Determine peak and continuous force required for your applications (see our applications section on pages 74-77 or use MOTIONEERING, our online sizing and selection software tool)
- 2. Use the motor selection guide on pages 15-17 to choose your motor
- 3. Refer to the appropriate pages in the data publication for technical details
- 4. Build model number for ordering using pages 78-80

Smooth Operation and Positional Accuracy

Both ironless and ironcore motors exhibit very smooth motion profiles due to the inherent motor design of Kollmorgen's DDL series. Cogging, which is a component of force, is greatly reduced in the ironcore designs and is zero in the ironless designs. As a result, these direct drive linear motors provide very low force and velocity ripple for ultra smooth motion. Positioning accuracies are limited only by the feedback resolution, and sub-micron resolutions are commonly achievable.

Unlimited Travel

With the DDL motor series, magnet ways are made in 5 modular sections: 64mm, 128mm, 256mm, 512mm and 1024mm long. Each module can be added in unlimited numbers to any other module to allow for unlimited travel. Whether the travel required is 1mm (0.04 inches) or 100 meters (330 feet), the DDL series can accommodate the need.

No Wear or Maintenance

Linear motors have few components, therefore the need for ball screw components such as nuts, bearing blocks, couplings, motor mounts and the need to maintain these components have been eliminated. Very long life and clean operation, with no lubrication or maintenance of these parts are the result.

Integration of Components is Much Simpler

Frameless linear motors require much fewer components than rotary motors with mechanical transmissions. A 0.8mm airgap (0.031 inches) for the ironcore design and 0.5mm airgap (0.020 inches) for the ironless design is the only alignment of the frameless linear motor components that is necessary. No critical alignments are required as with ball screws. Straightness of travel as provided by the system linear bearings is more than sufficient for the Kollmorgen linear motors.

Typical Applications for Linear Motors Include:

Machine Tool Drilling Milling Grinding Laser cutting Cam grinding Semiconductor Wafer handling process Wafer-inspection Wafer slicing Tab bonding Wire bonding lon implantation Lithography Textile Carpet tufting

Measurement/inspection Coordinate measurement machines Electronic assembly Pick-and-place machines Component insertion Screen printers Adhesive dispensers PC board inspection, drilling

Other applications include: Flight Simulators Acceleration sleds Catapult G-Force measurement

oll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

AKD[™] Servo Drive

Our AKD series is a complete range of Ethernet-based servo drives that are fast, feature-rich, flexible and integrate quickly and easily into any application.* AKD ensures plug-and-play commissioning for instant, seamless access to everything in your machine. And, no matter what your application demands, AKD offers industry-leading servo performance, communication options, and power levels, all in a smaller footprint.

This robust, technologically advanced family of drives delivers optimized performance when paired with our best-in-class components, producing higher quality results at greater speeds and more uptime.

* Patents pending.

Toll Free Fax: 877-378-0240 sales@servo2go.com www.servo2go.com

 Optimized Performance in Seconds 	 Auto-tuning is one of the best and fastest in the industry
	 Automatically adjusts all gains, including observers
	 Immediate and adaptive response to dynamic loads
	 Precise control of all motor types
	• Compensation for stiff and compliant transmission and couplings
Greater Throughput and Accuracy	 Up to 27-bit-resolution feedback yields unmatched precision and excellent repeatability
	 Very fast settling times result from a powerful dual processor system that executes industry-leading and patent pending servo algorithms with high resolution
	 Advanced servo techniques such as high-order observer and bi-quad filters yield industry-leading machine performance
	 Highest bandwidth torque-and-velocity loops. Fastest digital current loop in the market
Easy-to-Use Graphical User Interface (GUI) for Faster Commissioning and Troubleshooting	 Six-channel real-time software oscilloscope commissions and diagnoses quickly
	 Multi-function Bode Plot allows users to quickly evaluate performance
	 Auto-complete of programmable commands saves looking up parameter names
	 One-click capture and sharing of program plots and parameter settings allow you to send machine performance data instantly
	• Widest range of programming options in the industry
Flexible and Scalable to Meet Any Application	• 3 to 96 Arms continuous current; 9 to 192 Arms peak
	 Very high power density enables an extremely small package
	 True plug-and-play with all standard Kollmorgen servomotors and positioners
	 Supports a variety of single and multi-turn feedback devices— Smart Feedback Device (SFD), EnDat2.2, 01, BiSS, analog Sine/ Cos encoder, incremental encoder, HIPERFACE[®], and resolver
	 Tightly integrated Ethernet motion buses without the need to add large hardware: EtherCAT[®], SynqNet[®], Modbus/TCP, and CANopen[®]
	 Scalable programmability from base torque-and-velocity through multi-axis master

AKD Servo Drive

The AKD servo drive delivers cutting-edge technology and performance with one of the most compact footprints in the industry. These feature-rich drives provide a solution for nearly any application, from basic torque-and-velocity applications, to indexing, to multi-axis programmable motion with embedded Kollmorgen Automation Suite. The versatile AKD sets the standard for power density and performance.

Micron[™] Gearheads

AKM[™] Servomotors

Cartridge Direct Drive Rotary[™] Motors

Best-in-Class Components

AKD works seamlessly with Kollmorgen motors and positioners - well-known for quality, reliability, and performance.

Housed Direct Drive Rotary Motors

Direct Drive Linear Motors*

Linear Positioners

Multi-Axis Precision Tables

Sold & Serviced By:

SERVO

Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

GO.com

AKD[™] Servo Drive

KOLLMORGEN

SERVO

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

GO.com

AKD SERVO DRIVE

General Specifications

deneral opcomo									
120 / 240 Vac 1 & 3Ø (85 -265 V)	Continuous Current (Arms)	Peak Current (Arms)	Drive Continuous Output Power Capacity (Watts)	Output Power Internal Reg Capacity (Watts) (O		Height mm (in)	Width mm (in)	Depth mm (in)	Depth with Cable Bend Radius mm (in)
AKD-■00306	3	9	1100	0	0	168 (6.61)	57 (2.24)	153 (6.02)	184 (7.24)
AKD-■00606	6	18	2000	0	0	168 (6.61)	57 (2.24)	153 (6.02)	184 (7.24)
AKD-■01206	12	30	4000	100	15	195 (7.68)	76 (2.99)	186 (7.32)	215 (8.46)
AKD-■02406	24	48	8000	200	8	250 (9.84)	100 (3.94)	230 (9.06)	265 (10.43)

Industry-leading power density

480 Vac 3Ø (342 -528 V)	Continuous Current (Arms)	Peak Current (Arms)	Drive Continuous Output Power Capacity (Watts)		Internal Regen (Watts) (Ohms)				Width mm (in)	Depth mm (in)	Depth with Cable Bend Radius mm (in)
AKD-■00307	3	9	2000	100	33	256 (10.08)	70 (2.76)	186 (7.32)	221 (8.70)		
AKD-■00607	6	18	4000	100	33	256 (10.08)	70 (2.76)	186 (7.32)	221 (8.70)		
AKD-■01207	12	30	8000	100	33	256 (10.08)	70 (2.76)	186 (7.32)	221 (8.70)		
AKD-■02407	24	48	16,000	200	23	310 (12.20)	105 (4.13)	229 (9.02)	264 (10.39)		
AKD-■04807	48	96	32,000	400			Coming Soon				
AKD-■09607	96	192	64,000	800			Comir	ng Soon			

Note: For complete AKD model nomenclature, refer to page 80.

Co-Engineering Capabilities

Because Kollmorgen offers the highest quality and broadest range of best-in-class motion components, we can supply standard, modified or customized solutions to meet any application need.

We have co-engineer solutions to meet your most difficult challenges and advance your competitive position. Drawing on a wealth of knowledge and expertise, our engineering support team will work alongside with you to build a solution that differentiates your machine and improves your bottom line.

Here are just few examples of how Kollmorgen delivers real value to companies likes yours:

What You Need	Why Motion Matters	Kollmorgen Co-Engineering Results
30% Increase in Throughput	 Low inertia servomotors High bandwidth servo loops Simple, accurate, graphical programming tools 	Using the Kollmorgen Automation Suite [™] graphical camming design tool, Pipe Network [™] and low-inertia AKM servomotors, a major supplier of medical equipment increased throughput by more than 30% while improving accuracy and reducing scrap.
50% Increase in Accuracy and Quality	 Low cogging servomotors Advaced observers and bi-quad filters Fast control loop update rates (.67µs) 	Using our AKD servo drive, a next-generation CT scanning manufacturer achieved more than 50% improvement in velocity ripple to produce the most accurate and detailed medical images possible while overcoming an extremely high moment of inertia.
25% Increase in Reliability (Overall Equipment Effectiveness)	 Innovative Cartridge Direct Drive Rotary[™] DDR motor Eliminating parts on the machine No additional wearing components 	Using Kollmorgen's award-winning Cartridge DDR sevomotor technology, we eliminated more than 60 parts in a die-cutting machine and increased the OEE by 25% and throughput by 20%.
50% Reduction in Waste	 Superior motor/drive system bandwidth DDR technology: eliminates gearbox 20X more accurate than geared solution 	We helped a manufacturer of pharmaceutical packaging machines incorporate Housed DDR motors to increase the throughput by 35% and reduce scrap by more than 50% through more accurate alignment of the capsules.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Direct Drive Linear Motor Summary

SERVOZGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Sold & Serviced By:

Ironcore Linear Motors

		Continuous Force N		Peak Force N													
Ne			on-Ca								_	8	M Contin For	nuous	Peak Force		See Page
ive	wtons —			2000	3000	4000	5000	6000	7000	8000	2000	10000	N	(lbf)	N	(lbf)	No.
	IC11-030												144	32.4	320	71.9	40
	IC11-050												263	59.1	533	120	40
	IC11-075												413	92.8	800	180	40
	IC11-100												574	129	1067	240	40
	IC11-150												861	194	1600	360	40
	IC11-200												1197	269	2135	480	40
	IC22-030												280	62.9	624	140	42
	IC22-050		l I										526	118	1039	234	42
	IC22-075		l I										825	185	1558	350	42
	IC22-100												1148	258	2077	467	43
	IC22-150												1723	387	3117	701	43
ype	IC22-200					1							2393	538	4156	934	43
Motor Type																	
Mot	IC33-030												431	96.9	944	212	46
	IC33-050												789	177	1572	353	46
	IC33-075												1238	278	2358	530	46
	IC33-100												1722	387	3144	707	47
	IC33-150		1										2583	581	4716	1060	47
	IC33-200		1			1	1						3590	807	6291	1414	47
	IC44-030												560	126	1259	283	50
	IC44-050												1053	237	2096	471	50
	IC44-075				Í					1			1651	371	3144	707	50
	IC44-100		1										2296	516	4192	942	51
	IC44-150		1			1	1						3445	774	6289	1414	51
	IC44-200												4786	1076	8388	1885	51

KOLLMORGEN

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Ironcore Linear Motors

		Continuous Force N (Water-Cooled)			Peak Force N							M	ах				
No	utono — N					 			0		-	8	Conti	nuous rce		ak rce	See Page - No.
ive	wtons —	>	1000	2000	3000	4000	5000	6000	7000	8000	0006	10000	N	(lbf)	N	(lbf)	NO.
	IC11-030												254	57.1	315	70.8	54
	IC11-050												432	97.1	525	118	54
	IC11-075												649	146	798	179	54
	IC11-100												864	194	1051	236	54
	IC11-150												1285	289	1576	354	54
	IC11-200												1712	385	2102	473	54
							•				·						
	IC22-030												519	117	630	142	56
	IC22-050												864	194	1051	236	56
	IC22-075												1284	287	1576	354	56
	IC22-100												1715	386	2106	473	57
	IC22-150												2566	577	3152	709	57
ype	IC22-200												3458	777	4204	945	57
Motor Type					· · · · · ·												
Mot	IC33-030												769	173	945	212	60
	IC33-050												1283	288	1575	354	60
	IC33-075												1926	433	2365	532	60
	IC33-100												2593	583	3152	709	61
	IC33-150												3849	865	4724	1063	61
	IC33-200												5135	1154	6306	1418	61
				•													
	IC44-030												1036	233	1260	283	64
	IC44-050												1711	385	2101	472	64
	IC44-075			i									2568	577	3154	709	64
	IC44-100				1								3457	777	4202	945	65
	IC44-150			i I	1								5133	1154	6303	1417	65
	IC44-200				1	T T	1						6916	1555	8407	1890	65

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

IL06 Performance Data

Ironless Non-Cooled Motors Series

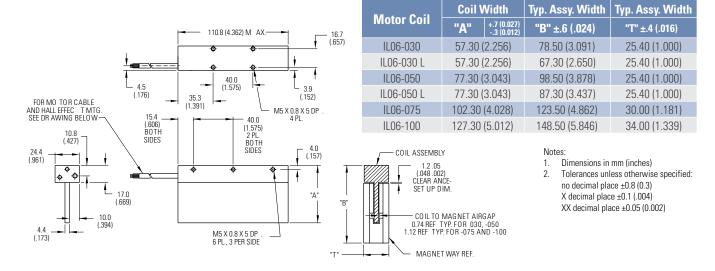
Rated Perfomance	Symbol	Units	IL06	-030	IL06	-050	IL06	-075	IL06	IL06-100				
Peak Force	Fp	Ν	12	20	20	00	30	00	4(00				
FEAK FOICE	гþ	lbf	2	7	4	5	6	8	9	0				
	_	Ν	30	1.3	49	9.7	67	7.6	82	2.8				
Continuous Force @ Tmax (1)	Fc	lbf	6.	6.81		11.2		15.2		.6				
Motor Constant	Km	N√W	5.	5.6		8.0).2	12	2.1				
		Electrical Spe	cificati	ons (2)										
	Winding CodeA1A4A1A4A1A4													
Peak Current	lp	Arms	7.1	14.2	7.0	14.0	7.0	14.0	7.0	14.0				
Continuous Current @Tmax	lc	Arms	1.8	3.6	1.7	3.5	1.6	3.2	1.5	2.9				
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	6.1	1.5	8.6	2.2	11.7	2.9	14.7	3.7				
Electrical Inductance ±20%	L	mH L-L	1.3	0.33	3.00	0.75	5.00	1.25	7.00	1.75				
Back EMF Constant	IZ -	Vpeak/m/s L-L	13.7	6.9	23.3	11.6	34.9	17.5	46.5	23.3				
@ 25°C±10%	Ке	Vpeak/in/sec L-L	0.35	0.17	0.59	0.30	0.89	0.44	1.18	0.59				
F 0 + + @ 0500 400/	L C	N/Arms	16.8	8.4	28.5	14.3	42.8	21.4	57.0	28.5				
Force Constant @ 25°C±10%	kf	lbf/Arms	3.8	1.9	6.4	3.2	9.6	4.8	12.8	6.4				
		Mechanical S	specific	ations										
Coil Assembly Mass ±15%	Mc	kg	0.27		0.32		0.38		0.	45				
COILASSEINDIV MIASS ±15%	IVIC	lbs	0.	.6	0	.7	0	.8	1.	0				
Magnetic Way Type			Μ	W	Μ	W	MM	/075	MW	/075				
magnetic way type			030	030L	050	050L								
Magnetic Way Mass ±15%	Mw	kg/m	9.4	9.4 7.3		12.2 10.2		8.9	27	.3				
Magnetic way Mass ±13 /0	IVIVV	lb/in	0.51	.040	0.68	0.56	1.	05	1.	51				
	l	Figures of Merit a	nd Addit	ional D	ata									
Electrical Time Constant	Те	ms	0.	21	0.	35	0.	43	0.	48				
Max.Theoretical Acceleration (3)	Amax	gʻs	45	i.2	63	3.6	80).6	90).7				
Magnetic Attraction	Fa	kN	()	(D	(D	()				
Maynetic Attraction	Ia	lbf	()	(C	(C	()				
Thermal Resistance (4) (Coils to External Structure)	Rth	°C/Watt	1.(61	1.:	26	1.04		0.	87				
Max. Allowable Coil Temp. (4)	Tmax	О°	130		130		13	30	130					

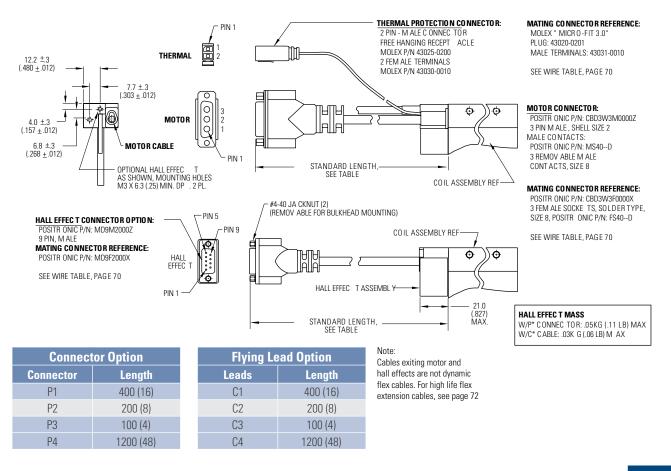
Notes:

1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.


4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.


Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

IL06 Outline Drawings

Ironless Non-Cooled Motors Series

Termination and Hall Effect Options

S

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

IL12 Performance Data

Ironless Non-Cooled Motors Series

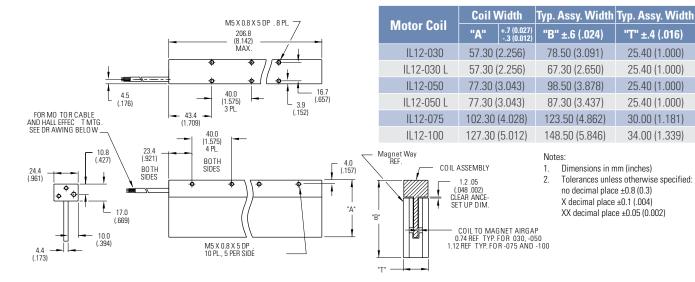
Rated Perfomance	Symbol	Units		L12-03	J	IL12-050			l	.12-07	IL12-100		
Peak Force	Fp	Ν		240			400			600		80	00
1 out 1 or of	12	lbf		54		90				135		18	30
Continuous Force @ Tmax (1)	Fc	Ν		62.1		88.4			119			148	
	TC	lbf	14.0			19.9			26.8			33.3	
Motor Constant @ 25°C	stant @ 25°C Km N√W						11.3		14.5			17.2	
		Electric	al Spe	cificat	ions (2)							
		Winding Code	A1	A2	A 4	A1	A2	A 4	A1	A2	A 4	A2	A 4
Peak Current	lp	Arms	7.1	14.2	28.5	7.0	14.0	28.1	7.0	14.0	28.1	14.0	28.1
Continuous Current @Tmax	lc	Arms	1.8	3.7	7.4	1.6	3.1	6.2	1.4	2.8	5.6	2.6	5.2
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	12.2	3.1	0.8	17.2	4.3	1.1	23.3	5.8	1.5	7.4	1.8
Electrical Inductance ±20%	L	mH L-L	2.60	0.65	0.16	6.00	1.5	0.38	10.0	2.5	0.63	3.5	0.88
Back EMF Constant		Vpeak/m/s L-L	27.5	13.8	6.9	46.5	23.3	11.6	69.8	34.9	17.5	46.5	23.3
@ 25°C±10%	Ke	Vpeak/in/sec L-L	0.70	0.35	0.17	1.18	0.59	0.30	1.77	0.89	0.44	1.18	0.59
Force Constant	146	N/Arms	33.7	16.9	8.4	57.0	28.5	14.3	85.5	42.8	21.4	57.0	28.5
@ 25°C±10%	Kf	lbf/Arms	7.6	3.8	1.9	12.8	6.4	3.2	19.2	9.6	4.8	12.8	6.4
		Mecha	nical S	pecifi	cations								
		kg		0.42			0.52			0.65		0.	77
Coil Assembly Mass ±15%	Mc	lbs	0.9				1.1		1.4			1.7	
				MW			MW		MW075			MW100	
Magnetic Way Type			030		030L	050		050L					
		kg/m	9.4		7.3	12.2		10.2		18.9		27	'.3
Magnetic Way Mass ±15%	Mw	lb/in	0.51		0.40	0.68		0.56		1.05		1.	51
		Figures of N	lerit aı	nd Add	itional	Data							
Electrical Time Constant	Te	ms		0.21			0.35			0.43		0.	48
Max.Theoretical Acceleration (3)	Amax	gʻs		58.2			78.4			94.1		1()6
	_	kN		0			0			0		()
Magnetic Attraction	Fa	lbf		0			0			0		()
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.804		0.629				0.519		0.433	
Max. Allowable Coil Temp. (4)	Tmax	°C		130		130				130	130		

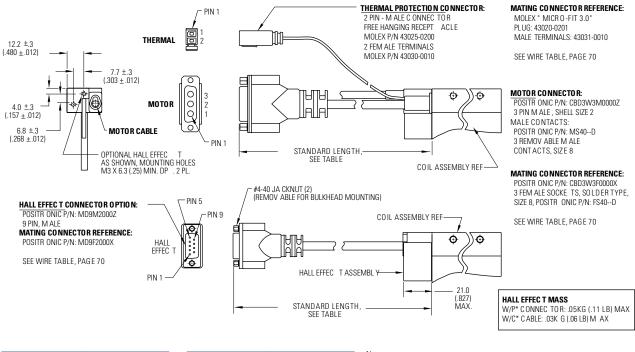
Notes:

1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.


4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.


Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

IL12 Outline Drawings

Ironless Non-Cooled Motors Series

Termination and Hall Effect Options

Connect	tor Option	Flying Le	ead Option
Connector	Length	Leads	Length
P1	400 (16)	C1	400 (16)
P2	200 (8)	C2	200 (8)
P3	100 (4)	С3	100 (4)
P4	1200 (48)	C4	1200 (48)

Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

IL 12 OUTLINE DRAWING

S

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

IL18 Performance Data

Ironless Non-Cooled Motors Series

Rated Perfomance	Symbol	Units		IL18	-030		IL18-050				
David France	E.	Ν		36	60			60	0		
Peak Force	Fp	lbf		8	1		135				
Continuous Force @ Imax (1)	Fe	Ν		92	2.1		131				
Continuous Force @ Tmax (1)	Fc	lbf		20	.7		29.4				
Motor Constant @ 25°C	Km	N√W		9	.7		13.8				
	E	ectrical Specificat	tions (2)							
		Winding Code	A1	A2	A 3	A 4	A1	A2	A 3	A 4	
Peak Current	lp	Arms	7.1	14.3	21.4	42.8	7.0	14.0	21.0	42.1	
Continuous Current @Tmax	lc	Arms	1.8	3.6	5.5	11.0	1.5	3.1	4.6	9.2	
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	18.2	4.6	2.0	0.5	25.7	6.4	2.9	0.7	
Electrical Inductance ±20%	L	mH L-L	3.8	0.95	0.42	0.11	9.00	2.25	1.00	0.25	
Back EMF Constant	K	Vpeak/m/s L-L	41.2	20.6	13.7	6.9	69.8	34.9	23.3	11.6	
@ 25°C±10%	Ке	Vpeak/in/sec L-L	1.05	0.52	0.35	0.17	1.77	0.89	0.59	0.30	
Frank ()	1/ f	N/Arms	50.5	25.3	16.8	8.4	85.5	42.8	28.5	14.3	
Force Constant @ 25°C±10%	Kf	lbf/Arms	11.4	5.7	3.8	1.9	19.2	9.6	6.4	3.2	
	N	lechanical Specifi	cations								
Coil Assembly Mass ±15%	Мс	kg		0.	57			0.72			
	IVIC	lbs		1.	3		1.6				
			MW MW								
Magnetic Way Type			03	30	03	OL	05	i0	05	OL	
		kg/m	9.	4	7.3	3	12.	.2	10	.2	
Magnetic Way Mass ±15%	Mw	lb/in	0.9	51	0.4	10	0.6	68	0.5	56	
	Figure	s of Merit and Add	itional	Data							
Electrical Time Constant	Te	ms		0.1	21			0.3	15		
Max.Theoretical Acceleration (3)	Amax	gʻs		64	.5			84	.9		
	-	kN		()			0			
Magnetic Attraction	Magnetic Attraction Fa Ibf			()			0			
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.5	36			0.4	19		
Max. Allowable Coil Temp. (4)	Tmax	О°		13	80		130				

Notes:

1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Rated Perfomance	Symbol	Units		IL18	-075			IL18-	100	
Peak Force	E.	Ν		9(00			120)0	
Реак гогсе	Fp	lbf		20	02			27	0	
Continuous Force @ Tmay (1)	[a	Ν		17	73			21	1	
Continuous Force @ Tmax (1)	Fc	lbf		38	3.9		47.4			
Motor Constant @ 25°C	Km	N√W	17.7				21.0			
Electrical Specifications (2)										
		Winding Code	A1 A2 A3 A4		A1	A2	A 3	A 4		
Peak Current	lp	Arms	7.0	14.0	21.0	42.1	7.0	14.0	21.0	42.1
Continuous Current @Tmax	lc	Arms	1.4	2.7	4.0	8.1	1.2	2.5	3.7	7.4
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	35.0	8.8	3.9	1.0	44.2	11.1	4.9	1.2
Electrical Inductance ±20%	L	mH L-L	15.0	3.75	1.67	0.42	21.0	5.25	2.33	0.58
Back EMF Constant			105	52.4	34.9	17.5	140	69.9	46.6	23.3
@ 25°C±10%	Ke	Vpeak/m/s L-L Vpeak/in/sec L-L	2.66	1.33	0.89	0.44	3.55	1.77	1.18	0.59
0 20 0210 /0		N/Arms	128	64.2	42.8	21.4	171	85.6	57.0	28.5
Force Constant @ 25°C±10%	Kf	lbf/Arms	28.8	14.4	9.6	4.8	38.5	19.2	12.8	6.4
	M	echanical Specifi								
		kg	0.91			1.10				
Coil Assembly Mass ±15%	Mc	lbs		2	.0		2.4			
Magnetic Way Type				MW	/075			MW	100	
		kg/m		18	3.9			27	.3	
Magnetic Way Mass ±15%	Mw	lb/in		1.0	05			1.5	51	
	Figure	s of Merit and Add	itional	Data						
Electrical Time Constant	Te	ms		0.	43			0.4	18	
Max.Theoretical Acceleration (3)	Amax	gʻs	101			11	1			
	F	kN		(D			0		
Magnetic Attraction	Fa	lbf		(D		0			
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.	35			0.2	29	
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130			

Notes:

The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

1. 2.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations. 4.

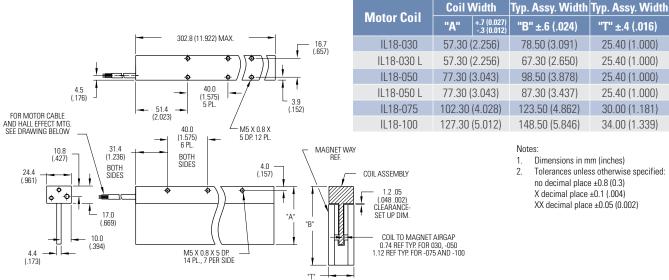
Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2qo.com

"T" ±.4 (.016)

25.40 (1.000)

25.40 (1.000)

25.40 (1.000)


25.40 (1.000)

30.00 (1.181)

34.00 (1.339)

IL18 Outline Drawings

Ironless Non-Cooled Motors Series

Notes:

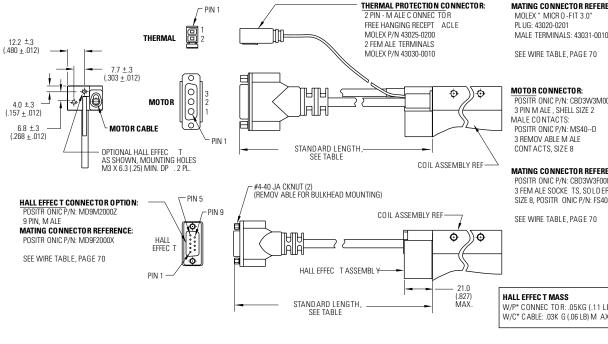
Coil Width

1. Dimensions in mm (inches)

"B" ±.6 (.024)

78.50 (3.091)

67.30 (2.650)


98.50 (3.878)

87.30 (3.437)

123.50 (4.862)

- 2. Tolerances unless otherwise specified: no decimal place ±0.8 (0.3)
 - X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)

Termination and Hall Effect Options

ATING CONNECTOR REFERENCE:
IOLEX " MICR 0 -FIT 3.0"
LUG: 43020-0201
AN E TERMINIALO 40004 0040

SEE WIRE TABLE, PAGE 70

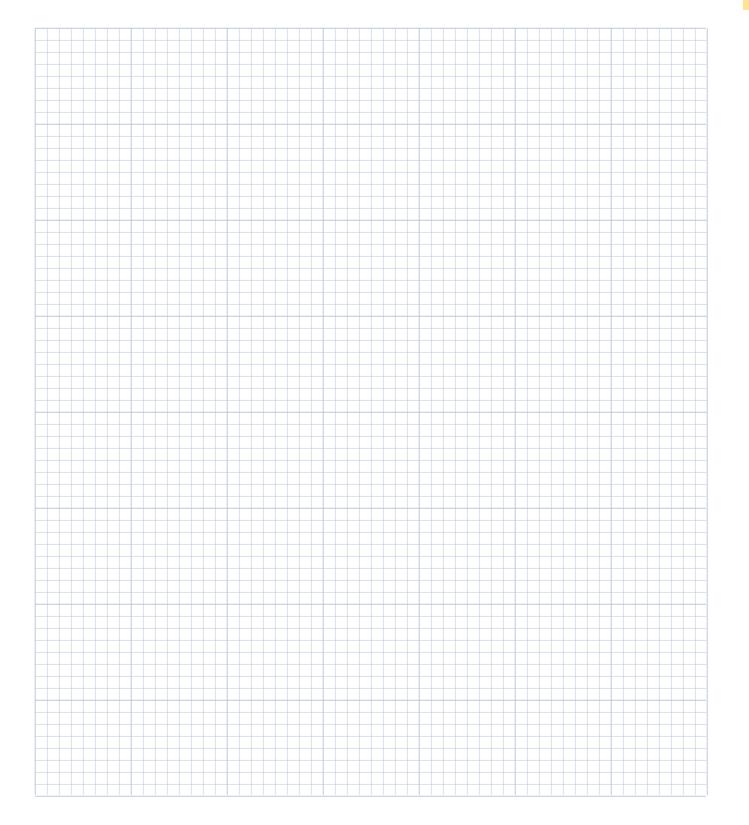
MOTOR CONNECTOR:

POSITR ONIC P/N: CBD3W3M0000Z 3 PIN M ALE , SHELL SIZE 2 MALE CONTACTS: POSITR ONIC P/N: MS40--D 3 REMOV ABLE M ALE CONTACTS, SIZE 8

MATING CONNECTOR REFERENCE:

POSITR ONIC P/N: CBD3W3F0000X 3 FEM ALE SOCKE TS, SOLDER TYPE, SIZE 8, POSITR ONIC P/N: FS40--D

SEE WIRE TABLE, PAGE 70


W/P* CONNEC TO R: .05KG (.11 LB) MAX W/C* C ABLE: .03K G (.06 LB) M AX

Connector Option			Flying Lead Option				
Connector	Connector Length		Leads	Length			
P1	400 (16)		C1	400 (16)			
P2	200 (8)		C2	200 (8)			
P3	100 (4)		C3	100 (4)			
P4	1200 (48)		C4	1200 (48)			

Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

KOLLMORGEN

Notes

Sold & Serviced By:

SERVOZGO.com Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

IL24 Performance Data

Ironless Non-Cooled Motors Series

Rated Perfomance	Symbol	Units	11	24-03	00	11	24-05	50		IL24	075			11.2/	-100	
	Symuol	N		480			800			124					00	
Peak Force	Fp	lbf		108		180			270						60 60	
		N		109		155 211			262							
Continuous Force @ Tmax (1)	Fc		lbf 24.5			34.8			47			58.9				
Motor Constant @ 25°C	Km	N√W	11.2			15.9			20					1.4		
			lectri		pecifi	catio										
		Winding Code	A1	A2	A3	A1	A2	A3	A1	A2	A3	A 4	A1	A2	A3	A4
Peak Current	lp	Arms	7.1	14.2	28.5	7.0	14.0	28.1	7.0	14.0	28.0	56.1	7.0	14.0	28.1	56.1
Continuous Current @Tmax	lc	Arms	1.6	3.2	6.4	1.4	2.7	5.4	1.2	2.5	4.9	9.9	1.2	2.3	4.6	9.2
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	24.3	6.1	1.5	34.3	8.6	2.1	46.6	11.7	2.9	0.73	58.9	14.7	3.7	0.92
Electrical Inductance ±20%	L	mH L-L	5.1	1.28	0.32	12.0	3.00	0.75	20.0	5.0	1.25	0.31	28.0	7.00	1.75	0.44
Back EMF Constant		Vpeak/m/s L-L	55.0	27.5	13.8	93.1	46.5	23.3	140.	69.9	34.9	17.5	186	93.1	46.6	23.3
@ 25°C±10%	Ке	Vpeak/in/sec L-L	1.40	0.70	0.35	2.36	1.18	0.59	3.55	1.77	0.89	0.44	4.73	2.37	1.18	0.59
Force Constant	1/1	N/Arms	67.4	33.7	16.9	114	57.0	28.5	171	85.6	42.8	21.4	228	114	57.0	28.5
@ 25°C±10%	Kf	lbf/Arms	15.2	7.6	3.8	25.6	12.8	6.4	38.5	19.2	9.6	4.8	51.3	25.6	12.8	6.4
		Ν	/lecha	anica	Spec	ificat	ions									
Coil Assembly Mass ±15%	Mc	kg		0.72			0.92		1.17				1.	42		
	IVIC	lbs		1.6			2.0		2.6		3.1					
				MW			MW			MW	/075		MW100			
Magnetic Way Type			030)	030L	050		050L								
		kg/m	9.4	Ļ	7.3	12.2	<u>,</u>	10.2		18	.9			27	7.3	
Magnetic Way Mass ±15%	Mw	lb/in	0.5	1	0.40	0.68	3	0.56		1.()5			1.	51	
		Figure	es of l	Merit	and A	dditio	onal C	Data								
Electrical Time Constant	Te	ms		0.21			0.35			0.4	43			0.	48	
Max.Theoretical Acceleration(3)	Amax	gʻs		68.0			88.7			10)5			1	15	
Magnetic Attraction	Fa	kN		0			0			()				D	
Maynetic Attraction	Id	lbf		0			0		0				0			
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.40			0.32		0.26		0.22					
Max. Allowable Coil Temp. (4)	Tmax	°C		130		130		130				130				

Notes:

The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options. 1.

2.

Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the 3. additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations. Sold & Serviced By:

SERVOZGO.com

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

L 2 4

0

UTLIN

ш

R

AWI

z

G

S

IL24 Outline Drawings

Ironless Non-Cooled Motors Series

P1

P2

P3

P4

400 (16)

200 (8)

100 (4)

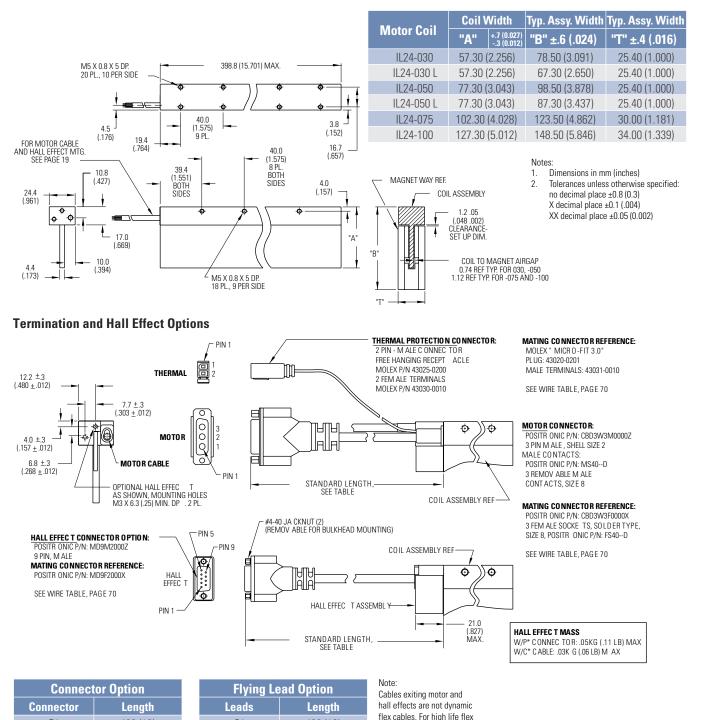
1200 (48)

C1

C2

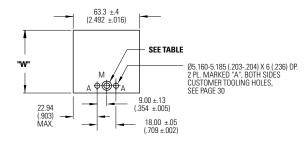
С3

C4

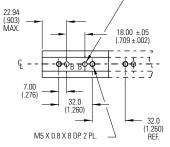

400 (16)

200 (8)

100 (4)


1200 (48)

extension cables, see page 72



Ironless Magnet Ways

MWxxx-0064

Ø5.160-5.185 (.203-.204) X 10 (.394) DP. 2 PL. MARKED "B", CUSTOMER TOOLING HOLES, SEE PAGE 30 7

Magnet assemblies are modular and can be installed in multiples of same or alternate lengths (see page 30). Standard assembly lengths are shown below.

MAGNETIC AIR GAP

Notes:

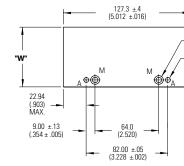
Sold & Serviced By:

Π

Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

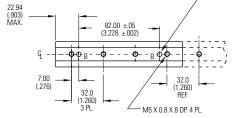
GO.com

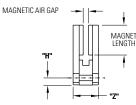

 Dimensions in mm (inches)
 Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)

Magnet Way	Magnet Size Ref.	"H" ±.8 (.003)	"W" ±.4 (.016)	"Z" ±.4 (.016)
MW030-0064	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0064	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0064	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0064	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0064	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0064	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

		Hardware (Hex, Socket Head Cap)						
Magnet Way	Hole Dia. ±.13 (.005)	C'bore Dia. ±.13 (.005)	Cbore Depth ±.13 (.005)	Metric	Inch	Bottom Mount Thread Option		
MW030-0064	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW030L-0064	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.		
MW050-0064	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW050L-0064	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.		
MW075-0064	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW100-0064	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.		

MWxxx-0128


28



Ø5.160-5.185 (.203-.204) X 10 (.394) DP. 2 PL. MARKED "B", CUSTOMER TOOLING HOLES, SEE PAGE 30 SEE TABLE

SEE PAGE 30

Ø5.160-5.185 (.203-.204) X 6 (.236) DP. 2 PL. MARKED "A", BOTH SIDES CUSTOMER TOOLING HOLES,

Magnet Way	Magnet Size Ref.	"H" ±.8 (.003)	"W" ±.4 (.016)	"Z" ±.4 (.016)
MW030-0128	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0128	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0128	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0128	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0128	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0128	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

		Hardware (Hex, Socket Head Cap)							
Magnet Way	Hole Dia. ±.13 (.005)	C'bore Dia. ±.13 (.005)	Cbore Depth ±.13 (.005)	Metric	Inch	Bottom Mount Thread Option			
MW030-0128	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW030L-0128	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.			
MW050-0128	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW050L-0128	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.			
MW075-0128	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW100-0128	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.			

RONLE

S

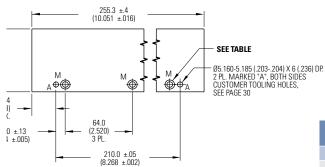
S

 \leq

⊳

G

Z


ΕŢ

 \leq

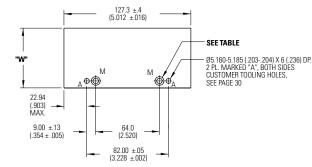
ΑΥS

KOLLMORGEN

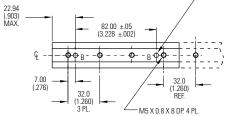
MWxxx-0256

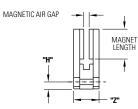
Ø5.160-5.185 (.203-.204) X 10 (.394) DP 2 PL. MARKED 'B', CUSTOMER TOOLING HOLES, SEE PAGE 30 (8.268 ±.002) (8.268 ±.002) (1.260) (276) 7 PL M5 X 0.8 X 8 DP. 8 PL

Magnet assemblies are modular and can be installed in multiples of same or alternate lengths (see page 30). Standard assembly lengths are shown below.


MAGNET LENGTH Notes:

 Dimensions in mm (inches)
 Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)

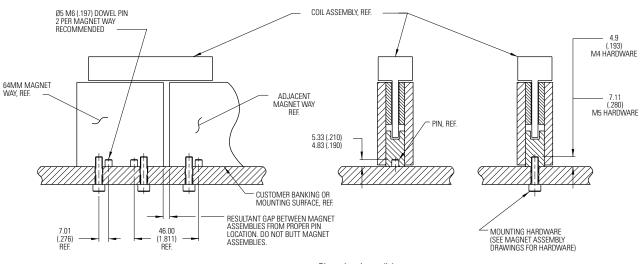

Magnet Way	Magnet Size Ref.	"H" ±.8 (.003)	"W" ±.4 (.016)	"Z" ±.4 (.016)
MW030-0256	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0256	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0256	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0256	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0256	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0256	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)


		Hardware (Hex, Socket Head Cap)							
Magnet Way	Hole Dia. ±.13 (.005)	C'bore Dia. ±.13 (.005)	Cbore Depth ±.13 (.005)	Metric	Inch	Bottom Mount Thread Option			
MW030-0512	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW030L-0512	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.			
MW050-0512	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW050L-0512	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.			
MW075-0512	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW100-0512	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.			

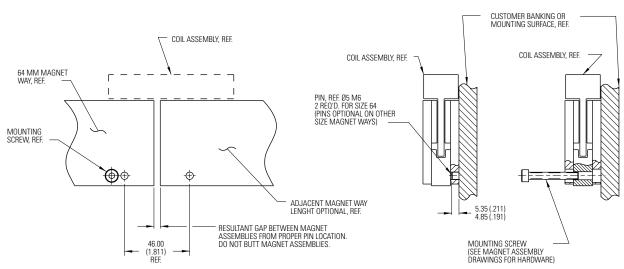
MWxxx-0512

MAGNETIC AIR GAP

Magnet Way	Magnet Size Ref.	"H" ±.8 (.003)	"W" ±.4 (.016)	"Z" ±.4 (.016)
MW030-0512	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0512	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0512	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0512	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0512	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0512	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)


		Hardware (Hex, Socket Head Cap)						
Magnet Way	Hole Dia. ±.13 (.005)	C'bore Dia. ±.13 (.005)	Cbore Depth ±.13 (.005)	Metric	Inch	Bottom Mount Thread Option		
MW030-0512	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW030L-0512	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.		
MW050-0512	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW050L-0512	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.		
MW075-0512	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW100-0512	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.		

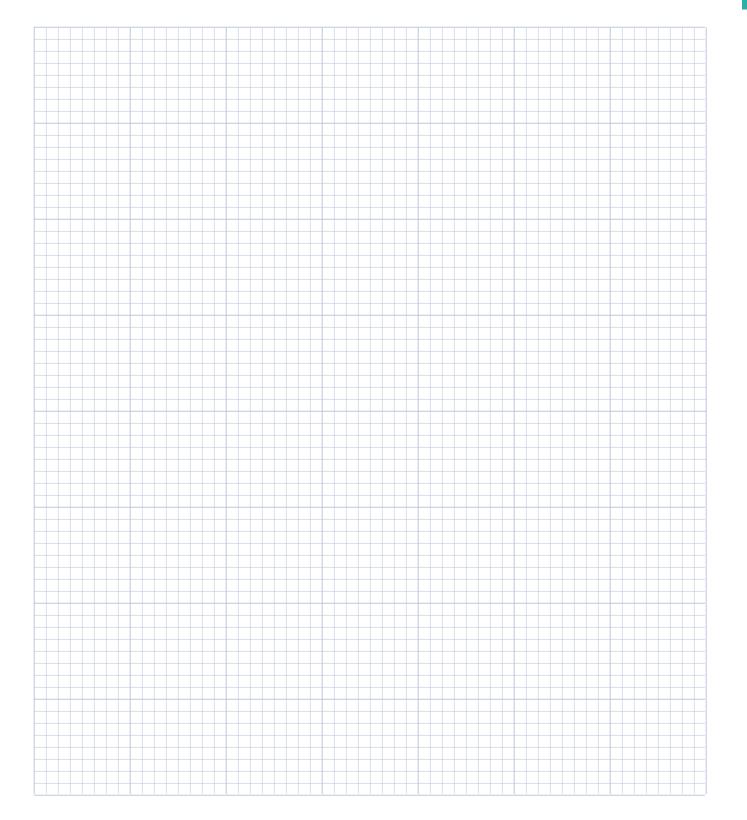
Ironless Magnet Ways



Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512 mm.

Bottom Mounting Installation

Dimensions in mm (in)



Side mounting installation

Dimensions in mm (in)

KOLLMORGEN

Notes

Sold & Serviced By:

SERVOZGO.com Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

ICD05 Performance Data

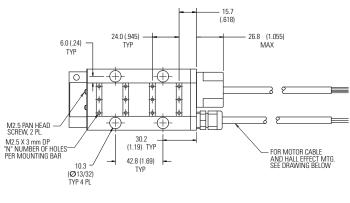
Ironcore Motors Series

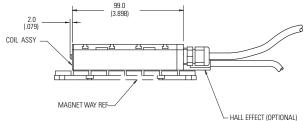
Rated Perfomance	Symbol	Units	ICD05-030		ICD0	ICD05-050		5-075	ICD05-100					
		N	16		5 295		441		58					
Peak Force	Fp	lbf	37	.1	66	.3	99.1		13	32				
	_	N	57	.0	87.0		125		15	57				
Continuous Force @ Tmax (1)	Fc	lbf	12	.8	19.6		28.1		35.3					
	K	N/√W	N/v/W 10.3		14.5		18.6		22	0				
Motor Constant @ 130°C	Km	lbf/√W	2.3		3.3		4.2		4.	9				
Matar Caratant @ 25°C	Km 25	N/√W	12.3		17.2		22.0		26.0					
Motor Constant @ 25°C	Km25	lbf/√W	2.8		3.9		4.9		5.9					
		Electrical Spe	cificati	ons (2)										
		Winding Code	A1	A 5	A1	A 5	A1	A5	A1	A5				
Peak Current	lp	Arms	7.9	13.7	8.5	14.7	8.5	14.7	8.5	14.7				
Continuous Current @Tmax	lc	Arms	2.1	3.7	2.0	3.4	1.9	3.3	1.8	3.1				
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	3.2	1.1	4.5	1.5	6.1	2.0	7.7	2.6				
ElectricalInductance ±20%	L	mh L-L	9.1	3.0	14.4	4.8	21.0	7.0	27.6	9.2				
Back EMFConstant	Ке	Vpeak/m/s L-L	21.8	12.6	36.3	21.0	54.3	31.4	72.4	41.8				
@25°C±10%	K6	Vpeak/in/sec L-L	0.55	0.32	0.92	0.53	1.38	0.80	1.84	1.06				
Force Constant @ 25°C+10%	Kf	N/Arms	26.7	15.4	44.5	25.7	66.5	38.4	88.7	51.2				
	TXI	lbf/Arms	6.0	3.5	10.0	5.8	15.0	8.6	19.9	11.5				
	pecific	ations												
	Mc	kg	0.62		0.95		1.36		1.71					
Coil Assembly Mass ±15%		lbs	1.4		2.1		3.0		3.8					
Magnetic Way Type			MCI	0030	MCD050		50 MCD075		MCD100					
Magnetic Way Mass ±15%	Mw	kg/m	2.70		3.93		5.48		7.04					
Maynetic way mass ±13%	IVIVV	lbs/in	0.	0.15 0.1		0.22		0.31		39				
		Figures of Merit a	nd Addit	ional D	ata									
Electrical Time Constant	Te	ms	2.9		3.2		3.4		3.6					
Max.Theoretical Acceleration (3)	Amax	gʻs	28.0		28.0		28.0		30.2		31.9		32.8	
	F	kN	0.53		0.89		1.33		1.78					
Magnetic Attraction	Fa	lbf	11	9	200		299		400					
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	3.50		2.9	90	2.3	30	2.1	06				
Max. Allowable Coil Temp. (4)	Tmax	C°	130		130		130		130					

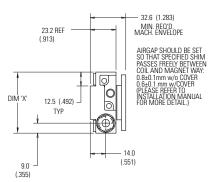
Notes:

1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

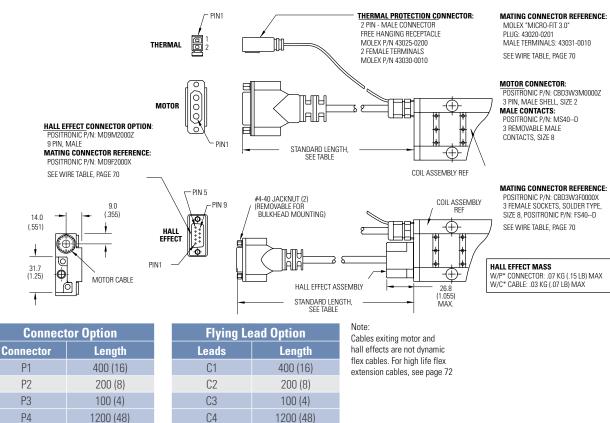

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.


4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.



Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

ICD05 Outline Drawings


Motor Coil	Coil Width	# Holes			
Туре	"X"	"N"			
ICD05-030	55.0 (2.165) ± 1.0 (.04)	3			
ICD05-050	75.0 (2.953) ± 1.0 (.04)	4			
ICD05-075	100.0 (3.937) ± 1.0 (.04)	5			
ICD05-100	125.0 (4.921) ± 1.0 (.04)	5			

Notes:

1. Dimensions in mm (inches)

 Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)

Termination and Hall Effect Options

33

ICD10 Performance Data

SERVOZGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com

www.servo2go.com

Sold & Serviced By:

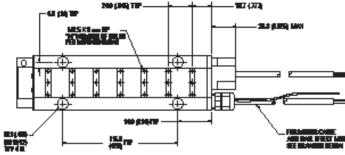
Ironcore Motors Series

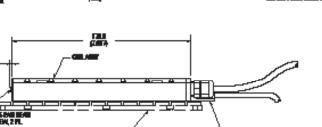
Rated Perfomance	Symbol	Units	ICD10-030		ICD10-050			ICD10-075				ICD10-100						
	Ę	Ν	330		550			824			1099							
Peak Force	Fp	lbf	74.2		124			185			247							
Carting Free Trans (1)	Г.	N 104		171			246			315								
Continuous Force @ Tmax (1)	Fc	lbf		23	8.4		38.4			55.3			70.8					
Motor Constant @ 130°C	Km	N/√W		14	.6		20.5			26.4			31.3					
	KIII	lbf/√W	3.3			4.6			5.9			7.0						
Motor Constant @ 25°C	Km25	N/√W			24.3			31.3			37.1							
		lbf/√W	lootr	3.		ified	5.5 tions (2)			7.0			8.3					
		E Winding Code	A1	A4		A8	cions A1	(Z) A4	A5	A 8	A1	A 4	A5	A 8	A1	Α4	A5	A 8
Peak Current	lp	Arms	A 1 7.9		A 5 13.7		7.9		A5 13.7				A 5 13.7		A 1 7.9	A4 15.8	A 5 13.7	
Continuous Current @Tmax	lc	Arms	1.9	3.9	3.4	6.8	1.9	3.8	3.3		1.8	3.7	3.2		1.8	3.5	3.1	6.1
ElextricalResistance	IU	AIIII5	1.0	0.0	J.4	0.0	1.0	5.0	0.0	0.0	1.0	J. <i>1</i>	J.Z	0.4	1.0	0.0	0.1	0.1
@ 25°C±10%	Rm	Ohms L-L	6.4	1.6	2.1	0.5	9.0	2.2	3.0	0.7	12.2	3.0	4.1	1.0	15.4	3.9	5.1	1.3
Electrical Inductance ±20%	L	mh L-L	18.3	4.6	6.1	1.5	29.0	7.3	9.7	2.4	42.4	10.6	14.1	3.5	55.8	13.9	18.6	4.6
Back EMF Constant	14	Vpeak/m/s L-L	43.7	21.8	25.2	12.6	72.8	36.4	42.0	21.0	109.2	54.6	63.1	31.5	145.7	72.8	84.1	42.0
@25°C±10%	Ke	Vpeak/in/sec L-L	1.11	0.55	0.64	0.32	1.85	0.92	1.07	0.53	2.77	1.39	1.60	0.80	3.70	1.85	2.14	1.07
Force Constant @ 25°C±10%	Kf	N/Arms	53.5	26.8	30.9	15.4	89.2	44.6	51.5	25.7	134	66.9	77.2	38.6	178	89.2	103	51.5
	i (i	lbf/Arms						10.0	11.6	5.8	30.1	15.0	17.4	8.7	40.1	20.1	23.2	11.6
			/lech	anica	al Sp	ecifi	catio	ons										
Coil Assembly Mass ±15% Mc		kg	1.1		1.1			1.9			2.7			3.4				
		lbs	2.5			4.1			5.9			7.5						
Magnetic Way Type			MCD030				MCD050			MCD075			MCD100					
Magnetic Way Mass ±15%	Mw	kg/m		2.7	70		3.93				5.48			7.04				
magnetic way mass ±1370		lbs/in		0.	15		0.22			0.31				0.39				
		Figure	es of	Meri	t and	l Add	ition	al Da	ata									
Electrical Time Constant	Te	ms	2.9		3.2		3.5		3.6									
Max.Theoretical Acceleration(3)	Amax	gʻs	30.7		30.7		32.5		33.7									
Magnetic Attraction F		kN	1.06		1.78			2.66			3.56							
magnotio Attraction	Fa	lbf		2.3	38			4(00			59	98			80	00	
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	2.05			1.52			1.21				1.04					
Max. Allowable Coil Temp. (4)	Tmax	°C	130		130			130			130							

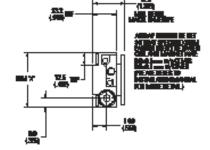
Notes:

1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.


3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.


4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.


Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

ICD10 Outline Drawings

.

Holes
"N"
3
4
5
5

s in mm (inches) ... unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)

MATING CONNECTOR REFERENCE:

MOLEX "MICRO-FIT 3.0" PLUG: 43020-0201 MALE TERMINALS: 43031-0010 SEE WIRE TABLE, PAGE 70

MOTOR CONNECTOR: POSITRONIC P/N: CBD3W3M0000Z 3 PIN, MALE SHELL, SIZE 2 MALE CONTACTS: POSITRONIC P/N: MS40--D 3 REMOVABLE MALE

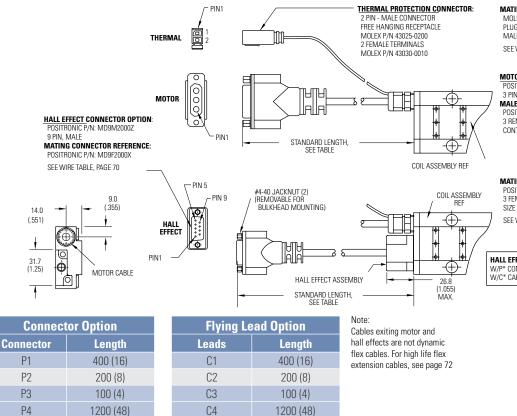
CONTACTS, SIZE 8

MATING CONNECTOR REFERENCE: POSITRONIC P/N: CBD3W3F0000X 3 FEMALE SOCKETS, SOLDER TYPE,

SIZE 8, POSITRONIC P/N: FS40--D SEE WIRE TABLE, PAGE 70

HALL EFFECT MASS W/P* CONNECTOR: .07 KG (.15 LB) MAX W/C* CABLE: .03 KG (.07 LB) MAX

R [Z ш R ⊳ N I N G ŝ

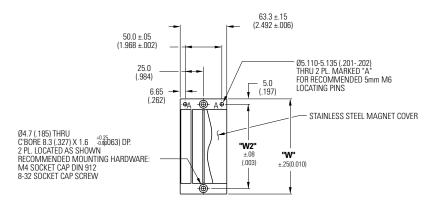

CD1

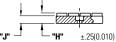
0

0 U

Termination and Hall Effect Options

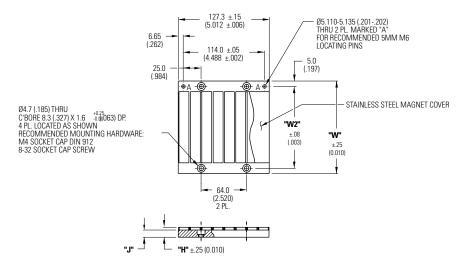
22




ICD Magnet Ways

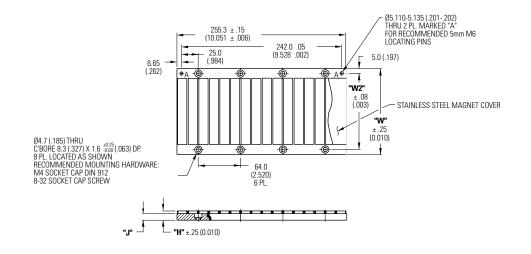
Sold & Serviced By: SERVOZGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

MCDxx-0064

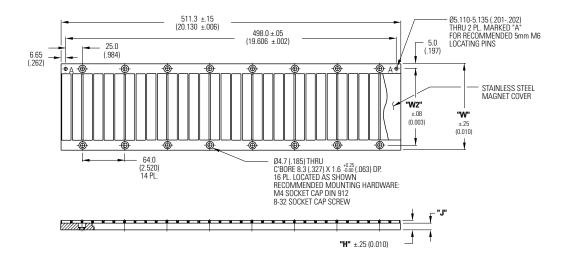

Magnet assembiles are modular and can be installed in multiples of same or alternate lengths (see page 38). Standard assembly lengths are shown below.

Туре	"W"	"W2"	"J"	Н"
MCD030-0064-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)
MCD050-0064-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
MCD075-0064-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)
MCD100-0064-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)

MCDxx-0128


Туре	"W"	"W2"	"J"	H"	Dimensions in mm (in
MCD030-0128-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)	
MCD050-0128-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)	
MCD075-0128-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)	
MCD100-0128-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)	

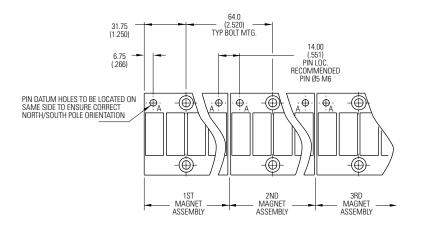
KOLLMORGEN


Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

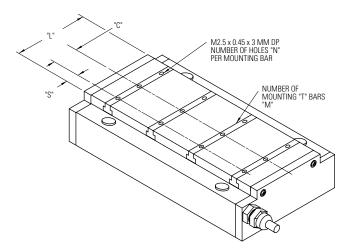
MCDxx-0256

Туре	"W"	"W2"	"J"	H"	Dimensio
MCD030-0256-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)	
MCD050-0256-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)	
MCD075-0256-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)	
MCD100-0256-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)	

MCDxx-0512


Туре	"W"	"W2"	"J"	H"	Dimensions in mm (in
MCD030-0512-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)	
MCD050-0512-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)	
MCD075-0512-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)	
MCD100-0512-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)	

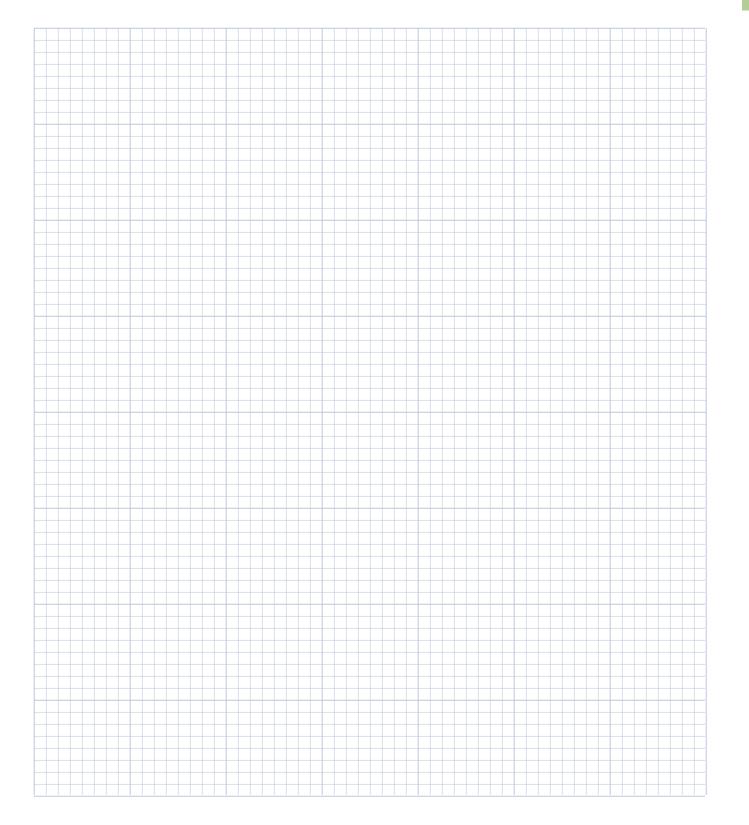
ICD Magnet Ways


Typical Installation of Multiple Ironcore Magnet Assemblies

Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512 mm. Multiple magnet assemblies can be installed to obtain the desired length. Shown below is the method to mount multiple assemblies.

Dimensions in mm (in)

Typical Mounting Bar Lengths & Mounting Holes Tabulation



Dimensions in mm (in)

Motor Coil Type	Number of Holes "N"	Spacing Between Holes "C"	Mounting Bar Length "L"	"S"	Motor Coil Type	Number of Bars "M"
ICDXX-030	3	12.0 (.472)	30 (1.18)	3.0 (.118)	ICD05-XXX	4
ICDXX-050	4	12.0 (.472)	50 (1.97)	7.0 (2.76)	ICD10-XXX	7
ICDXX-075	5	16.0 (.630)	75 (2.95)	5.5 (.217)		
ICDXX-100	5	20.0 (.787)	100 (3.94)	10.0 (.394)		

C D

Notes

Sold & Serviced By:

SERVOZGO.com Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

IC11 Performance Data

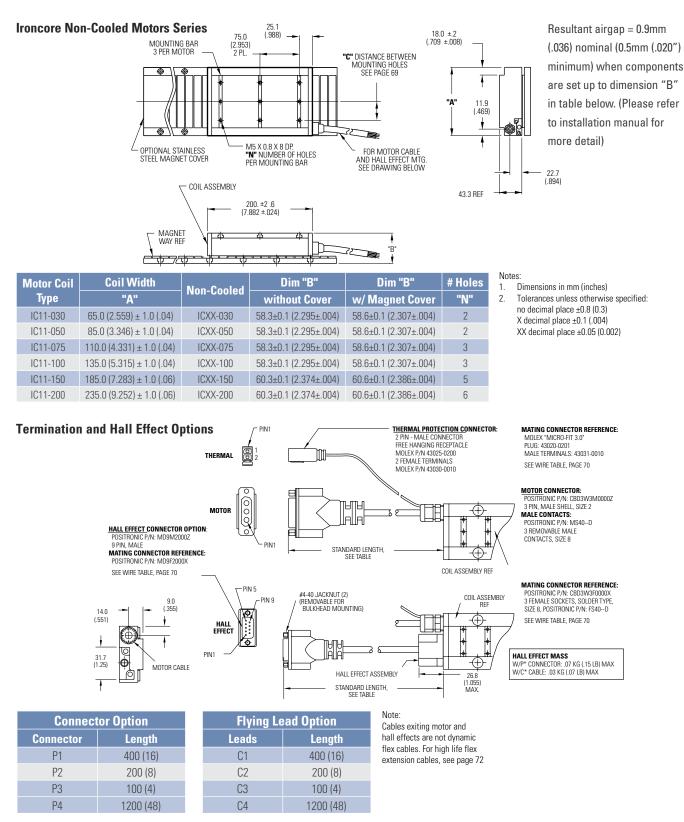
Ironcore Non-Cooled Motors Series

Rated Perfomance	Symbol	Units	IC11	-030	IC11	-050	IC11	-075	IC11	-100	IC11	-150	IC11	-200		
	F	Ν	32	20	53	33	80	00	10	67	16	00	21	35		
Peak Force	Fp	lbf	71	.9	12	20	18	30	24	10	36	60	48	30		
	_	Ν	14	14	28	63	4	13	57	74	86	51	11	97		
Continuous Force @ Tmax (1)	Fc	lbf	32	2.4	59	9.1	92	2.8	12	29	19	}4	26	69		
Motor Constant @ 25°C	Km	N/√W	22	5	32	2.0	41	1.4	49	9.1	62	2.0	73	.0		
		E	lectric	al Spe	ecifica	tions (2)									
		Winding Code	A 1	A5	A1	A5	A1	A5	A 1	A5	A1	A5	A 1	A5		
Peak Current	lp	Arms	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1		
Continuous Current @Tmax	lc	Arms	4.0	6.9	4.4	7.6	4.6	8.0	4.8	8.2	4.8	8.3	5.0	8.6		
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	1.9			0.87	3.5	1.2	4.4	1.5	6.2	2.1	8.0	2.7		
Electrical Inductance ±20%	L	mh L-L	16.7	5.6	26.7	8.9	39.4	13.1	52.0	17.3	77.3	25.8	103	34.2		
Back EMF Constant @25°C±10%	Ке	Vpeak/m/s L-L Vpeak/in/sec L-L	30.9 0.78			29.7 0.75	77.1 1.96	44.5 1.13	103 2.61	59.3 1.51	154 3.92	89.0 2.26	206 5.22	119 3.02		
F 0 @ 0500 400/	145	N/Arms	37.8	21.8	62.9	36.3	94.4	54.5	126	72.7	189	109	252	145		
Force Constant @ 25°C±10%	Kf	lbf/Arms	8.5	4.9	14.1	8.2	21.2	12.3	28.3	16.3	42.4	24.5	56.6	32.7		
		Π	Necha	nical S	al Specification		IS									
	Ma	kg	2.	.5	3.6		5	.0	6	.5	9	.4	12	.3		
Coil Assembly Mass ±15%	Mc	lbs	5	.5	7.	9	11.0		14	.3	20).7	27	.1		
Magnetic Way Type			MC	030	MC	050	MC	075	MC	100	MC	150	MC	200		
Magnetic Way Mass ±15%	Mw	kg/m	5	.4	7.	5	10).1	12	2.7	20).7	26	.8		
Magnetic way Mass 115%	IVIVV	lbs/in	0.3	30	0.4	42	0.	56	0.	71	1.1	16	1.5	50		
		Figur	es of N	lerit a	nd Add	litiona	l Data									
Electrical TimeConstant	Te	ms	8	.8	10	.3	11	.3	11	.8	12	5	12	.8		
Max.Theoretical Acceleration(3)	Amax	gʻs	15	.3	17	.7	19	9.2	19	.6	20	1.3	20	.7		
Magnetic Attraction	Fa	kN	1.	4	2.	.4	3	.7	4.	.9	7.	.3	9.	9		
Maynelic Allaction	Γd	lbf	32	24	54	16	82	21	11	02	16	39	22	14		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	1.64		0.9	99	0.67		0.67		0.67 0.50		0.35		0.	25
Max. Allowable Coil Temp. (4)	Tmax	°C	13	30	13	80	13	30	130		130		130			

Notes:

1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.


3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

IC11 Outline Drawings

C11 OUTLINE DRAWING

ŝ

IC22 Performance Data

Ironcore Non-Cooled Motors Series

	5 001105										
Rated Perfomance	Symbol	Units		IC22-030)	l	IC22-050)	l	IC22-075	
Peak Force	Fp	Ν		624			1039			1558	
TEAKTOICE	ιþ	lbf		140			234			350	
Continuous Force @ Tmax (1)	Fc	Ν		280			526			825	
	ΓŬ	lbf		62.9			118			185	
Motor Constant @ 25°C	Km	N/√W		31.4			44.8			58.0	
		Electr	ical Spe	ecificati	ons (2)						
		Winding Code	A1	A2	A 6	A1	A2	A 6	A1	A2	A 6
Peak Current	lp	Arms	11.0	22.0	38.1	11.0	22.0	38.1	11.0	22.0	38.1
Continuous Current @Tmax	lc	Arms	3.9	7.9	13.7	4.4	8.7	15.1	4.6	9.2	15.9
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	3.9 1.0 0.33 33.4 8.4 2.8		5.3	1.3	0.44	7.1	1.8	0.59	
Electrical Inductance ±20%	L	mH L-L	33.4	8.4	2.8	53.4	13.4	4.5	78.9	19.7	6.6
Back EMF Constant	IZ -	Vpeak/m/s L-L	61.7	30.9	17.8	13	51.4	29.7	154	77.1	44.5
@ 25°C±10%	Ке	Vpeak/in/sec L-L	1.57	0.78	0.45	2.61	1.31	0.75	3.92	1.96	1.13
Force Constant	Kf	N/Arms	75.6	37.8	21.8	126	63.0	36.3	189	94.4	54.5
@ 25°C±10%	NI	lbf/Arms	17.0	8.5	4.9	28.3	14.2	8.2	42.4	21.2	12.3
		Mech	anical S	Specific	ations						
Coil Assembly Mass ±15%	Mc	kg		4.8			6.9			9.6	
	IVIC	lbs		10.6			15.2			21.2	
Magnetic Way Type				MC030			MC050			MC075	
Magnetic Way Mass ±15%	Mw	kg/m		5.4			7.5			10.1	
		lb/in		0.30			0.42			0.56	
		Figures of	Merit a	-	ional Da	ata					
Electrical Time Constant	Te	ms		8.6			10.1			11.1	
Max.Theoretical Acceleration(3)	Amax	gʻs		15.9			18.5			19.9	
Magnetic Attraction	Fa	kN	2.9				4.9			7.3	
		lbf	654				1090			1637	
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.82			0.50			0.34		
Max. Allowable Coil Temp. (4)	Tmax	C°	130				130		130		

Notes:

1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

Sold & Serviced By:

SERVOLGO.com Toll Free Phone: 877-378-0240

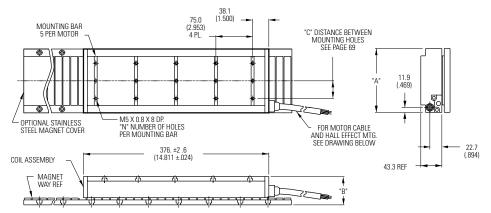
Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Rated Perfomance	Symbol	Units	2077				IC22-150)		IC22-200	
Peak Force	E.	Ν		2077			3117			4156	
Реак гогсе	Fp	lbf		467			701			934	
Continuous Force @ Tmax (1)	Fc	Ν		1148			1723			2393	
	10	lbf		258			387			538	
Motor Constant @ 25°C	Km	N/√W		69.5			87.8			103	
			ical Spe	cificati							
		Winding Code	A1	A2	A 6	A 1	A2	A 6	A 1	A2	A 6
Peak Current	lp	Arms	11.0	22.0	38.1	11.0	22.0	38.1	11.0	22.0	38.1
Continuous Current @Tmax	lc	Arms	4.8	9.5	16.5	4.8	9.6	16.6	5.0	10.0	17.3
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	8.8	2.2	0.73	12.4	3.1	1.0	15.9	4.0	1.3
Electrical Inductance ±20%	L	mH L-L	104	26.0	8.7	155	38.7	12.9	205	51.3	17.1
Back EMF Constant	Ke	Vpeak/m/s L-L	206 103 59.3		308	154	89.0	411	206	119	
@ 25°C±10%	Ne	Vpeak/in/sec L-L	5.22 2.61 1.51		7.83	3.92	2.26	10.4	5.22	3.02	
Force Constant	Kf	N/Arms	252	126	72.7	378	189	109	504	252	145
@ 25°C±10%	INI	lbf/Arms	56.6	28.3	16.3	84.9	42.5	24.5	113	56.6	32.7
		Mech	anical S	Specific	ations						
Coil Assembly Mass ±15%	Mc	kg		12.5			18.1				
	1010	lbs		27.6			39.9			52.2	
Magnetic Way Type				MC100			MC150			MC200	
Magnetic Way Mass ±15%	Mw	kg/m		12.7			20.7			26.8	
U		lb/in		0.71			1.16			1.50	
		Figures of	Merit a		ional Da	ata	_	_			
Electrical Time Constant	Te	ms		11.8			12.5			12.9	
Max.Theoretical Acceleration (3)	Amax	gʻs		20.4			21.1			21.5	
Magnetic Attraction	Fa	kN	9.8				14.6			19.7	
Thermal Resistance (4) (coils to external structure)	Rth	lbf °C/Watt	2205 0.25			3271 0.18				4433 0.13	
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130		130		

Notes:

The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options. 1.


2.

Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the 3. additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

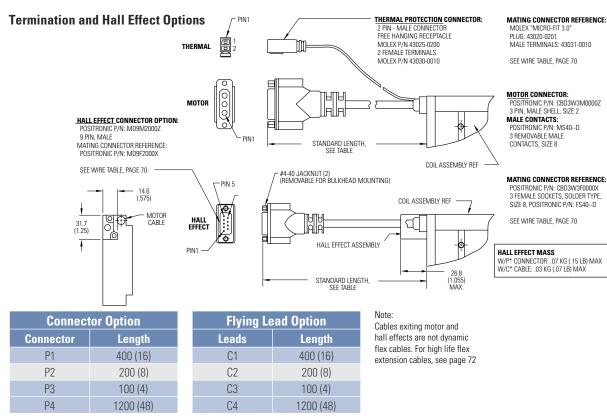
4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IC22 Series Outline Drawings

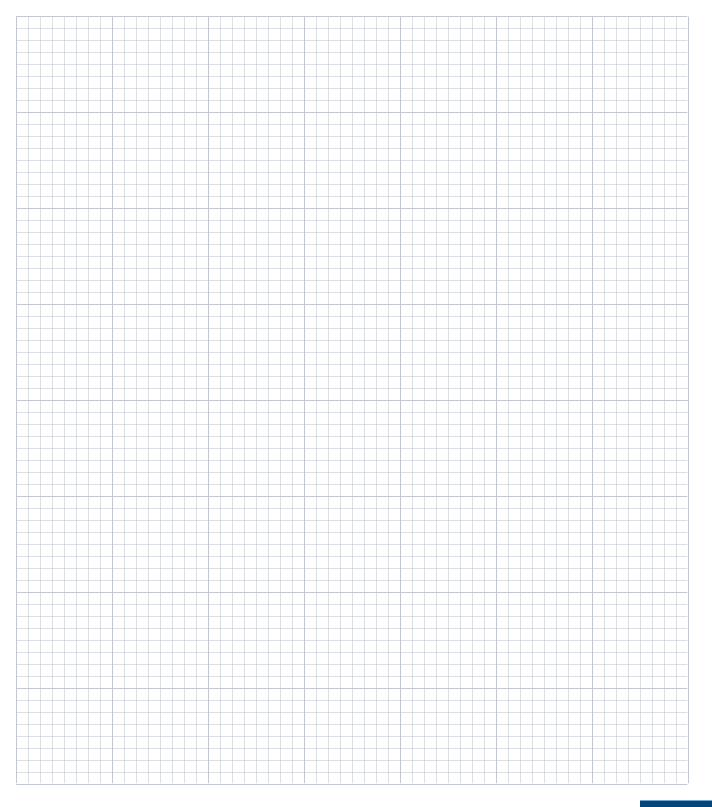
Ironcore Non-Cooled Motors Series

Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Sold & Serviced By:


SERVOLGO.com Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com


Motor Coil	Coil Width	Non-Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Noll-Cooleu	without Cover	w/ Magnet Cover	"N"
IC22-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC22-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

Notes: 1. Dime

 Dimensions in mm (inches)
 Tolerances unless otherwise specified: no decimal place ±0.8 (0.3)
 X decimal place ±0.1 (.004)
 XX decimal place ±0.05 (0.002)

Notes

Sold & Serviced By:

SERVOZGO.com Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0240 sales@servo2go.com www.servo2go.com

45

IC33 Performance Data

Ironcore Non-Cooled Motors Series

Rated Perfomance Symbol Units Peak Force Fp N		ts IC33-030							IC33-075			
	944					1633	-050			1033	-075	
		94	4			15	72			23	58	
Ibf		21	2			35	53			53	30	
N N		43	31			78	39			12	38	
Continuous Force @ Tmax (1) Fc Ibf		96	.9			17	7			27	'8	
Motor Constant @ 25°C Km N/VW		38	.5			55	i.O			71	.2	
Eleg	ctrical	Speci	ficatio	ons (2)								
Winding Code	A1	A 3	A 5	A7	A1	A3	A5	A7	A1	A3	A5	A7
Peak Current Ip Arms	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3
Continuous Current @Tmax Ic Arms	4.0	11.9	6.9	20.6	4.4	13.1	7.6	22.7	4.6	13.8	8.0	23.9
ElextricalResistance @ 25°C±10% Rm Ohms L-L	5.8	0.64	1.9	0.21	7.9	0.88	2.6	0.29	10.6	1.2	3.5	0.39
Electrical Inductance ±20% L mh L-L	50.1	5.6	16.7	1.9	80.2	8.9	26.7	3.0	118	13.1	39.4	4.4
Back EMF Constant Vpeak/m/s L-L Ke	92.6 30.9 53.5 17.8 1		154	51.4	89.0	29.7	231	77.1	134	44.5		
@25°C±10% Vpeak/in/sec L-L	2.35	0.78	1.36	0.45	3.92	1.31	2.26	0.75	5.88	1.96	3.39	1.13
Force Constant @ 25°C±10% Kf N/Arms	113	37.8	65.5	21.8	189	62.9	109	36.3	283	94.4	164	54.5
lbf/Arms	25.5	8.5	14.7	4.9	42.4	14.1	24.5	8.2	63.7	21.2	36.8	12.3
Ме	chanie	cal Sp	ecifica	ations				_				
Coil Assembly Mass ±15% Mc		7.	3			10	.4		14.4			
lbs		16	.1			22	.9			31	.7	
Magnetic Way Type		MC	030			MC	050			MC	075	
Magnetic Way Mass ±15% Mw		5.	4			7.	5			10	.1	
Magnetic Way Mass ±15% Mw Ibs/in		0.3	30			0.4	42			0.	56	
Figures	of Me	rit and	Addit	ional [Data							
Electrical Time Constant Te ms		8.	6			10	.2			11	.2	
Max.Theoretical Acceleration(3) Amax g's		15	.7			18	.4			19	.9	
Magnatia Attraction	4.4				7.	4			11	.0		
Magnetic Attraction Fa Ibf	991					16	52			24	80	
Thermal Resistance (4) (coils to external structure)	0.55				0.33				0.22			
Max. Allowable Coil Temp. (4) Tmax °C		13	0			13	80		130			

Notes:

1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

Sold & Serviced By:

GO.com

Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

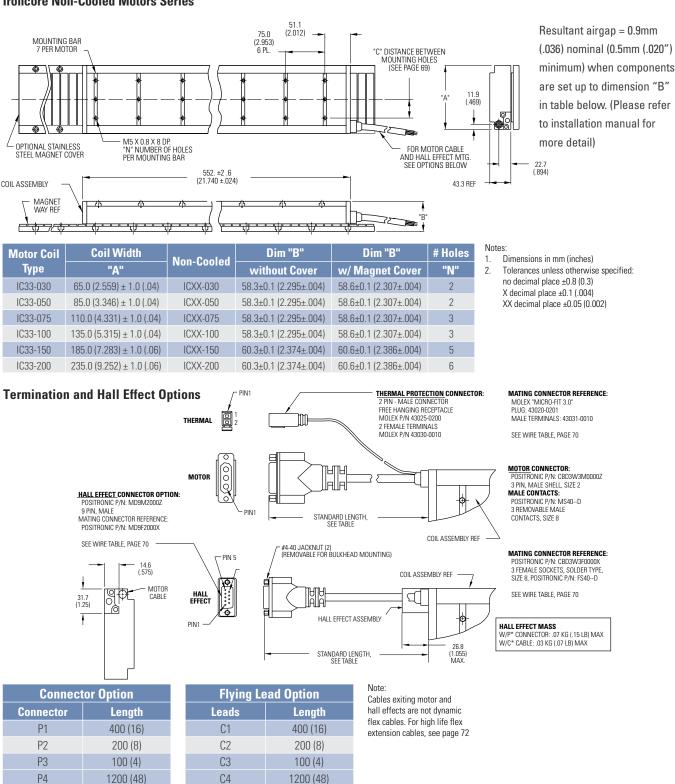
Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Rated Perfomance	Symbol	Units		IC33	-100			IC33	-150			IC33	-200		
	F	Ν		31	44			47	16			62	91		
Peak Force	Fp	lbf		70)7			10	60			14	14		
	_	Ν		17:	22			25	83			35	90		
Continuous Force @ Tmax (1)	Fc	lbf		38	37			58	31			80)7		
Motor Constant @ 25°C	Km	N/VW		85	5.1			10)8			12	27		
		Ele	ctrica	l Spec	ificati	ons (2))								
		Winding Code	A1	A 3	A5	A7	A1	A 3	A 5	A7	A1	A 3	A5	A7	
Peak Current	lp	Arms	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	
Continuous Current @Tmax	lc	Arms	4.8	14.3	8.2	24.7	4.8	14.4	8.3	24.9	5.0	14.9	8.6	25.9	
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	13.2	1.5	4.4	0.49	18.5	2.1	6.2	0.69	23.9	2.7	8.0	0.89	
Electrical Inductance ±20%	L	mh L-L	156	17.3	52.0	5.8	232	25.8	77.3	8.6	308	34.2	103	11.4	
Back EMF Constant	Ke	Vpeak/m/s L-L	308	103	178	59.3	463	154	267	89.0	617	206	356	119	
@25°C±10%	NE	Vpeak/in/sec L-L	7.83 2.61 4.52 1.51				11.7	3.92	6.78	2.26	15.7	5.22	9.05	3.02	
Force Constant @ 25°C±10%	Kf	N/Arms Ibf/Arms	378 126 218 72.7 84.9 28.3 49.0 16.3				567 127	189 42.5	327 73.5	109 24.5	756 170	252 56.6	436 98.1	145 32.7	
			echani					12.0	70.0	21.0					
		kg		18				27	.3		35.7				
Coil Assembly Mass ±15%	Mc	lbs		41	.7			60).2			78	3.7		
Magnetic Way Type				MC	100			MC	150			MC	200		
		kg/m		12	.7			20).7			26	6.8		
Magnetic Way Mass ±15%	Mw	lbs/in		0.	71			1.1	16			1.	50		
		Figures	of Me	rit and	l Addit	ional	Data								
Electrical Time Constant	Te	ms		11	.8			12	.5			12	.9		
Max.Theoretical Acceleration(3)	Amax	gʻs		20	.2			21	.0			21	.4		
Magnetia Attraction	Fa	kN	14.7					22	2.1			29).4		
Magnetic Attraction	га	lbf	3305					49	57			66	09		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.17					0.	12			0.0)84		
Max. Allowable Coil Temp. (4)	Tmax	°C		13	80		130				130				

Notes:

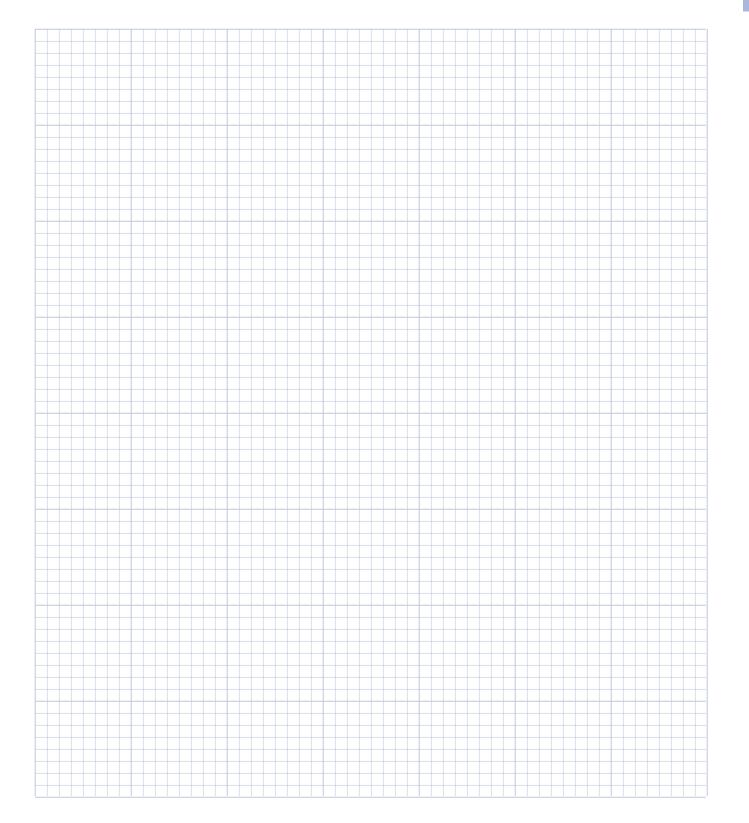
1.

2.


The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the 3. additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations. 4.

IC33 Series Outline Drawings


Ironcore Non-Cooled Motors Series

S

Notes

Sold & Serviced By:

SERVOZGO.com Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

IC44 Performance Data

Ironcore Non-Cooled Motors Series

			IC44-030						IC44-050				075			
Rated Perfomance	Symbol	Units										IC44				
Peak Force	Fp	Ν		12	59			20	96			31	44			
	. 14	lbf		28	33			47	71			7()7			
0	Γ.	Ν		56	60			10	53			16	51			
Continuous Force @ Tmax (1)	Fc	lbf		12	26			23	37			37	71			
Motor Constant @ 25°C	Km	N/√W		44	1.3			63	8.3			82	2.4			
		Ele	ctrical	Speci	ificatio	ons (2)										
		Winding Code	A1	A2	A3	A7	A1	A2	A3	A7	A1	A2	A 3	A7		
Peak Current	lp	Arms	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4		
Continuous Current @Tmax	lc	Arms	3.9	7.9	15.8	27.3	4.4	8.7	17.4	30.2	4.6	9.2	18.3	31.8		
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	7.8	2.0	0.49	0.16	10.6	2.7	0.66	0.22	14.1	3.5	0.88	0.29		
Electrical Inductance ±20%	L	mh L-L	66.8	16.7	4.2	1.4	107	26.7	6.7	2.2	158	39.4	9.9	3.3		
Back EMF Constant	Ke	Vpeak/m/s L-L					206	103	51.4	29.7	308	154	77.1	44.5		
@25°C±10%	NG.	Vpeak/in/sec L-L	3.14 1.57 0.78 0.45				5.22	2.61	1.31	0.75	7.83	3.92	1.96	1.13		
Force Constant @ 25°C±10%	Kf	N/Arms	151	75.6	37.8	21.8	252	126	63.0	36.3	378	189	94.4	54.5		
		lbf/Arms	34.0	17.0	8.5	4.9	56.6	28.3	14.2	8.2	84.9 42.5 21.2 12.3					
			chani			ations										
Coil Assembly Mass ±15%	Mc	kg		9	.6			13	.9			19	.2			
		lbs		21	.2			30	0.6			42	.3			
Magnetic Way Type				MC	030			MC	050			MC	075			
Magnetic Way Mass ±15%	Mw	kg/m		5	.4			7.	5			10).1			
mugnette wuy muss 21576	10100	lbs/in		0.	30			0.	42			0.	56			
		Figures	of Me	rit and	Addit	ional I	Data									
Electrical Time Constant	Te	ms		8	.6			10).1			11	.2			
Max.Theoretical Acceleration(3)	Amax	gʻs		15	5.9			18	.3			19	.9			
Magnetic Attraction	Fa	kN	5.9				9.	.8			14	.7				
Magnetic Attraction	Tu	lbf	1322					22	03			33	05			
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.41				0.25					0.	17			
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30			13	30		130					

Notes:

1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

Sold & Serviced By:

GO.com

Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Rated Perfomance	Symbol	Units	IC44-100 4192						-150			IC4	4-200	
	_	Ν		41	92			62	289			8	388	
Peak Force	Fp	lbf		94	42			14	14			18	385	
	_	Ν		22	96			34	45			4	786	
Continuous Force @ Tmax (1)	Fc	lbf		5	16			7	74			1(076	
Motor Constant @ 25°C	Km	N/√W		98	3.3			1:	24			1	46	
		Elec	ctrical	Speci	ficatio	ns (2)								
		Winding Code	A1	A2	A3	A7	A1	A2	A 3	A7	A1	A2	A3	A7
Peak Current	lp	Arms	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4
Continuous Current @Tmax	lc	Arms	4.8	9.5	19.0	33.0	4.8	9.6	19.2	33.2	5.0	10.0	20.0	34.6
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	17.6	4.4	1.1	0.37	24.7	6.2	1.5	0.51	31.8	8.0	2.0	0.66
Electrical Inductance ±20%	L	mh L-L	208	52.1	13.0	4.3	309	77.4	19.3	6.4	410	103	25.7	8.6
Back EMF Constant	Ke	Vpeak/m/s L-L	411	206	103	59.3	617	308	154	89.0	823	411	206	119
@25°C±10%	Ne	Vpeak/in/sec L-L	10.4 5.22 2.61 1.51				15.7	7.83	3.92	2.26	20.9	10.4	5.22	3.02
Force Constant @ 25°C±10%	Kf	N/Arms Ibf/Arms	504 252 126 72.7 113 56.6 28.3 16.3				755 170	378 84.9	189 42.5	109 24.5	1008 227	504 113	252 56.6	145 32.7
			chanio	cal Sp										
		kg			5.0			36	5.2		47.4			
Coil Assembly Mass ±15%	Mc	lbs		55	5.1			79	9.8			1	04	
Magnetic Way Type				МС	100			М	;150			М	C200	
		kg/m		12	2.7			20).7			2	6.8	
Magnetic Way Mass ±15%	Mw	lbs/in		0.	71			1.	16			1	.50	
		Figures	of Me	rit and	Additi	onal C)ata							
Electrical Time Constant	Те	ms		11	.8			12	2.5			1	2.9	
Max.Theoretical Acceleration(3)	Amax	gʻs		20).4			2	1.1			2	1.5	
Manastia Attraction	E.	kN	19.6					29	9.4			3	9.4	
Magnetic Attraction	Fa	lbf	4406					66	609			8	858	
Thermal Resistance (coils to external structure)	Rth	°C/Watt	0.13					0.0	388			0.	063	
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30		130				130			

Notes:

1.

2.

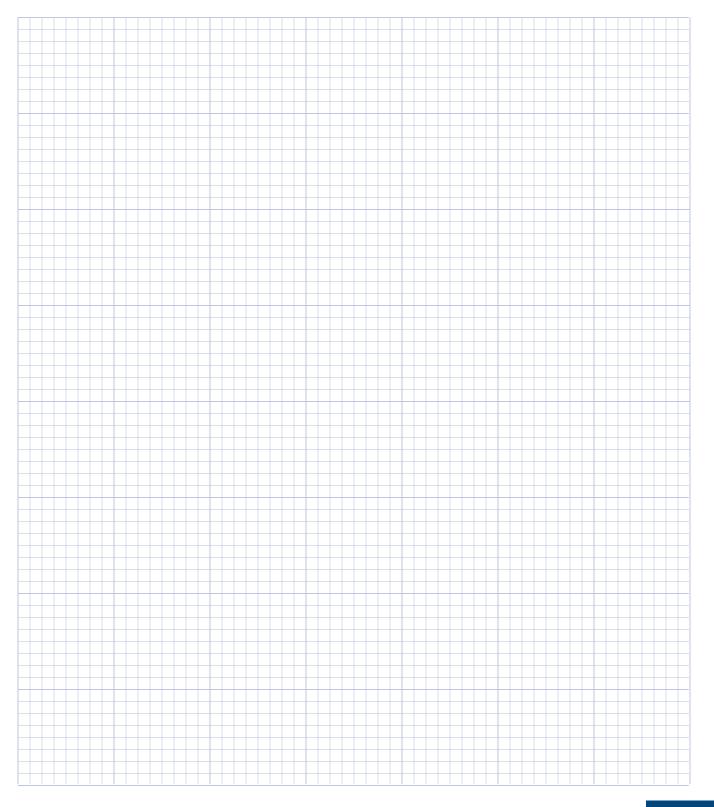
The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the 3. additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations. 4.

IC44 Series Outline Drawings

C4

1200 (48)


Ironcore Non-Cooled Motors Series

P4

1200 (48)

Notes

Sold & Serviced By:

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

53

IC11 Performance Data

Ironcore Water-Cooled Motors Series

Rated Perfomance	Symbol	Units	IC11	-030	IC11	-050	IC11	-075	IC11	-100	IC11	-150	IC11	-200
	F	Ν	31	15	52	25	79	98	10	51	15	76	21	02
Peak Force	Fp	lbf	70	.8	11	8	17	79	23	36	35	54	47	'3
	F	Ν	25	54	43	32	64	19	86	64	12	85	17	12
Continuous Force @ Tmax (1)	Fc	lbf	57	7.1	97	7.1	14	16	19	}4	28	39	38	35
Motor Constant @ 25°C	Km	N/√W	19	.3	28	8.6	37	7.3	45	.0	55	5.7	65	i.7
		E	lectric	al Spe	ecifica	tions (2)							
		Winding Code	A 1	A5	A 1	A5	A1	A5	A 1	A5	A1	A5	A 1	A5
Peak Current	lp	Arms	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9
Continuous Current @Tmax	lc	Arms	9.7	16.9	9.9	17.2	9.9	17.1	9.9	17.2	9.8	17.0	9.8	17.0
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	1.6			0.70	2.8	0.93	3.5	1.2	5.0	1.7	6.4	2.1
Electrical Inductance ±20%	L	mh L-L	10.3	3.4	16.5	5.5	24.4	8.1	32.1	10.7	47.7	15.9	63.3	21.1
Back EMF Constant @25°C±10%	Ke	Vpeak/m/s L-L Vpeak/in/sec L-L	24.814.30.630.36		41.4 1.05	23.9 0.61	62.2 1.58	35.9 0.91	82.9 2.11	47.8 1.22	124 3.16	71.7 1.82	166 4.21	95.7 2.43
Force Constant @ 25°C+10%	Kf	N/Arms	30.4	17.6	50.7	29.3	76.2	44.0	102	58.6	152	87.9	203	117
	NI	lbf/Arms	6.8	3.9	11.4	6.6	17.1	9.9	22.8	13.2	34.2	19.8	45.7	26.4
			Necha	nical S	ical Specification		s							
Coil Assembly Mass ±15%	Mc	kg	2.	.5	3.6		5	.0	6.5		9	.4	12	.3
	IVIC	lbs	5	.5	7.	9	11	.0	14	.3	20).7	27	.1
Magnetic Way Type			MC	030	МС	050	MC	075	MC	100	MC	150	MC	200
Magnetic Way Mass ±15%	Mw	kg/m	5	.4	7.	5	10).1	12	.7	20).7	26	.8
magnetic way mass ±1370	IVIVV	lbs/in	0.3	30	0.4	42	0.	56	0.	71	1.1	16	1.5	50
		Figur	es of N	lerit a	nd Add	litiona	Data							
Electrical TimeConstant	Te	ms	6	.4	7.	9	8	.7	9	.2	9	.5	9.	9
Max.Theoretical Acceleration(3)	Amax	gʻs	15	.3	17	.7	19).2	19	.6	20).3	20	.7
Magnetic Attraction	Fa	kN	1.	4	2.	.4	3	.7	4.	9	7.	.3	9.	9
Inagrietic Attraction	Id	lbf	32	24	54	16	8	21	11	02	16	39	22	14
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.33		0.2	24	0.18		0.	15	5 0.10		0.0	181
Max. Allowable Coil Temp. (4)	Tmax	°C	13	30	13	30	13	30	13	30	13	30	13	0

Notes:

1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

Sold & Serviced By:

SERVOLGO.com Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

IC11 Outline Drawings

Ironcore Water-Cooled Motors Series

MOUNTING BAR 3 PER MOTOR

OPTIONAL STAINLESS STEEL MAGNET COVER

> MAGNET WAY REF

COIL ASSEMBLY

Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Sold & Serviced By:

SERVOLGO.com Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

	1 1 1		1		
Motor Coil	Coil Width	Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Goolea	without Cover	w/ Magnet Cover	"N"
IC11-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC11-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC11-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC11-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC11-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC11-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

25.1 (.988)

M5 X 0.8 X 8 DP. "N" NUMBER OF HOLES

PER MOUNTING BAR

200 +26

(7.882 ±.024)

75.0

(2.953) 2 PL. OPTIONAL COOLING (SEE OPTIONS BELOW)

"C" DISTANCE BETWEEN MOUNTING HOLES (SEE PAGE 69)

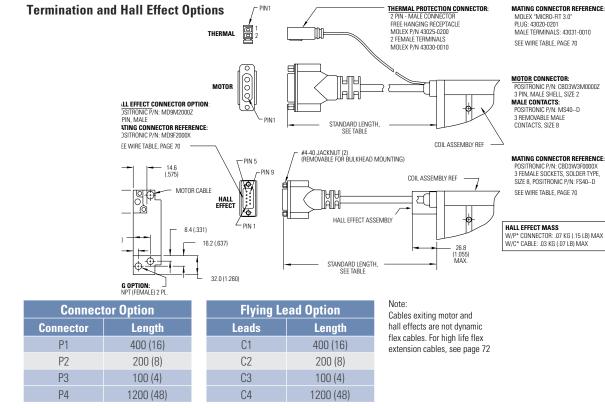
> - FOR MOTOR CABLE AND HALL EFFECT MTG. SEE OPTIONS BELOW

19.1 (.750)

Notes:

22.7 (.894)

₽\$


11.9 (.469)

¥

43.3 REF

"A'

 Dimensions in mm (inches)
 Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)

Z

G

S

IC22 Performance Data

Ironcore Water-Cooled Motors Series

Rated Perfomance	Symbol	Units		IC22-030			IC22-050			IC22-075	
Peak Force	Fp	N		630			1051			1576	
	1	lbf		142			236			354	
Continuous Force @ Tmax (1)	Fc	Ν		519			864			1284	
		lbf		117			194			287	
Motor Constant @ 25°C	Km	N/√W	28.3			40.5			52.2		
		Electr	ical Spe	cificati	ons (2)						
		Winding Code	A1	A2	A 6	A1	A2	A 6	A1	A2	A 6
Peak Current	lp	Arms	13.8	27.6	47.8	13.8	27.6	47.8	13.8	27.6	47.8
Continuous Current @Tmax	lc	Arms	9.9	19.8	34.3	9.9	19.8	34.3	9.8	19.6	34.0
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	3.1	0.78	0.26	4.2	1.1	0.35	5.7	1.4	0.48
Electrical Inductance ±20%	L	mH L-L	20.6	5.2	1.7	33.0	8.3	2.8	48.6	12.2	4.1
Back EMF Constant		Vpeak/m/s L-L	49.7	24.9	14.4	82.9	41.4	23.9	124	62.2	35.9
@ 25°C±10%	Ке	Vpeak/in/sec L-L	1.26	0.63	0.36	2.11	1.05	0.61	3.16	1.58	0.91
Force Constant	146	N/Arms	60.9	30.5	17.6	102	50.8	29.3	152	76.2	44.0
@ 25°C±10%	Kf	lbf/Arms	13.7	6.8	4.0	22.8	11.4	6.6	34.2	17.1	9.9
		Mech	anical S	Specific	ations						
		kg	60.9 30.5 17.6 13.7 6.8 4.0 hanical Specifications 4.8 10.6 10.6			6.9			9.6		
Coil Assembly Mass ±15%	Mc	lbs		10.6			15.2			21.2	
Magnetic Way Type				MC030			MC050			MC075	
		kg/m		5.4			7.5			10.1	
Magnetic Way Mass ±15%	Mw	lb/in		0.30			0.42			0.56	
		Figures of	Merit a	nd Addit	ional Da	ata					
Electrical Time Constant	Te	ms		6.6			7.9			8.5	
Max.Theoretical Acceleration (3)	Amax	gʻs		15.9			18.5			19.9	
	_	kN	2.9			4.9			7.3		
Magnetic Attraction	Fa	lbf	654			1090			1637		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.16			0.12			0.091	
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130			130	

Notes:

1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

Sold & Serviced By:

SERVOLGO.com Toll Free Phone: 877-378-0240

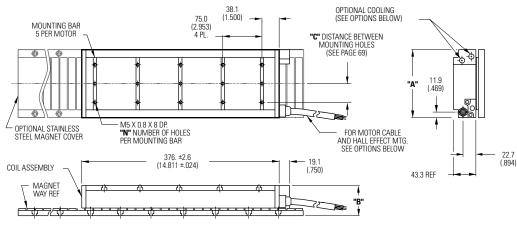
Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Rated Perfomance	Symbol	Units		IC22-100			IC22-150			IC22-200	
Deals From a	E.	Ν		2106			3152			4204	
Peak Force	Fp	lbf		473			709			945	
Continuous Force @ Tmax (1)	Fc	Ν		1715			2566			3458	
Continuous Force @ finax (1)	ΓŬ	lbf		386			577			777	
Motor Constant @ 25°C	Km	N/√W	62.5			79.3		93.3			
		Electr	ical Spe	ecificati	ons (2)						
		Winding Code	A1	A2	A 6	A1	A2	A 6	A1	A2	A 6
Peak Current	lp	Arms	13.8	27.6	47.8	13.8	27.6	47.8	13.8	27.6	47.8
Continuous Current @Tmax	lc	Arms	9.8	19.6	34.0	9.8	19.7	34.1	9.9	19.8	34.3
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	7.1	1.8	0.59	9.9	2.5	0.83	12.7	3.2	1.1
Electrical Inductance ±20%	L	mH L-L	64.1	16.0	5.3	95.4	23.9	8.0	127	31.6	10.5
Back EMF Constant	Ke	Vpeak/m/s L-L	166	83.1	48.0	249	124	71.8	332	166	95.7
@ 25°C±10%	ке	Vpeak/in/sec L-L	4.22	2.11	1.22	6.32	3.16	1.82	8.42	4.21	2.43
Force Constant	Kf	N/Arms	203	102	58.7	305	152	87.9	406	203	117
@ 25°C±10%	NI	lbf/Arms	45.7	22.9	13.2	68.5	34.2	19.8	91.3	45.7	26.4
		Mech	anical	Specific	ations						
Coil Assembly Mass ±15%	Mc	kg		12.5			18.1			23.7	
Coll Assembly Mass ±10 /0	IVIC	lbs		27.6			39.9			52.2	
Magnetic Way Type				MC100			MC150			MC200	
Magnetic Way Mass ±15%	Mw	kg/m		12.7			20.7			26.8	
		lb/in		0.71			1.16			1.50	
		Figures of	Merit a		tional D	ata					
Electrical Time Constant	Te	ms		9.0			9.6			10.0	
Max.Theoretical Acceleration (3)	Amax	gʻs		20.4			21.1			21.5	
Magnetic Attraction	Fa	kN	9.8			14.6			19.7		
		lbf	2205			3271			4433		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.073		0.073 0.052			0.040			
Max. Allowable Coil Temp. (4)	Tmax	°C	130			130			130		

Notes:

The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options. 1.

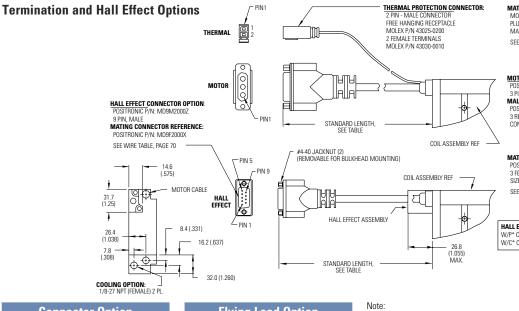

2. 3.

Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IC22 Outline Drawings

Ironcore Water-Cooled Motors Series



Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Motor Coil	Coil Width	Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Cooleu	without Cover	w/ Magnet Cover	"N"
IC22-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC22-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

Notes:

1. Dimensions in mm (inches) Tolerances unless otherwise specified: 2 no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)

MATING CONNECTOR REFERENCE: MOLEX "MICRO-FIT 3.0" PLUG: 43020-0201

MALE TERMINALS: 43031-0010 SEE WIRE TABLE, PAGE 70

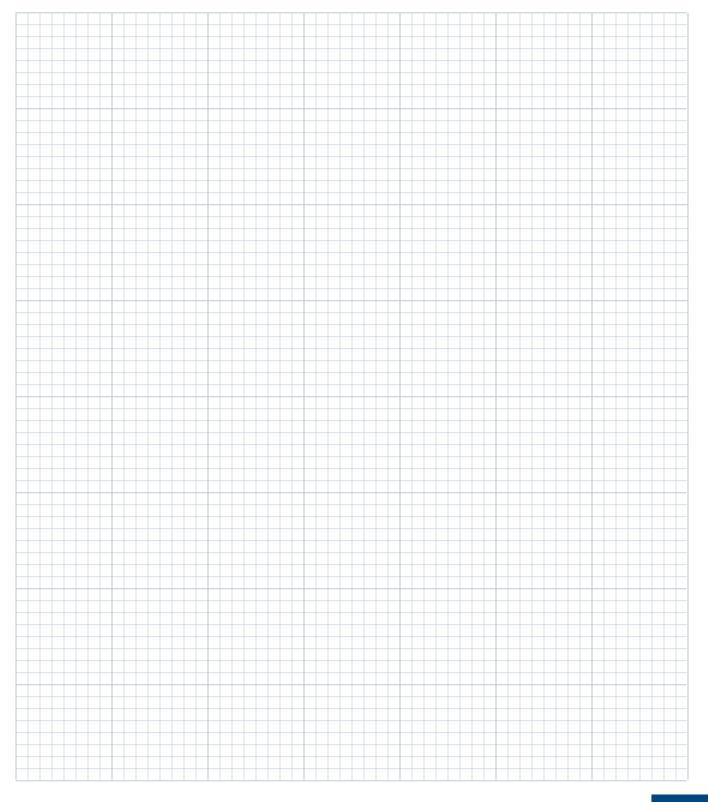
MOTOR CONNECTOR: POSITRONIC P/N: CBD3W3M0000Z

3 PIN MALE SHELL SIZE 2 MALE SHELL, SIZE 2 MALE CONTACTS: POSITRONIC P/N: MS40--D 3 REMOVABLE MALE CONTACTS, SIZE 8

MATING CONNECTOR REFERENCE: POSITRONIC P/N: CBD3W3F0000X 3 FEMALE SOCKETS, SOLDER TYPE, SIZE 8, POSITRONIC P/N: FS40--D SEE WIRE TABLE, PAGE 70

HALL EFFECT MASS

W/P* CONNECTOR: .07 KG (.15 LB) MAX W/C* CABLE: .03 KG (.07 LB) MAX


Connec	tor Option	Flying Le	ead Option
Connector	Length	Leads	Length
P1	400 (16)	C1	400 (16)
P2	200 (8)	C2	200 (8)
P3	100 (4)	C3	100 (4)
P4	1200 (48)	C4	1200 (48)

Cables exiting motor and hall effects are not dynamic

flex cables. For high life flex extension cables, see page 72

KOLLMORGEN

Notes

Sold & Serviced By:

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

IC33 Performance Data

Sold & Serviced By:

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Ironcore Water-Cooled Motors Series

Rated Perfomance	Symbol	Units		IC33-030)		IC33-050)	IC33-075		
		N		945			1575			2365	
Peak Force	Fp	lbf		212			354			532	
Continuous Force @ Tmax (1)	Fc	Ν		769			1283			1926	
Continuous Force @ midx (1)	ΓŬ	lbf		173			288			433	
Motor Constant @ 25°C	Km	N/√W	34.5			49.2			64.2		
		Electr	ical Spe	ecificati	ons (2)						
		Winding Code	A1 A3 A5		A1	A 3	A 5	A1	A3	A 5	
Peak Current	lp	Arms	13.8	41.4	23.9	13.8	41.4	23.9	13.8	41.4	23.9
Continuous Current @Tmax	lc	Arms	9.8	29.5	17.0	9.8	29.4	17.0	9.8	29.4	17.0
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	4.7	0.52	1.6	6.4	0.71	2.1	8.5	0.94	2.8
Electrical Inductance ±20%	L	mH L-L	31.0	3.4	10.3	49.5	5.5	16.5	73.1	8.1	24.4
Back EMF Constant	Ke	Vpeak/m/s L-L	74.5	24.8	43.0	124	41.4	71.7	187	62.2	108
@ 25°C±10%	Ke	Vpeak/in/sec L-L	1.89	0.63	1.09	3.16	1.05	1.82	4.74	1.58	2.74
Force Constant	Kf	N/Arms	91.3	30.4	52.7	152	50.7	87.9	229	76.2	132
@ 25°C±10%	KI	lbf/Arms	20.5	6.8	11.9	34.2	11.4	19.8	51.4	17.1	29.7
		Mech	anical S	Specific	ations						
Coil Assembly Mass ±15%	Mc	kg		7.3			10.4		14.4		
	IVIC	lbs		16.1			22.9			31.7	
Magnetic Way Type				MC030			MC050			MC075	
Magnetic Way Mass ±15%	Mw	kg/m		5.4			7.5			10.1	
		lb/in		0.30			0.42			0.56	
		Figures of	Merit a		ional D	ata					
Electrical Time Constant	Te	ms		6.6			7.7				
Max.Theoretical Acceleration (3)	Amax	gʻs	15.7			18.4					
Magnetic Attraction	Fa	kN	4.4			7.4					
Thermal Resistance (4) (coils to external structure)	Rth	lbf °C/Watt	991 0.11			1652 0.081			17.1 29.7 14.4 14.4 31.7 10.1		
Max. Allowable Coil Temp. (4)	Tmax	٦°		130			130			130	

Notes:

1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

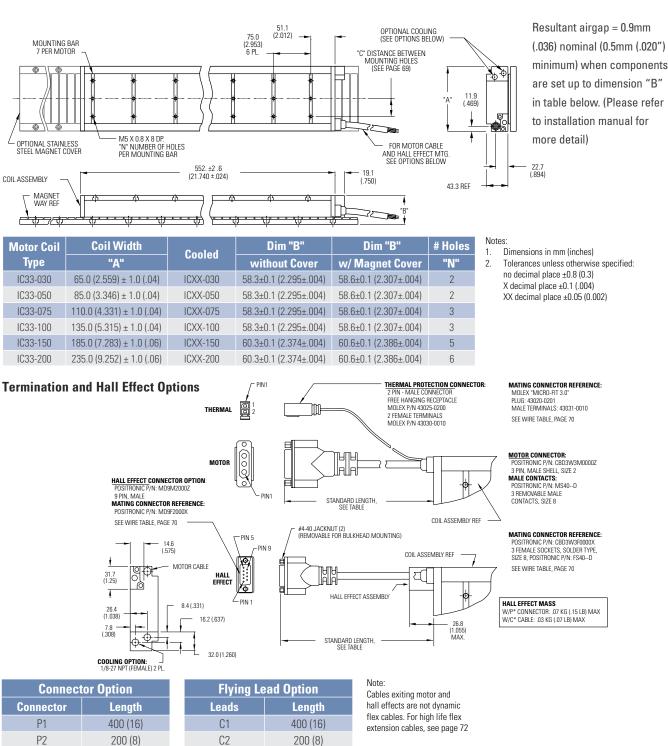
Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Rated Perfomance	Symbol	Units		IC33-100)		IC33-150)		IC33-200)	
	F	Ν		3152			4724			6306		
Peak Force	Fp	lbf		709			1063			1418		
Continuous Force @ Tmax (1)	Га	Ν		2593			3849			5135		
Continuous Force @ Tinax (T)	Fc	lbf		583			865			1154		
Motor Constant @ 25°C	Km	N/√W	76.5				96.9		114			
Max. Cont. Power Dissipation	Pc	W	2188		3000		3889					
		Electr	ical Spe	cificati	ons (2)							
		Winding Code	A 1	A 3	A5	A1	A3	A5	A 1	A3	A5	
Peak Current	lp	Arms	13.8	41.4	23.9	13.8	41.4	23.9	13.8	41.4	23.9	
Continuous Current @Tmax	lc	Arms	9.9	29.7	17.1	9.8	29.3	16.9	9.8	29.5	17.0	
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	10.6	1.2	3.5	14.9	1.7	5.0	19.1	2.1	6.4	
Electrical Inductance ±20%	L	mH L-L	96.2	10.7	32.1	143	15.9	47.7	190	21.1	63.3	
Back EMF Constant	Ka	Vpeak/m/s L-L	249	82.9	144	373	124	215	497	166	287	
@ 25°C±10%	Ке	Vpeak/in/sec L-L	6.32	2.11	3.65	9.47	3.16	5.47	12.6	4.21	7.30	
Force Constant	Kf	N/Arms	304	102	176	457	152	264	609	203	352	
@ 25°C±10%	NI	lbf/Arms	68.5	22.8	39.5	103	34.2	59.3	137	45.7	79.1	
		Mech	anical S	Specific	ations							
Coil Assembly Mass ±15%	Mc	kg		18.9			27.3			35.7		
	IVIC	lbs		41.7			60.2			78.7		
Magnetic Way Type				MC100			MC150			MC200		
Magnetic Way Mass ±15%	Mw	kg/m		12.7			20.7			26.8		
		lb/in		0.71			1.16			1.50		
		Figures of	Merit a		ional Da	ata						
Electrical Time Constant	Te	ms	9.1			9.6			9.9			
Max.Theoretical Acceleration (3)	Amax	gʻs		20.2			21.0			21.4		
Magnetic Attraction	Fa	kN	14.7			22.1			29.4			
	1.4	lbf	3305			4957			6609			
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.048			0.035			0.027			
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130			130		

Notes:

The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options. 1.

2.


3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations. 4.

IC33 Outline Drawings

Ironcore Water-Cooled Motors Series

C 3 3

0

∪ ⊤

_

z

ш

D R

⊳

<

Z

G

S

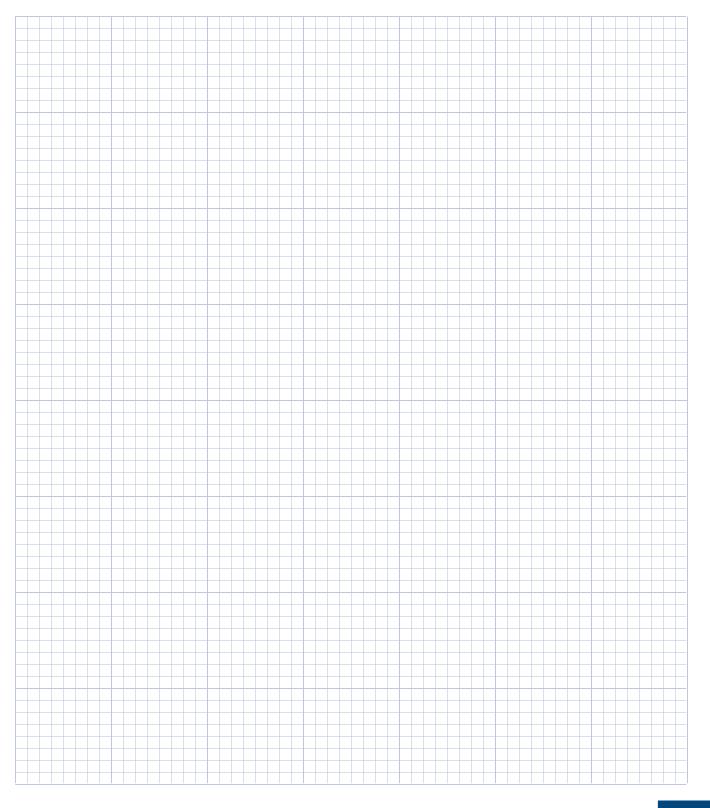
KOLLMORGEN

P3

P4

100 (4)

1200 (48)


С3

C4

100 (4)

1200 (48)

Notes

Sold & Serviced By:

SERVOZGO.com Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0240 sales@servo2go.com www.servo2go.com

IC44 Performance Data

Ironcore Water-Cooled Motors Series

Symbol	Units		IC44-030			IC44-050)		IC44-075	
Fn	Ν		1260			2101			3154	
ιμ	lbf		283			472			709	
Ec	Ν		1036			1711		2568		
T C	lbf		233			385			577	
Km	N/√W	39.9			56.8			74.0		
	Electri	ical Spe	cificatio	ons (2)						
	Winding Code	A1	A2	A3	A 1	A2	A 3	A1	A2	A3
lp	Arms	13.8	27.6	55.2	13.8	27.6	55.2	13.8	27.6	55.2
lc	Arms	9.9	19.7	39.5	9.8	19.6	39.1	9.8	19.5	39.1
Rm	Ohms L-L	6.2	1.6	0.39	8.5	2.1	0.53	11.3	2.8	0.71
L	mH L-L	41.3	10.3	2.6	66.1	16.5	4.1	97.3	24.3	6.1
1Z	Vpeak/m/s L-L	99.4	49.7	24.8	166	82.9	41.4	249	124	62.2
Ke	Vpeak/in/sec L-L	2.52	1.26	0.63	4.21	2.11	1.05	6.32	3.16	1.58
1/f	N/Arms	122	60.9	30.4	203	102	50.8	305	152	76.2
KI	lbf/Arms	27.4	13.7	6.8	45.6	22.8	11.4	68.5	34.2	17.1
	Mech	anical S	Specifica	ations						
Mo	kg		9.6			13.9		19.2		
IVIC	lbs		21.2			30.6			42.3	
			MC030			MC050			MC075	
N Anar	kg/m		5.4			7.5			10.1	
IVIVV	lb/in		0.30			0.42			0.56	
	Figures of	Merit a	nd Addit	ional Da	ata					
Te	ms		6.7			7.8			8.6	
Amax	gʻs	15.9			18.3			19.9		
Fa	kN	5.9			9.8			14.7		
Id	lbf		1322			2203			3305	
Rth	°C/Watt		0.082			0.061			0.046	
Tmax	°C		130		130			130		
	Fp Fc Km Ip Ip Ic Rm Ic Kf Kf Kf Kf Mw Kf Te Amax Fa Rth	FpN IbfFcN IbfFcN IbfKmN/VWKmN/VWIDArmsIDArmsICArmsRmOhms L-LKfVpeak/m/s L-L Vpeak/in/sec L-LKfN/Arms Ibf/ArmsMckg IbsMckg IbsTemsTemsAmaxg'sRth°C/Watt	Fp N I Fc N I Fc N I Km N/√W I Km N/√W I Km N/√W I Image: Stress of the stres	Fp N 1260 Ibf 283 Fc N 1036 Ibf 233 Km N/ \checkmark W 39.9 Electrostrostrostrostrostrostrostrostrostros	PpN Ibf1260FcN Ibf283KmN1036KmN/√W39.9Electrono structureVinding CodeA1A2A3IpArms13.827.655.2IcArms9.919.739.5InOhms L-L6.21.60.39InWpeak/m/s L-L99.449.724.8KeVpeak/m/s L-L99.449.724.8KeN/Arms12260.930.4KfIbf/Arms27.413.76.8McZ1.250.930.430.4McIbf/Arms27.413.76.8McIbf/Arms27.413.76.8McIbf/Arms27.413.76.8McIbf/Arms27.413.75.8McIbf/Arms5.41.51.5MmIb/in0.305.41.5Tems6.75.91.5FaIbf1.3225.91.5FaIbf1.3225.91.5Rth°C/Watt0.0825.9	Pp IbfN Imp IbfImp 	Pp N 1260 2101 Fp N 1260 283 472 Fc N 1036 385 Km N/ \sqrt{W} 395 385 Km N/ \sqrt{W} 395 385 Km N/ \sqrt{W} 395 41 $A2$ 385 Ibf 233 $A1$ $A2$ 385 $A1$ $A2$ Ibf 39.9 9.7 39.5 8.8 9.6 9.6 9.8 9.6 9.6 9.8 9.6 9.6 9.8 9.6 2.1 Ibf Arms 9.9 9.7 39.5 9.8 9.6 2.1 Ibf Ohms I-L 6.2 1.6 0.39 8.5 2.1 Ibf Ohms I-L 9.9 9.7 24.8 166 82.9 Kf N/Arms 122 60.9 30.4 203 102 203 <td>Pp N 1260 2101 Fc N 1036 472 Fc N 1036 1711 Ibf 233 385 Km N/v/W 39.9 56.8 Electrical Spectrostication (2000) FC Winding Code A1 A2 A3 A1 A2 A3 Ip Arms 13.8 27.6 55.2 13.8 27.6 55.2 Ic Arms 9.9 19.7 39.5 9.8 19.6 39.1 Rm Ohms L-L 6.2 1.6 0.39 8.5 2.1 0.53 L mH L-L 41.3 10.3 2.6 66.1 16.5 4.1 Ke Vpeak/m/s L-L 99.4 49.7 24.8 166 82.9 41.4 Ke Vpeak/m/s L-L 2.52 1.26 0.63 4.21 2.11 1.05 Mc Ibf/Arms 27.4 13.7<</td> <td>Pp N 1260 2101 I Fc N 1036 1711 I Fc N 233 385 I Km N/\checkmark 39.9 56.8 I Km N/\checkmark 39.9 56.8 I Electrostocolspan="4">Electrostocolspan="4">I Vinding Code A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A3 A1 Ip Arms 13.8 27.6 55.2 13.8 39.1 9.8 Ic Arms 9.9 19.7 39.5 9.8 19.6 39.1 9.8 Rm Ohms L-L 6.2 1.6 0.39 8.5 2.1 0.53 11.3 L mHL-L 41.3 10.3 2.6 66.1 16.5 4.1 97.3 K Vpeak/m/s L-L 2.52 12.6 0.63 4.21 1.1 1.05 6.3</td> <td>Pp N 1260 2101 3154 Fp lbf 283 472 709 Fc N 1036 1711 2558 Km N/v/W 39.9 38.5 577 Km N/v/W 39.9 5.8 74.0 Electrical Spectrications (2) Vinding Code A1 A2 A3 A1 A2 A3 A1 A2 Ib Arms 13.8 27.6 55.2 13.8 27.6 55.2 13.8 27.6 Ic Arms 9.9 19.7 39.5 9.8 19.6 39.1 9.8 19.5 Rm Ohms L-L 6.2 1.6 0.39 8.5 2.1 0.53 11.3 2.8 L MH L-L 41.3 10.3 2.6 66.1 16.5 4.1 97.3 24.3 Ke Vpeak/m/s L-L 2.52 1.26 0.63 <th4.21< th=""> 2.11 1.05</th4.21<></td>	Pp N 1260 2101 Fc N 1036 472 Fc N 1036 1711 Ibf 233 385 Km N/v/W 39.9 56.8 Electrical Spectrostication (2000) FC Winding Code A1 A2 A3 A1 A2 A3 Ip Arms 13.8 27.6 55.2 13.8 27.6 55.2 Ic Arms 9.9 19.7 39.5 9.8 19.6 39.1 Rm Ohms L-L 6.2 1.6 0.39 8.5 2.1 0.53 L mH L-L 41.3 10.3 2.6 66.1 16.5 4.1 Ke Vpeak/m/s L-L 99.4 49.7 24.8 166 82.9 41.4 Ke Vpeak/m/s L-L 2.52 1.26 0.63 4.21 2.11 1.05 Mc Ibf/Arms 27.4 13.7<	Pp N 1260 2101 I Fc N 1036 1711 I Fc N 233 385 I Km N/ \checkmark 39.9 56.8 I Km N/ \checkmark 39.9 56.8 I Electrostocolspan="4">Electrostocolspan="4">I Vinding Code A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A3 A1 Ip Arms 13.8 27.6 55.2 13.8 39.1 9.8 Ic Arms 9.9 19.7 39.5 9.8 19.6 39.1 9.8 Rm Ohms L-L 6.2 1.6 0.39 8.5 2.1 0.53 11.3 L mHL-L 41.3 10.3 2.6 66.1 16.5 4.1 97.3 K Vpeak/m/s L-L 2.52 12.6 0.63 4.21 1.1 1.05 6.3	Pp N 1260 2101 3154 Fp lbf 283 472 709 Fc N 1036 1711 2558 Km N/v/W 39.9 38.5 577 Km N/v/W 39.9 5.8 74.0 Electrical Spectrications (2) Vinding Code A1 A2 A3 A1 A2 A3 A1 A2 Ib Arms 13.8 27.6 55.2 13.8 27.6 55.2 13.8 27.6 Ic Arms 9.9 19.7 39.5 9.8 19.6 39.1 9.8 19.5 Rm Ohms L-L 6.2 1.6 0.39 8.5 2.1 0.53 11.3 2.8 L MH L-L 41.3 10.3 2.6 66.1 16.5 4.1 97.3 24.3 Ke Vpeak/m/s L-L 2.52 1.26 0.63 <th4.21< th=""> 2.11 1.05</th4.21<>

Notes:

The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. 1.

Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options. 2.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations. 4

Sold & Serviced By:

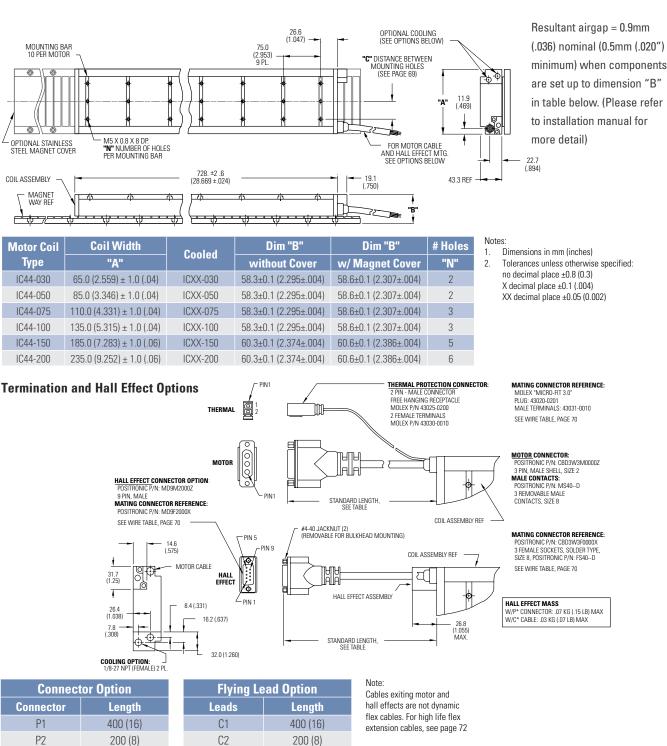
SERVOZGO.com Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Rated Perfomance	Symbol	Units		IC44-100)		IC44-150)	IC44-200			
De el Farra	E.	Ν		4202			6303			8407		
Peak Force	Fp	lbf		945			1417			1890		
Continuous Force @ Tmax (1)	Fc	Ν		3457			5133			6916		
	ΓŬ	lbf		777			1154		1555		ō	
Motor Constant @ 25°C	Km	N/√W	88.3			112		132				
		Electr	ical Spe	ecificati	ons (2)							
		Winding Code	A1	A2	A 3	A1	A2	A 3	A 1	A2	A3	
Peak Current	lp	Arms	13.8	27.5	55.1	13.8	27.6	55.3	13.8	27.6	55.2	
Continuous Current @Tmax	lc	Arms	9.9	19.8	39.5	9.8	19.6	39.2	9.9	19.8	39.6	
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	14.1	3.5	0.88	19.8	5.0	1.2	25.5	6.4	1.6	
Electrical Inductance ±20%	L	mH L-L	128	32.1	8.0	191	47.7	11.9	253	63.3	15.8	
Back EMF Constant	Ke	Vpeak/m/s L-L	331	166	82.9	497	249	124	663	332	166	
@ 25°C±10%	ке	Vpeak/in/sec L-L	8.42	4.21	2.11	12.6	6.32	3.16	16.8	8.42	4.21	
Force Constant	Kf	N/Arms	406	203	102	609	305	152	812	406	203	
@ 25°C±10%	KI	lbf/Arms	91.3	45.6	22.8	137	68.5	34.2	183	91.3	45.7	
		Mech	anical S	Specific	ations							
Coil Assembly Mass ±15%	Mc	kg		25.0			36.2		47.4			
	IVIO	lbs		55.1			79.8			104		
Magnetic Way Type				MC100			MC150			MC200		
Magnetic Way Mass ±15%	Mw	kg/m		12.7			20.7			26.8		
		lb/in		0.71			1.16			1.50		
		Figures of	Merit a		ional Da	ata						
Electrical Time Constant	Te	ms		9.1			9.6			9.9		
Max.Theoretical Acceleration (3)	Amax	gʻs	20.4			21.1			21.5			
Magnetic Attraction	Fa	kN	19.6			29.4			39.4			
		lbf	4406			6609			8855			
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.036		0.036 0.026				0.020			
Max. Allowable Coil Temp. (4)	Tmax	°C	130			130			130			

Notes:


The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options. 1.

2. 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IC44 Outline Drawings

Ironcore Water-Cooled Motors Series

S

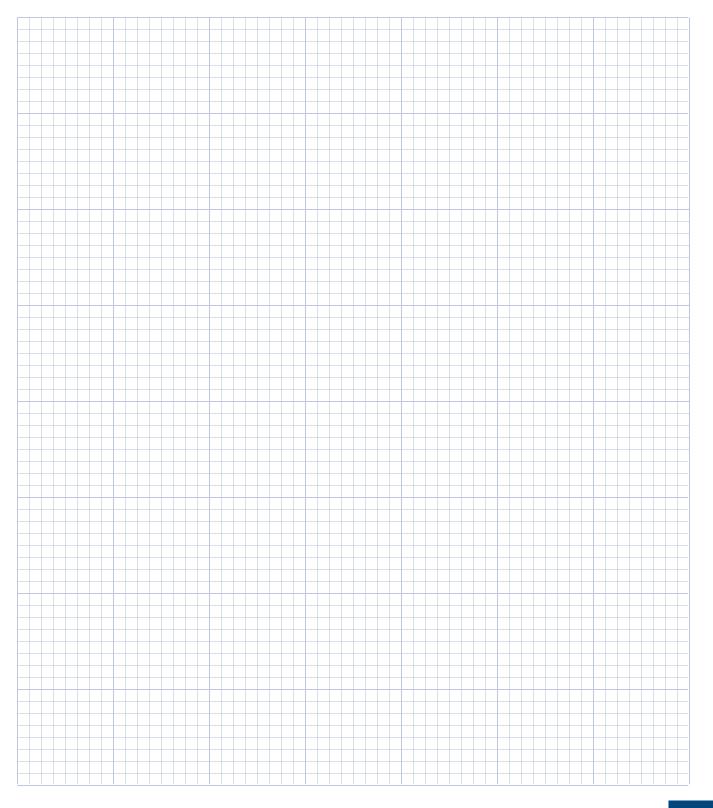
KOLLMORGEN

P3

P4

100 (4)

1200 (48)


С3

C4

100 (4)

1200 (48)

Notes

Sold & Serviced By:

SERVOZGO.com Toll Free Phone: 877-378-0240

Toll Free Fax: 877-378-0240 sales@servo2go.com www.servo2go.com

Ironcore Magnet Ways

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

"H"

With

Cover

14.4 (.556)

14.4 (.556)

14.4 (.556)

14.4 (.556)

16.4 (.645)

16.4 (.645)

Magnet assembiles are modular and can be installed in multiples

of same or alternate lengths. Standard lengths are shown below.

"J"

10.0 (.394)

10.0 (.394)

10.0 (.394)

10.0 (.394)

12.0 (.472)

12.0 (.472)

 \square

Toll Free Phone: 877-378-0240

GO.com

"H"

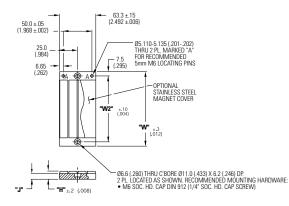
Without

Cover

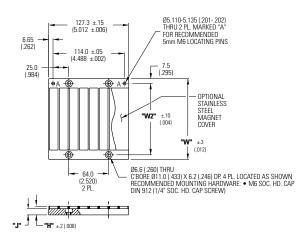
14.1 (.555)

14.1 (.555)

14.1 (.555)

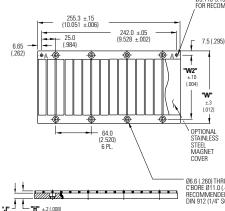

14.1 (.555)

16.1 (.634)


16.1 (.634)

Sold & Serviced By: SERV

MCxxx-0064


MCxxx-0128

Magnetic Way	Assembly Width	Mounting Hole Width	"J"	"H" With	"H" Without
Туре	"W"	"W2"		Cover	Cover
MC030-0128	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC050-0128	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC075-0128	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC100-0128	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC150-0128	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-0128	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)

Dimensions in mm (in)

MCxxx-0256

Ø5.110-5.135 (.201-.202) THRU 2 PL. MARKED "A" FOR RECOMMENDED 5mm M6 LOCATING PINS

Magnetic

Way

Type

MC030-0064

MC050-0064

MC075-0064

MC100-0064

MC150-0064

MC200-0064

Assembly

Width

"W"

60.0 (2.362)

80.0 (3.150)

105.0 (4.134)

130.0 (5.118)

180.0 (7.087)

230.0 (9.055)

Mounting

Hole Width

"W2"

45.0 (1.772)

65.0 (2.560)

90.0 (3.544)

115.0 (4.528)

165.0 (6.496)

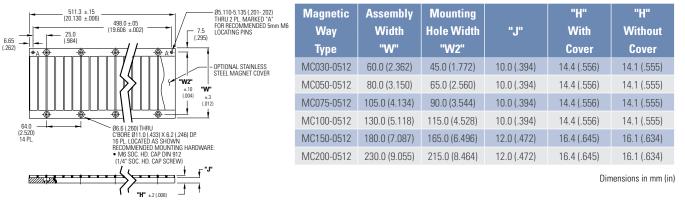
215.0 (8.464)

Magnetic	Assembly	Mounting		"H"	"H"
Way	Width	Hole Width	"J"	With	Without
Туре	"W"	"W2"		Cover	Cover
MC030-0256	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC050-0256	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC075-0256	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC100-0256	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC150-0256	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-0256	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)

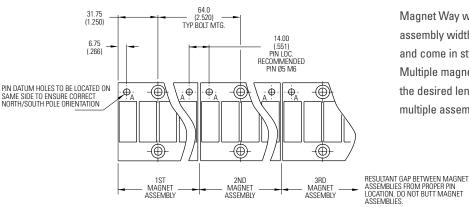
Ø6.6 (.260) THRU C'BORE Ø11.0 (.433) X.6.2 (.246) DP.8 PL. LOCATED AS SHOWN RECOMMENDED MOUNTING HARDWARE: • M6 SOC. HD. CAP DIN 912 (1/4" SOC. HD. CAP SCREW)

Dimensions in mm (in)

S

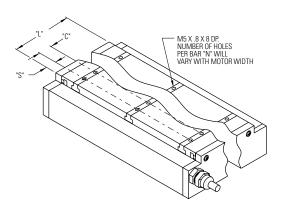

R

Dimensions in mm (in)



Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

MCxxx-0512



Typical Installation of Multiple Ironcore Magnet Assemblies

Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512 mm. Multiple magnet assemblies can be installed to obtain the desired length. Shown below is the method to mount multiple assemblies.

Typical Mounting Bar Lengths & Mounting Holes Tabulation

Magnetic Coil Type	Number of Holes "N"	Spacing Between Holes "C"	Mounting Bar Length "L"	"S"
ICXX-030	2	16.0 (0.630)	30 (1.18)	7.0 (.276)
ICXX-050	2	36.0 (1.417)	50 (1.97)	7.0 (.276)
ICXX-075	3	32.0 (1.260)	75 (2.95)	5.5 (.217)
ICXX-100	3	36.0 (1.417)	100 (3.94)	14.0 (.551)
ICXX-150	5	32.0 (1.260)	150 (5.91)	11.0 (.433)
ICXX-200	6	36.0 (1.417)	200 (7.87)	10.0 (.394)

Dimensions in mm (in)

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

APPROX. CBL. DIA

5.6mm (.22 IN)

APPROX. CBL. DIA.

5.1mm (.20 IN)

APPROX. CBL. DIA.

5.6mm (.22 IN)

5.8mm (.22 IN)

8.9mm (.27 IN)

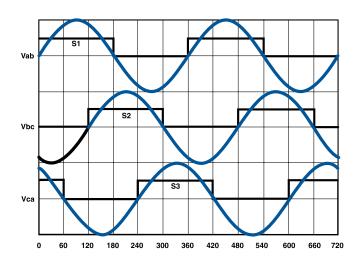
5.8mm (.22 IN)

6.9mm (.27 IN)

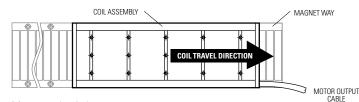
7.9mm (.31 IN)

7 IN)

7.9mm (.31 IN)


Wiring and Output

Motor Wire Table SEE TABLE BELOW FOR AWG DIA		Hall Effect Wire Table 26 AWG 6.0 DIA (.24")		Thermal Protection Wire Table Thermistor 26 AWG 3.8 (.15")				
Pin Number	Color or Wire No.	Function	Pin Number	Color	Function	Pin	Color	Transition Point
1	Red	ØA	1	Gray	+5 VDC	1	Black/White	120°C (IC/ICD)
2	White	ØB	2	Green	S1	I		90°C (IL)
3	Black	ØC	3	Yellow	S2	2		120°C (IC/ICD)
Connector Shell	Grn/Yel	GND	4	Brown	S3	Z	Black/White	90°C (IL)
Connector Shell	Violet	Shield	5	White	Return		see note 2	
			Shell	Shield	Shield		see r	IOTE Z


Notes:

Ground and shield connection at shell: first make/last break 1.

TIC-X extender cable is shielded 2

Motor BEMF phases A,B,C relative to Hall effect devices S1,S2,S3 with coil travel direction towards the motor output cable assembly exit as shown below.

IC WIRE TABLE COOLED (AC)					
WINDING CODE	AWG	APPROX. CBL. DIA.			
A1	18	5.6mm (.22 IN)			
A2	14	8.9mm (.27 IN)			
A3	10	7.9mm (.31 IN)			
A5	14	8 9mm (27 IN)			

12

IL WIRE TABLE

AWG

18

ICD WIRE TABLE

AWG

22

IC WIRE TABLE NON-COOLED AWG

18

18

14

18

14

10

WINDING CODE

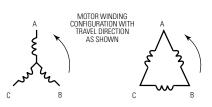
ALL (A1,A2,A3,A4)

WINDING CODE

ALL (A1 - A4)

WINDING CODE

A1 A2


A3

A5

A6

A7

A6

Magnet pole pitch:

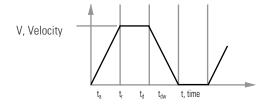
Both Ironcore (IC) and Ironless (IL) feature the same pole pitch, which is 32 mm (360 electrical degrees).

Note:

1. The diagram above refers to both Ironless and Ironcore motors

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

To size a Linear Motor, you will need to:


- 1. Define a Move Profile
- 2. Define the Load
- 3. Size the Motor and the Amplifier

From the move profile, we can calculate the maximum speed and the maximum acceleration/deceleration. From the load we can calculate all of the forces at constant speed and using the move profile all the dynamic forces during acceleration and deceleration. Once a motor is selected, the weight of the moving parts of the motor are added to the moving weight to calculate a total Peak Force and a total RMS force. The motor should be able to deliver the peak force and the calculated RMS force should be higher than the continuous force to ensure a known safety margin. The coil temperature rise can also be calculated to ensure that it is lower than the intended maximum temperature rise.

The maximum bus voltage and continuous and peak current can also be calculated and compared to the selected amplifier to be sure the calculated performances can be achieved.

1. Move Profile

Triangular/Trapezoidal

	Ur	nits
	SI	English
S _m - Move displacement	meters	inches
t _a - Acceleration Time	seconds	seconds
t _r - Time run at constant speed	seconds	seconds
t _d - Deceleration Time	seconds	seconds
t _{dw} - Dwell Time	seconds	seconds
V _m - Max Velocity	meter/sec.	inches/sec
A _m - Acceleration	meter/sec ²	inches/sec ₂
D _m - Deceleration	meter/sec ²	inches/sec ₂

example: Move 0.1 meter in 100 msec assuming $t_a = t_d$ and $t_r = 0$, (assume triangular move)

Max Speed: $V_m = 2 \bullet S_m / (t_a + t_d + 2 \bullet t_r)$ $V_m = 2 \bullet 0.1 / (100E-3)$ = 2 meter/sec

Max Acceleration/Deceleration

Acceleration	$A_{m} = Vm / ta$ $A_{m} = 2 / 50E-3$ $= 40 \text{ meter/sec}^{2}$ $A_{m} "g" = A_{m}/9.81$ $a (g) = 40 / 9.81$ $= 4.08 \text{ g}$
Deceleration	$\begin{array}{l} {D_m = V_m / t_d} \\ {D_m = 2 / {50E} {\text{-}}3} \\ = 40 \; \text{meter} / {\text{sec}^2} \\ {D_m \; "g" = D_m / {9.81}} \\ {d(g) = 40 / {9.81}} \\ = 4.08 \; g \end{array}$

u(g) = 40/9.01 = 4.08 g		
– 1 .00 g		
2. Load	Units	3
	SI	English
F _{ext} - External Force only	Ν	lbf
(Cutting force, etc.)		
F _{acc} - Acceleration Force only	Ν	lbf
F _r - Run Force at constant speed	Ν	lbf
F _{dec} - Deceleration Force only	Ν	lbf
F _{am} - Max. Acceleration Force	Ν	lbf
F _{dm} - Max. Deceleration Force	Ν	lbf
F _{dw} - Dwell Force	Ν	lbf
F _{rms} - RMS Force	Ν	lbf
μ - Coefficient of Friction	_	_
(bearing support)		
M _I - Load Mass	kg	lbs
M _c - Coil Mass	kg	lbs
M _{cb} - Counterbalance Mass	kg	lbs
F _a - Magnetic Attraction Force	Ν	lbf
CB - Counterbalance of load in %	_	-
q - Angle of Linear Displacement		
with horizontal		
(0°= horizontal, 90° vertical)	degrees	degrees
g - Gravity coefficient	9.81 m/s ²	386 in/s²
n - Number of motors in parallel	-	-

High Flex Cable Sets

• High Flex cable designed for dynamic, continuous flexing applications

HIGH FLEX CABLE SE

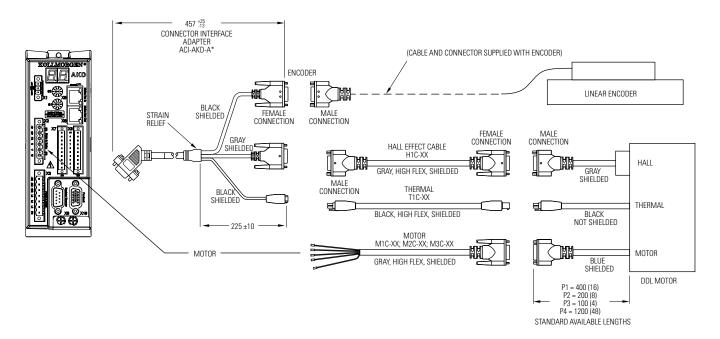
-

S

Features

• Cable track compatible

• Oil resistant PVC jacket

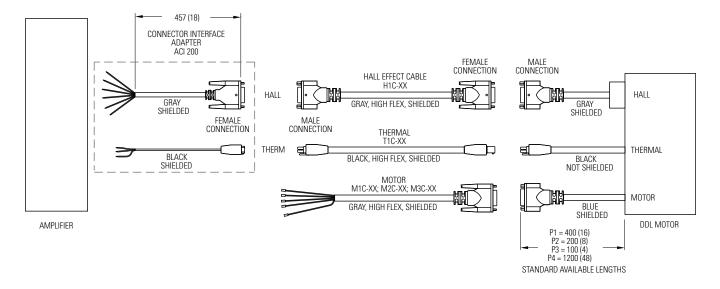

· Molded, high reliability connectors

- CE compliant, fully shielded low impedance cable and connectors
 Fully tested, color coded, shipped with schematics
- Complete cable system for simple and reliable plug-and-play installation

• 105°C / 600V motor cable, 105°C / 300V Hall effect and thermal sensor cable

Standard lengths of 1, 3, 6, 9, 12 and 15 meters available. For other lengths, consult Kollmorgen Customer Support.

High Flex Cables for Use with AKD


Note: ACI-AKD-A for use with Heidenhain Encoders. ACI-AKD-B for use with Renishaw Encoders.

Dimensions in mm (in)

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

High Flex Cables for Generic Applications

Dimensions in mm (in)

Minimum recommended Dynamic Bend Radius 15x cable diameter

Cable Assembly	AWG	Wire Diameter	Min. Dynamic Radius (15x wire Ø)
M1C	18	11.0mm (.430in)	165mm (6.5in)
M2C	14	12.6mm (.495in)	185mm (7.3in)
M3C	12	14.2mm (.560in)	215mm (8.5in)
T1C	22	6.0mm (.235in)	90mm (3.5in)
H1C	26	6.0mm (.235in)	90mm (3.5in)

Notes:

1. Cables are designed for minimum life cycle of millions of cycles under ideal conditions. Actual field application conditions may or may not produce the cable life described here in.

2. To ensure longest possible cable life under dynamic conditions, cables should be relaxed 24 hours before use by hanging freely at its mid-point. Cable is ready when very little memory is present. Cable should be installed in the 'plane of original flexure.' Cable should be installed with lowest possible mechanical tension. Avoid torsional bending.

3. Minimum recommended dynamic bend radius is 15x largest cable diameter used in cable track; use a large bend radius whenever possible. Clearance between cables and track should be a minimum of 20% of the cable diameter. Use of a clamp or nylon cable tie that creates localized stress within the cable track must be avoided. Minimum distance from the clamping point to the start of the bend radius must be 25x the largest cable diameter used in the track.

4. Cable track manufacturer should be consulted for application assistance.

S

Application Sizing

APPLICATION SIZIN

G

BASIC FORMULAS*:

We assume a general case where we have n motors solidly coupled pushing the load and a possible counterbalance weight Mcb (Mostly for vertical displacement).

Example of Coefficient of Friction µ:

Linear bearing w/ balls	0.002 - 0.004
Linear bearing w/ rollers	0.005
Steel on oiled steel	0.06
Steel on dry steel	0.2
Steel on concrete	0.3

Counterbalance Weight:

 $M_{cb} = MI \bullet CB/100$

Acceleration Force only:

 $Facc = [(M_1 / n) \bullet (1 + CB/100) + M_c] \bullet Am$

Run Force at constant speed:

$$\begin{split} F_r &= (M_{_{1}} \, / n + M_c) \bullet g \bullet SIN(q) + m \bullet COS(q) - (Mcb/n) \bullet g + \\ F_a \bullet \mu + F_{ext} / n \end{split}$$

Deceleration Force only:

 $F_{dec} = [(M_1 / n) \bullet (1 + CB / 100) + M_c] \bullet D_m$

Maximum Acceleration Force:

 $F_{am} = F_{acc} + F_r$

Maximum Deceleration Force:

 $\mathsf{F}_{dm}=\mathsf{F}_{dec}-\mathsf{F}_{r}$

Dwell Force:

 $F_{dw} = (M_1 / n + M_c) \bullet g \bullet [SIN(q)] - (M_{cb} / n) \bullet g$

RMS Force:

$$F_{rms} = \sqrt{\frac{F_{am}^2 \bullet t_a + F_r^2 \bullet t_r + F_{dm}^2 \bullet t_d + F_{dw}^2 \bullet t_{dw}}{t_a + t_r + t_d + t_{dw}}}$$

* All calculations are given in SI units. For English units use weight in Ibs instead of mass • g.

3. Size the Motor and Amplifier

example:

Moving Weight:	MI = 0.5kg
Number of Motors:	n = 1
Horizontal Move:	q = 0
Counterbalance Force:	$M_{cb} = 0$
External Force:	$F_{ext} = 0$
Friction Coefficient:	m = 0.01

Assume same move as above with a Dwell Time of 50 ms.

Run Force at Constant Speed:	F _r = 0.5 • 9.81	•0.01=0 .05 N
Acceleration Force only:	F_ = 0.5 ● 40	= 20 N
Deceleration Force only:	$F_{d} = 0.5 \bullet 40$	= 20 N
Maximum Accel Force:	$F_{am} = 20 + 0.05$	= 20.05 N
Maximum Decel Force:	F _{dm} = 20 - 0.05	= 19.95 N
Rms Force:	um	

$$F_{rms} = \sqrt{\frac{(20.05)^2 \bullet (50E-3) + (19.95)^2 \bullet (50E-3)}{100E-3 + 50E-3}}$$

 $F_{rms} = 16.3 \text{ N}$

Motor Sizing:

If we select an ironless motor for smoothest possible move we can use Motor IL060-30A1. This motor has a coil mass of 0.21 kg and no attractive force. By adding that weight in equations above, we need an additional Force of $0.21 \cdot 40 \cdot 0.01 = 0.084$ N. So Peak Force is 20.05 + 0.08 = 28.45 N and RMS force: 23.19 N. This motor will have a safety factor of $(38-23.19) \cdot 100/38 = 39\%$.

Sizing the Amplifier :

-	SI	English
l _a - Max Acceleration Current	А	А
I _r - Run Current	А	А
I _d - Max Deceleration Current	А	А
l _{dw} - Dwell Current	А	А
I _{rms} - RMS Current	А	А
K _f - Force Constant	N/A	lbf/A
R _m - Motor Electrical Resistance	Ohms L-L	Ohms L-L
K _e - Back EMF Constant	Vpeak/m/s	Vpeak/in/s
V _{bus} - Bus Voltage	VDC	VDC
L - Electrical Inductance	H L-L	H L-L
Max Acceleration Current:	l _a = f	am/K _f
Run Current at constant Speed:	$I_r = I_r$	F _r /K _f
Max Deceleration Current only:	$I_d = F$	- dm/K _f
Dwell Current:	$I_{dw} = I$	F _{dw} /K _f
RMS Current:	$I_{rms} = I$	F _{rms} /K _f

Units

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Units

Bus Voltage:

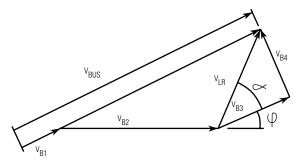
If we assume a sine wave drive with a phase advance [] (degrees) and full conduction, the minimum bus voltage (see Fig. 1) is:

 $V_{b2} = K_e \bullet V_m$

 $V_{b3} = 1.225 \bullet R_{m,hot} \times I_{rms}$

 $V_{b4} = 7.6953 \bullet L \bullet I_{rms} \bullet Vm/Pitch$

av = ARCTANGENT (V_{b4}/V_{b3})


 $V_{lr} = \sqrt{V_{b3}^2 + V_{b4}^2}$

 $V_{bre} = V_{b2} + VIr \bullet COS(av + \Box)$

 $V_{bim} = V_{lr} \bullet SIN(av + \square)$

$$V_{bus} = V_{b1} + \sqrt{V_{bre^2} + Vbim^2}$$

Note: If there is no Phase advance take =0°. Figure 1:

Thermal Considerations:

	SI	English
$\Delta \Box$ - Coil increase of temperature	°C	°F
R _{th} - Thermal Resistance	°C/W	°F/W
K _m - Motor Constant	N/\sqrt{W}	lbf/ \sqrt{W}
P _{out} - Output Power	W	W

Coil Temperature rise

 $\Delta \Box = R_{th} \bullet (F_{rms}/Km)^2$

Resistance of Coil hot (copper)

$$R_{m,hot} = \frac{R_{ambient} (234.5 + \Box_{hot})}{(234.5 + \Box_{hot})}$$
Power Losses
$$P_{Irms} = \Delta \Box / R_{th} = \underline{(\Box_{hot} - \Box_{ambient})}$$

$$R_{th}$$

Output Power

 $P_{out}(max) = F_{am} \bullet V_m$

Example: In above example with:

$$\begin{split} R_{th} &= 1.61 ~^\circ\text{C/W} \\ K_m &= 4.7 ~\text{N}/\sqrt{~\text{W},} \end{split}$$

Coil Temperature rise: $\Delta \square = 1.61 \cdot (23.19/4.7)^2 = 39.2 \circ C$ Power Losses PI = 39.2/1.61 = 24.34 Watts Max output Power P_{out}(max) = 57 Watts.

The Use of the Motor Constant K_m:

Cognizance of the heat load being generated by the linear motor is an important consideration in the application of any linear motor. Linear motors are direct drive devices, typically mounted very close to the moving load. Therefore, any heat generated by the linear motor needs to be managed to avoid affecting the process or workpiece that the moving load is carrying. The motor constant K_m is a powerful parameter that can be used to determine this heat load. K_m equals:

$$K_m = \frac{F}{\sqrt{P_c}}$$

where the RMS force F is in Newtons, the RMS heat load Pc is in watts and Km is in units of N/ \sqrt{W}

Application Sizing

The motor constant, K_M , allows us to determine motor performance capabilities such as shown in the following two examples. In the first example, we use K_M to calculate, for a given force, how many watts of generated heat are dissipated by the motor's coil assembly. In the second, we use K_M to determine the maximum RMS force developed by the motor when the dissipated power is limited to some value.

1. An application requires a continuous thrust force of 200 Newtons. The IC11-050 ironcore motor is a good candidate, having a continuous force rating of 276 Newtons and a K_M of 32.0 N/W. Therefore, since resistance rises 1.405 times at 130°C from the ambient value at 25°C, and since resistance is the square root denominator of K_M , we must write our equation as follows,

Force =
$$\frac{K_{M}}{\sqrt{Factor}} \sqrt{Power (dissipated)}$$

200 = $\frac{32.0}{\sqrt{1.405}} \sqrt{Watts}$

Watts = 54.9

This value of watts is the power or heat generated by the motor. It is interesting to note that for the same application, a larger IC11-100 ironcore motor, with a K_M of 49.1 N/ \sqrt{W} , would dissipate only 23.3 watts for the same force, F.

2. The same application requires that no more than 45 watts are to be dissipated by the motor into the surrounding structure and environment. What is the maximum RMS force that the IC11-050 motor may produce while not exceeding this power limit?

Maximum RMS Force =
$$\frac{32.0}{\sqrt{1.405}}$$
 $\sqrt{45}$ = 181 N

Therefore, if the motor delivers no more than 181 N of thrust force on an RMS basis, then this same motor will not dissipate more than 45 watts.

Continuous Force Fc as a Function of Ambient Temperature

In our data sheets the continuous rated force Fc is the RMS force that the motor can supply continuously 100% of the time, assuming the ambient temperature is 25 degrees C and with the coils achieving a maximum temperature of 130 degrees C. At higher (or lower) ambient temperatures, the Fc of the motor must be adjusted by a factor that is determined by the following equation:

Factor =
$$\sqrt{\frac{(130 - \square_{Amb})}{105}}$$

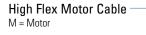
This factor vs. ambient temperature works out as:

5 °C	10	15	20	25	30	35	40	45
1.091	1.069	1.047	1.024	1	0.976	0.951	0.926	0.900

Application Sizing Worksheet

oll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

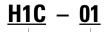
Customer:	Project Name:		
Contact:	Axis Name:		
Telephone:	Prepared by:		
fax:	E-Mail:		
Move			
Axis Orientation Typical Move Typical Travel Time Typical Move Time Maximum Speed Minimum Speed Max. Acceleration	mm mm seconds meters/sec meters/sec meters/sec meters/sec2	 vertical in in inches/sec inches/sec inches/sec² 	□g
or Accel/Decel Time Dwell Time More Profile	seconds seconds □ triangular	S-curve	
Loads Friction Coefficient Max Load Mass Thrust Force Is this thrust present during Accel/Decel?	□ kg □ N	□ Ib □ Ibf □ No	
Precision			
Repeatability Absolute Accuracy Resolution	μm	□ inch □ inch □ inch	
Encoder Feedback Signal Period Resolution Electronic Interpolation	💶 lines/mm	□ lines/in Auliplication Factor: _	
Environment			
Ambient Temperature Max Permissible Temperature Rise Clean Room Environment Is Water or Air Cooling Permissible? Vacuum?	□ Yes □ Yes	 □ °F □ °F □ No If Yes Class □ No □ No Pressure 	9:
Amplifier & Power Supply			
Max Voltage Max Current Power Supply Voltage	Amps	□ Three Phase □ 60 Hz	


Model Nomenclature

Length in meters 01 = 1 meter

m

High Flex Cable Numbering System



Wire Size _

1C = 18 AWG for AKD 3/6 Amp amplifiers 2C = 14 AWG for AKD 12 Amp amplifiers * 3C = 12 AWG for AKD 24 Amp amplifiers *

	0	3	=	3 meters
	0	6	=	6 meters
	0	9	=	9 meters
	1	2	=	12 meters
	1	5	=	15 meters
Example: M1C - 06				
High flex motor cable	terminated	with	conr	pectors at m

High flex motor cable, terminated with connectors at motor and amplifier ends, 18 AWG, for 3 or 6 Amp AKD.

<u>M1C</u> – <u>01</u>

High Flex Hall Effect Cable H1C = Hall Effect

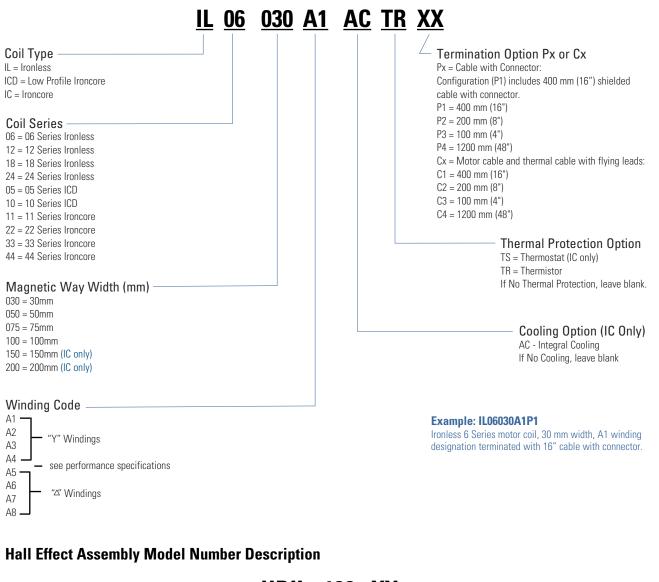
Example: H1C - 06

High flex Hall Effect cable, terminated with connectors at motor and amplifier ends.

 Leng	gth	in meters
01	=	1 meter
03	=	3 meters
06	=	6 meters
09	=	9 meters
12	=	12 meters
15	=	15 meters

High Flex Thermal Cable T1C = Thermal T2C = Thermal (S300, S600)

Example: T1C - 06 High flex Thermal cable, terminated with connectors at motor and amplifier ends.


— Len	igth	in meters
01	=	1 meter
03	=	3 meters
06	=	6 meters
09	=	9 meters
12	=	12 meters
15	=	15 meters

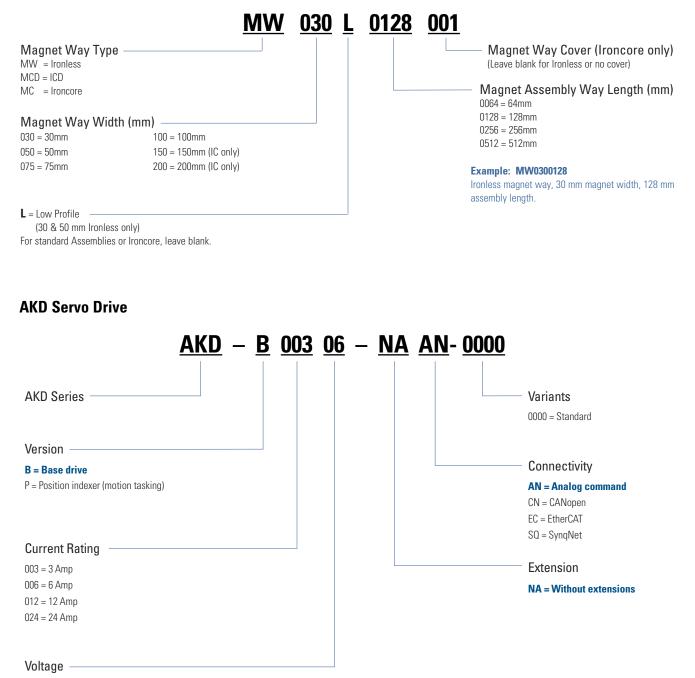
* For application assistance regarding cable selection for these and other higher current rated amplifiers, contact a Kollmorgen Customer Support representative.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Coil Model Number Description

Example: HDIL100P1

Hall effect assembly with digital outputs for Ironless motor terminated with 16" cable with connector.


m

Model Nomenclature

m

Magnetic Way Model Number Description

06 = 120/240 Vac 1Ø/3Ø

Note: Options shown in bold blue text are considered standard.

MOTIONEERING APPLICATIO

z

m Z

G

Z

MOTIONEERING® Application Englished action and the service of the

To help select and size Kollmorgen components, this Windows[®]-based motor-sizing program takes a systems approach to the selection of brushless, DC servomotors, stepper motors and drives. MOTIONEERING application engine, available at www.kollmorgen.com, uses a project concept for the collection and saving of rotary and linear multi-axis load information. This provides the user the flexibility to sum the effects of multiple axes of motion for power supply and shunt regeneration sizing.

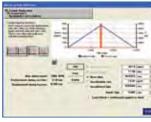
A wide variety of linear and rotary mechanisms are provided including lead screw, rack and pinion, conveyor, nip rolls, cylinder, rotary, and direct data-entry using unique sizing algorithms and product databases criteria.

The searchable database consists of hundreds of systems on product combinations including rotary housed and frameless brushless servomotors, direct drive rotary and linear brushless servomotors, linear positioners (electric cylinders, rodless positioners, and precision tables) and stepper systems.

The application engine also provides versatile units-of-measure selection options for mechanism and motion profile dataentry, with the ability to convert data into other available units. Online Help explains program functions and the definition of terms and equations used in the program.

Features

- Group multiple mechanisms within a "project" organize and combine data for power supply and regeneration sizing
- Types of mechanisms for analysis include lead screw, rack and pinion, conveyor, nip rolls, rotary and direct drive linear motor
- Motion profile options include simple triangle, 1/3-1/3 trapezoidal, variable traverse trapezoidal, and more
- Search results display shows color highlighted solution set of options for easy evaluation of system specifications and selection


Supported Operating Systems

• Microsoft® Windows 2000, XP, Vista

MOTIONEERING 6.0 includes

- Electric cylinder sizing and selection with AKM servomotor systems
- Rodless actuator with AKM servomotor systems (performance curves included)
- Precision table with AKM servomotor systems (performance curves included)
- PDF report functionality (includes application, drive, motor, positioner, and system specifications all in one easy-to-read report)

Sold & Serviced By

GO.com

