Automation and Motion Control

PROGRAMMABLE AUTOMATION SOLUTIONS

KOLLMORGEN

SERV02G0.com

Because Motion Matters[™]

Kollmorgen: Removing the Barriers of Design, Sourcing, and Time. At Kollmorgen, we know that OEM engineers can achieve much more when obstacles aren't in the way.

Integrating Standard and Custom Products: The optimal solution is often not clear-cut. Our application expertise allows us to modify standard products or develop totally custom solutions across our whole product portfolio so that designs can take flight.

Providing Motion Solutions, Not Just Components: As companies reduce their supplier base and have less engineering manpower, they need a total system supplier with a wide range of integrated solutions. Kollmorgen offers complete solutions as well as motion subsystems that combine programming software, engineering services and best-in-class motion components.

Global Footprint: With direct sales, engineering support, manufacturing facilities, and distributors spanning the Americas, Europe, Middle East, and Asia, we're close to OEMs worldwide. Our proximity helps speed delivery and lend support where and when they're needed.

Financial and Operational Stability: Kollmorgen is part of Fortive Corporation. A key driver for growth in all Fortive organizations is the principle of "kaizen" – or continuous improvement. Cross-disciplinary teams of exceptional people evaluate processes and develop plans that result in superior performance.

Kollmorgen: Your partner. In Motion.

KOLLMORGEN

www.servo2go.com

Removing the Barriers of Design, Sourcing, and Time

At Kollmorgen, we know that OEM engineers can achieve a lot more when obstacles aren't in the way. So, we clear obstacles in three important ways:

Integrating Standard and Custom Products

The optimal solution is often not clear-cut. Our application expertise allows us to modify standard products or develop totally custom solutions across our whole product portfolio so that designs can take flight.

Providing Motion Solutions, Not Just Components

As companies reduce their supplier base and have less engineering manpower, they need a total system supplier with a wide range of integrated solutions. Kollmorgen offers complete solutions as well as motion subsystems that combine programming software, engineering services and best-in-class motion components.

Global Footprint

With direct sales, engineering support, manufacturing facilities, and distributors spanning the Americas, Europe, Middle East, and Asia, we're close to OEMs worldwide. Our proximity helps speed delivery and lend support where and when they're needed.

Financial and Operational Stability

Kollmorgen is part of Fortive. A key driver in the growth of all Fortive divisions is the Fortive Business System, which relies on the principle of "kaizen" - or continuous improvement. Using world-class tools, cross-disciplinary teams of exceptional people evaluate processes and develop plans that result in superior performance.

Kollmorgen: Your partner. In Motion.

Sold & Serviced By: SERVOZGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Table of Contents

	► Automation and Motion Control Kollmorgen Automation Suite [™] AKD [®] PDMM Drive-Resident Controller AKD [®] PCMM Stand-Alone Controller EtherCAT [®] Real-time Motion Bus	8 18 20 22	Human Machine Interface (HMI) I/O Terminal Kollmorgen Developer Network	6 23 26 27
	 Servo Drives AKD[®] Servo Drives AKD[®] -N Decentralized Servo Drives 			28 32 44
	Safe Motion			52
	► Servo Motors AKM® Rotary Servo Motor (up to IP67) AKMH [™] Hygienic & Washdown Servo Motor	rs (up to l	IP69K)	58 62 74
0	Direct Drive Linear Motors			84
O	Direct Drive Rotary Motors Cartridge Direct Drive Rotary [®] (DDR) Motor Housed Direct Drive Rotary Motors	S		92 96 100
	► Frameless Brushless Motors KBM [™] Frameless Brushless Motors TBM [™] Frameless Brushless Motors			102 102 106
	Stepper Drives and Motors P Series - P5000, P6000, P7000 Drives Stepper Motor Overview Hybrid PMX Stepper Motors Hybrid CT and N/K Stepper Motors	110 114 116 118	Synchronous AC Motor Overview	108 120
	► Servo Gearing Micron [®] Quick Selection Guide Micron [®] TRUE Planetary [™] Gearboxes Micron [®] AquaTRUE [™] IP69K Washdown Gea	rhovos		122 122 124 128

	Linear Actuators			130
	EC & N2 Series Electric Cylinders			132
	R & N Series Rodless Actuators			138
	DS Series Precision Tables & Slides			144
Q	Permanent Magnet DC Motors (PMI)	DC)		148
	SR Series - SCR-RATED	150	BA Series - Low-Voltage (12/24 Vdc)	155
	STF Series - Washdown SCR-RATED	152		
	EP Series - Explosion Proof	154		
<u>es</u>	Optimized Solutions and Special During the second secon	ity Mot	ors	156
	Optimize Solutions	156	EKM Series Brushless AC Servo Motors	160
	Custom Capabilities	158	MX Series Hazardous Duty Motors	161
	Proven Design Capabilities	159	Hazardous Duty Synchronous Motors	161
	Special Duty Motors	160	EP Series Explosion-Proof Motors	161
	Goldline® S Series Submersible Motors	160	EB Series Explosion-Proof Servo Motors	161
	Servo Drive Accessories and Cables	5		162
	Drive System with AKD-x0030602406	164	Mains Filters	172
	Mechanical Accessories for AKD-N Drives	166	Regen Resistors	176
0	Motor Chokes	168	Capacitor Modules	180
	Mains Chokes	170	AKD® Performance Cables	182
	Warehouse (NDC) Solutions			188
	AGV Control Systems			190
	Model Nomenclature			194
	MOTIONEERING® Online			219

Automation and Motion Control

Comprehensive Line of Products Offering Complete System Solutions

Kollmorgen's comprehensive line of control software and hardware, drives and motors enables you to complete your solutions with one supplier:

Whether you want a stand-alone controller or drive-resident, Kollmorgen's Automation Suite can coordinate up to 128 axes, and synchronize the path of up to 32 axes per control engine. We offer standard languages according to IEC61131 -3, as well as C, C+, C++, C#, .NET, and our industry-leading graphical programming language, Pipe Network.

Our broad range of motor- and drive technologies and gearing and actuation products interface seamlessly with our KAS.

Control of motors with AKD® PDMM programmable multi-axis master

Flexible single or multi-axis drive solutions in decentralized and central architectures with AKD-PDMM and the Kollmorgen Automation Suite

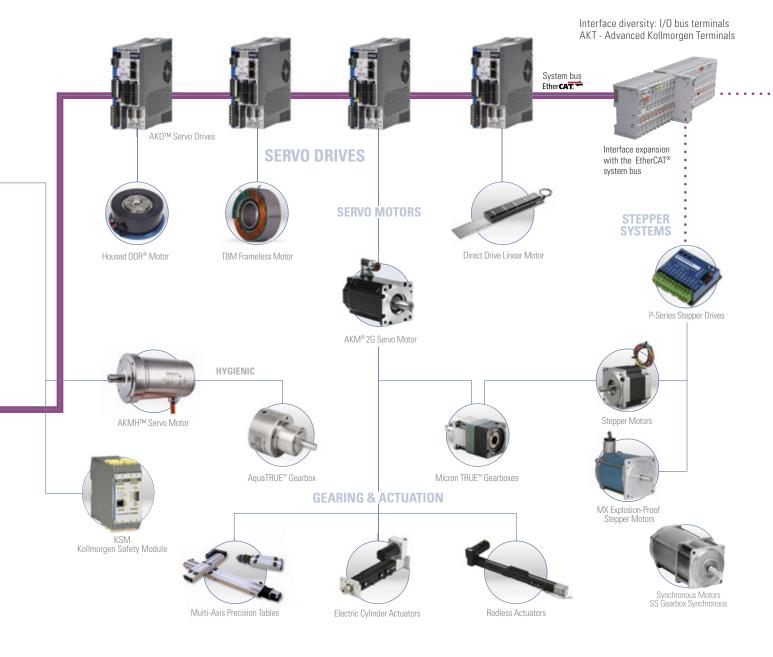
Supported System Bus Protocols

完 📶 🕬 🕬 Syna Net 🕬

0

6

traditional, independent controller hardware.



Diverse and Scalable Drive Solutions

Need more axes? Different motor types? Linear direct drives here, direct drives with no housing there? No problem! With the EtherCAT[®] system bus you can connect more AKD servo drives and add motors of all performance classes from the Kollmorgen product range.

Interfaces are frequently the bottleneck in system design, but not so with the Kollmorgen Automation Suite (KAS). With the IO Advanced Kollmorgen Terminals (AKT) and the EtherCAT[®] bus coupler, you possess a flexible interface system which meets all of your requirements.

Control and monitor the processes on the machine with the AKI series touch panels. With the Kollmorgen Visualization Builder (KVB), you can program ergonomic user interfaces which guarantee safe handling and which display machine data clearly.

Kollmorgen Automation Suite[™]

Kollmorgen's machine automation platform dramatically simplifies how you approach the many complex automation challenges of today's machines. We have created an integrated development environment (IDE) that greatly simplifies programming and system configuration and combines multiple tools into one intuitive platform, we have global support and experienced engineering services to solve your biggest challenges, and our best-inclass automation and motion components deliver unparalleled motion performance; all of which combine to help you create a differentiated machine, get to market faster, and have the comfort and ease of collaborating with just one vendor.

Integrated Development Environment – Quickly and easily design, refine and troubleshoot all of a machine's automated solutions in this highly intuitive application featuring a single programming environment that provides great flexibility and control.

Engineering Services – A Kollmorgen representative establishes a collaborative, consultative relationship from the beginning by assessing needs and objectives. Field engineers and application engineers constantly support the design and build phase as well as the factory installation phase to ensure that your needs are met from concept to production. Additional services are available that include development, on-site deployment, and training.

Best-in-Class Automation and Motion Components – With Kollmorgen, there's security in knowing the necessary components that form the building blocks of a machine are always available. No one offers a wider range of standard, modified standard and custom products. Motion is at the core of our Automation Suite, where others in the industry consider it an add-on.

Kollmorgen Co-engineering – More than a solutions provider, we co-engineer a better fit with your company using both products and services. From a wide breadth of product modifications, over 500,000 standard options with 5-day delivery on our AKM[®] line, to aftermarket revenue protection and training programs, Kollmorgen co-engineering helps you differentiate your machine and business.

We accept your challenges as our own. That's the Kollmorgen co-engineering difference.

KOLLMORGEN

Sold & Serviced By:

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

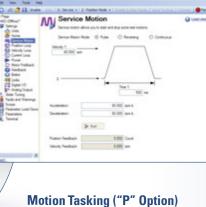
The Advantages of Kollmorgen Automation Suite[™]

 High machine performance 	 Up to 25% greater throughput
	• Up to 50% scrap reduction
	Improved accuracy
	Advanced drive technology for machines with outstanding performance
• Fast to market	• Up to 30% reduction in development time
	• Services available for program development, training, start-up, and support
	 Industry standard programming environment and industrial networks
Enhanced ease-of-use and integration	 Single integrated programming environment for automation, drive technology, and all hardware
	 Drag-and-drop motion programming
	• Certified components that are tested to work together
	• Seamless integration and configuration of amplifiers for optimal set-up
• A demonstrated solution	 The result of over 20 years of permanent optimization of programming and implementing automation and drive solutions
	 Provides the diverse experience of a great number of suppliers and platforms that form today's Kollmorgen
	 Used successfully for more than 6 years

Scalable Programmability

Kollmorgen delivers cutting-edge technology and performance with the AKD[®] servo drive and KAS controls platform. Whether your application requires a single axis or over 100 fully synchronized axes, Kollmorgen's intuitive software and tools scale to meet your needs. From simple analog torque control to the latest high-performance automation network, the AKD servo drive packs power and flexibility for virtually any application into one of the most compact footprints of any digital servo drive in the industry.

- Patented auto-tuning delivers optimized performance in seconds.
- 1.5MHz current loop and 16KHz velocity loops offers greater bandwidth and performance Optimized performance in seconds
- Greater throughput and accuracy
- Easy-to-use Graphical User Interface (GUI) for faster commissioning and troubleshooting
- Flexible and scalable to meet any application


BASIC Programmable 1.5 Axis Drive ("T" Option)

- Adds BASIC programmability to base AKD
- 4Khz programmable interrupt service routines
- Conditional statements, built-in math functions, user functions and subroutines
- Includes 2 high-speed digital inputs
- Same package size as base drive
- Expandable to 31 digital I/O and 4 analog I/O
- Optional integrated SD card for easy backup and drive cloning
- Includes electronic camming functionality

- Controlled by analog torque-and-velocity commands
- Includes electronic gearing via X9 connector
- Includes access to 11 digital I/O and 2 analog I/O on base drive
- Includes 2 high-speed digital inputs
- Expandable to 31 digital I/O and 4 analog I/O

KOI.I.MORGEN

Adds simple point-and-click indexing to

base drive

- Provides user with pre-programmed options
- Guides novice user through simplified steps to create indexing moves
- Network connectivity to EtherCAT[®], CANopen[®], Profinet[®] RT, Ethernet/IP[™], TCP/IP, SynqNet[®] and others
- MODBUS port for communication with HMI

10

Basic Operation

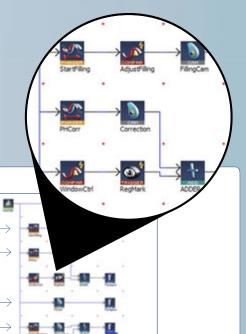
Single-Axis

RANGE OF KOLLMORGEN AUTOMATION SUITE CTOIL Free Phone: 877-378-0240 CTOIL Free Phone: 877-378-0249

Toll Free Phone: 877-378-0240 Toll Free Pax: 877-378-0249 sales@servo2go.com www.servo2go.com

Programmable Drive Multi-Axis Master PDMM ("M" Option)

- Scalable solution for use as a single-axis drive with integrated programmable automation controller
- Choose from all five IEC 61131-3 languages for soft PLC process programming
- Program motion using your choice of PLCopen for motion or our innovative Pipe Network[™]
- 4KHz PLC scan rate and EtherCAT® updates
- Complete line of HMI panels with integrated software to simplify GUI development
- Exclusive function blocks, such as "wait," enable your program to act as a scanning or sequential language
- On-board I/O includes 17 digital (with 2 high speed inputs) and 2 analog
- Connects to AKT[™] network I/O for nearly unlimited expandability


AKD Servo Drive AKD Servo Drive

Seamlessly add additional axes and AKD PDMM serves as a high-performance multi-axis machine controller

- SD card for easy backup and system updates
- IoT-enabled integrated webserver for diagnostics and troubleshooting from any computer or mobile device
- Provide true synchronized-path control of up to 16 axes
- Reduce cabinet size and wiring requirements with a single, compact package
- Easily manage remote I/O and the I/O of all attached drives via EtherCAT®
- Use industry standard PLCopen for motion, or step up to Kollmorgen's Pipe Network[™] to program sophisticated camming and gearing applications in a matter of minutes

5

O Pipe Network Kollmorgen Visual Motion Programming

Kollmorgen Visual Motion Programming

- Accelerate development by programming tasks in hours that would otherwise take weeks
- Improved coding quality through visual programming and by using pre-built modules that have been thoroughly tested and optimized
- Easy knowledge transfer, replacing pages of complex code with easily understood graphical representations
- Available on PDMM controllers

Programming

Multi-Axis Programming

Pipe Network provides a one-to-one translation of a mechanical system into a logical world as shown in the

for examples of common machine architectures to further accelerate your development.

Vertical Form Fill and Seal machine above. Click and build your motion program in minutes, or contact Kollmorgen

Development

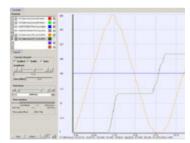
A fully integrated development environment (IDE) provides the tools you need to develop everything from PLC and motion programs to HMI and device setup – all in one place. It's easier to learn and use, eliminates the need for multiple programs and data stores, and helps you bring a higher-quality machine to market faster.

Integrated Development Environment (IDE)

- · Our fully integrated programming environment incorporates standard IEC61131-3 compliant tools.
- \cdot Use our network configurator and predefined user blocks to streamline development and ensure programming quality.

Our IDE offers two powerful programming methods and a complete set of tools for simulating, testing and optimizing motion.

Embedded Motion


• Choose PLCopen for motion if you already use this industry standard in your existing products, and want to continue using it within the Kollmorgen Automation Suite programming environment.

	10000000	338083
Sectors	an own	
	1-440340	
-155	State States Thread	
and the second second	A come of a company	18.2
	Terrard 1 property	
-	PERSONAL PROPERTY AND INCOME.	
	Autorit i Autorit	
	The second secon	
Part of the second	Arrest 1 manual	
head		(MC
- ITT)	- Set transf	
- Hannellow	the land brand	
2.7 Mar - 1	1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
and the second second	Barrante 2 Second	UNU
	(and the second	
a planting the	Date Jack Street	
TO DESCRIPTION	and the second second	
C PARTY ELLER		
	- Andre Same	
	then land lotses	

Embedded wiring diagrams and oneclick IO variable mapping makes drive integration easy.

Integrated Tools

Scope motion parameters to fine-tune performance and synchronization, portrayed with up to eight channels and flexible mapping of variables.

One-click motion simulation using virtual axes alongside real axes for quick development and implementation.

Complete motion system configuration from one location with embedded AKD Workbench allows configuration of all servo drives over EtherCat[®].

Pipe Network[™] Kollmorgen Visual Motion Programming

DITIMORCEN

Choose Kollmorgen's exclusive
 Pipe Network[™] for the quickest,
 easiest way to represent
 mechanical systems in software
 using drag-and-drop tools
 to create an intuitive visual
 representation.

4		52		0	
	-	-		U	Ì
	-	•	i	*	
			-	U	
		1		0	ĺ

Lifecycle

Sold & Serviced By: SERVOZGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Kollmorgen is committed to helping you maximize the productivity and profitability of your machine across an extended lifecycle. Design and build today, with confidence for a full return on investment for years to come.

Continual Development Testing

Kollmorgen develops, tests, and continually validates all new products to ensure compatibility and performance, in the Kollmorgen ecosystem.

Maintenance Support Tools

Our tools give end-users the ability to remotely verify continuous operation and communicate issues effectively.

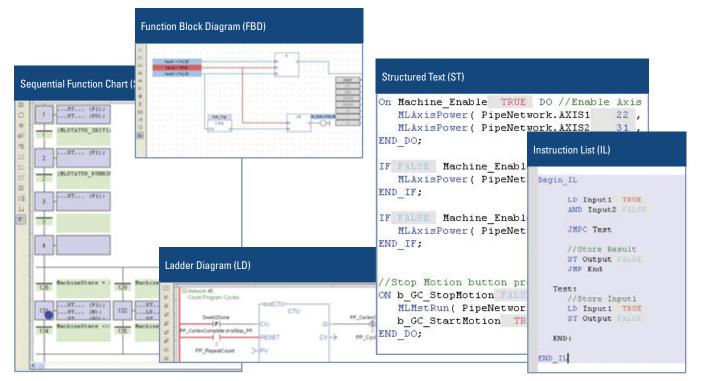
Built-in, mobile-ready webserver provides performance information with no software required

Software and Hardware Security

Password protection for source code and hardware connectivity provides security for both OEMs and end-users.

- ✓ Protect source code
- ✓ Protect network access

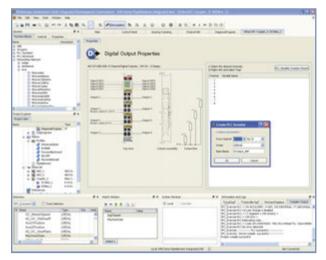
Software PLC

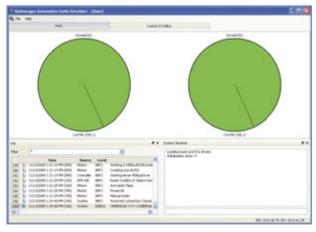


Easy-to-Use, Auto-Discover, Auto-Recognize, Auto-Configure, Scope, CAM, IEC 61131-3 PLC

• Kollmorgen Automation Suite[™] offers a set of tools that is familiar to automation programs, but has enhancements like predefined motion blocks and visual diagnostics tools.

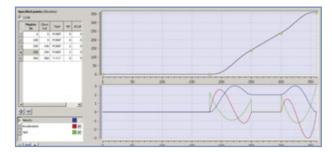
IEC 61131-3 Toolkit Features	 IEC-61131-3 engine Re-compile while running animated variables Industry and englishing Service Function Planta 	 PID temperature control block Debugger Tools with Watch window Debugger Tools with Watch window
	Industry and application Specific Function Blocks	8-channel Real-Time Oscilliscope


- The environment for developing PLC programs has been created with an emphasis on speed. Recognize and configure motion control components to accelerate systems development. With auto-recognize and auto-configure features, testing efforts are reduced.
- Once an application or a function block has been created for a given application, the user can store this as a "user-defined function block" to promote reuse of tested software in subsequent projects to save time.
- Maintain your standards in corporate programming languages by using any of the IEC 61131-3 languages. In fact, enhance it further by mixing and matching languages to deliver the best solution for the application.



All five IEC 61131-3 PLC languages are supported

• Kollmorgen Automation Suite's integrated development environment (IDE) allows the developer to create solutions without having to connect a single device by using the offline simulator. Start creating systems before the first hardware component is delivered. Simply configure your system network in "offline development" mode and change the status of the devices one-by-one when you actually connect them.



Simulator with PLC simulation and motion

Automatic I/O variable creation with scope definitions Adding bus couplers with I/Os onto a motion network topology

- Standard debugging features like "step into", "step over", etc. are available to troubleshoot programs. In addition, debug your code using the softoscilloscope and continuously plot up to 8 variables at network update rates the display can also be configured to suit the scale that the developer desires.
- Our CAM editor lets you create complex CAM profiles using a graphical interface. When converting, it is also possible to import existing CAM profile points into the CAM editor to allow you to seamlessly reuse your existing profiles.
- CAM-on-the-Fly lets you change CAM profiles based on network inputs or changes in machine conditions.

Graphical environment for creating CAMs

Motion Programming

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Our motion control solutions are backed by Kollmorgen's vast experience solving application-specific problems for the many industries we serve. Kollmorgen Automation Suite[™] offers several advantages that have helped our customers accelerate the development of more precise, highperformance motion. For example:

Superior machine synchronization, with motion-optimized runtime engine and deterministic EtherCAT[®] network:

- · IEEE1588 distributed clock correction
- · Hardware-based synchronization
- \cdot PLC code execution at EtherCAT $^{\scriptscriptstyle (\! B\!)}$ update rate, eliminating process delay
- $\cdot \operatorname{Low}$ hardware latency

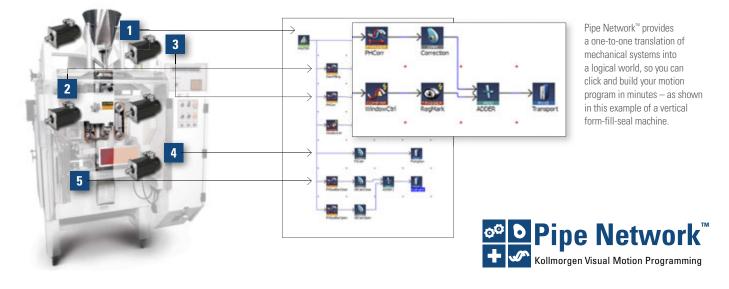
Flexible profile generation, allowing problem-solving through multiple methods branching out of standard pre-packaged tools:

- · Pre-loaded and user-defined motion blocks optimized for specific industries and applications
- \cdot Configurable through Pipe Network $^{\!\scriptscriptstyle M}$ and PLCopen for motion

Sold & Serviced By

Motion Capabilities

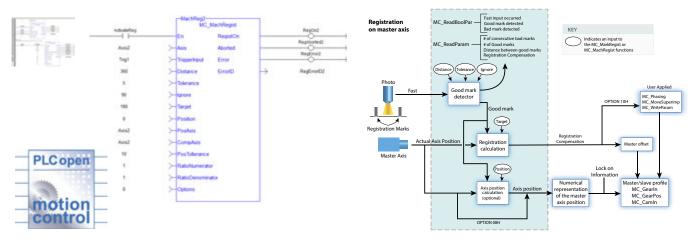
- · Absolute and incremental moves
- · Jerk-limited moves (S-curve)
- CAM profiles (static or with "on-the-fly" profile changes)
- · Gearing (EtherCAT[®] synchronized)
- Multiple high-speed registration methods (FPGA-based capture engine)
- · Homing
- · Tension control based motion
- · Motion-based functional safety
- · Superimposed moves
- · Phase adjust
- · Multi-axis interpolated motion


Program motion quickly and intuitively with our Pipe Network[™] graphical programming languager 05 choose the industry-standard PLCopen for motion to easily reuse your existing programming resources.

Pipe Network[™] Visual Programming Environment

Our innovative Pipe Network[™] programming environment provides a visual, drag-and-drop model of your machine's motion, including complex axis and cam relationships.

Program Tasks in Hours Instead of Weeks:


- · Intuitive visual programming with a library of prebuilt modules.
- · Easy knowledge transfer, replacing pages of complex code with easily understood graphical representations

PLCopen for Motion

The Kollmorgen Automation Suite[™] IDE incorporates PLCopen for motion, a widely accepted open industry standard.

In the example shown here, PLCopen for motion is used within the Kollmorgen Automation Suite IDE to precisely control axis position based on registration marks:

SERVO GO.com AKD[®] PDMM Drive-Resident Contro sales@servo2go.com

Build Simpler and Better with Drive-Resident Machine and Motion Control

Extend your design options. Control as many as eight axes or more without the need for a PLC or PAC. Reduce cabinet space and wiring requirements. Program perfect machine and motion control for any project using a single, fully integrated programming environment. Build a better machine at a lower cost.

Our new addition to the AKD® drive family combines one servo axis, a master controller that supports multiple additional axes, and the full automation capability of Kollmorgen Automation Suite[™]—all in a single, compact package.

Welcome to the AKD® PDMM programmable drive, multi-axis master.

Performance Specifications

120/240 Vac 1- and 3-Phase	Continuous Current (Arms)	Peak Current (Arms)	H (mm/inches)	W (mm/inches)	D (mm/inches)
AKD-M00306-MCEC-0000	3	9	168 / 6.61	89 / 3.50	156 / 6.14
AKD-M00606-MCEC-0000	6	18	168 / 6.61	89 / 3.50	156 / 6.14
AKD-M01206-MCEC-0000	12	30	196 / 7.72	107 / 4.21	187 / 7.36
AKD-M02406-MCEC-0000	24	48	248 / 9.76	96 / 3.78	228 / 8.98
240/400/480 Vac	Continuous	Peak Current	Н	W	D
3-Phase	Current (Arms)	(Arms)	(mm/inches)	(mm/inches)	(mm/inches)
3-Phase AKD-M00307-MCEC-0000		(Arms) 9	(mm/inches) 256 / 10.08	(mm/inches) 99 / 3.90	(mm/inches) 185 / 7.28
	(Arms)				
AKD-M00307-MCEC-0000	(Arms) 3	9	256 / 10.08	99 / 3.90	185 / 7.28
AKD-M00307-MCEC-0000 AKD-M00607-MCEC-0000	(Arms) 3 6	9 18	256 / 10.08 256 / 10.08	99 / 3.90 99 / 3.90	185 / 7.28 185 / 7.28

*Maximum axis count depends on motion/automation complexity and performance (8 axes nominal based on medium complexity at 4 kHz network update rate)

Features

- Kollmorgen Automation Suite[™] provides fully integrated programming, testing, setup and commissioning
- Embedded web server utility simplifies service

Sold & Serviced By:

e 877-378-0240

www.servo2qo.com

- Control 32 axes or more* while reducing machine footprint
 - EtherCAT® multi-axis master motion controller integrated with a standard AKD[®] drive axis
 - Full IEC61131-3 soft PLC for machine control, with support for all 5 programming languages
 - Choice of PLCopen for motion or Pipe Network™ for programming motion control
 - 32 KB non-volatile memory stores machine data to eliminate scrap upon restart after power failure
 - SD Card slot simplifies backup and commissioning, with no PC required
 - On-board I/O includes 13 digital inputs, 4 digital outputs, 1 analog input, 1 analog output (expandable with AKT series of remote I/O)
- · Works with Kollmorgen Visualization Builder for programming AKI human-machine interface panels

 $\overline{}$

)I.I.MOR(

SERVOL GO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Sold & Serviced By:

A Single, Scalable Development Suite

Kollmorgen Automation Suite[™] simplifies and accelerates development through a unified system of software, hardware, and collaborative co-engineering. This scalable solution provides a fully integrated development environment for any application, whether you're programming a single axis of motion, a multi-axis AKD[®] PDMM system, or a PCMM-based system up to 64 axes or more. Kollmorgen Automation Suite has been proven to:

- Improve product throughput by up to 25% with industry-leading motion bandwidth
- Reduce scrap by up to 50% with world-class servo accuracy, seamless power-failure recovery and highly dynamic changeovers
- Increase precision for better quality, reduced waste and less downtime using EtherCAT®—the field bus with motion bus performance
- Enable more adaptable, sustainable and innovative machines that measurably improve marketability and profitability

A Single Family of Servo Drives

Kollmorgen AKD® servo drives deliver cutting-edge performance in a compact footprint. From basic torque-and-velocity applications, to indexing, to multi-axis programmable motion, these feature-rich drives offer:

- Plug-and-play compatibility with your servo motor
- All the advantages of Kollmorgen's breadth of motor platforms including AKM[®], CDDR[®], and other direct-drive technologies
- The fastest velocity and position loop updates
- Full-frequency auto-tuning for perfect motion across the performance spectrum
- · Real-time feedback from a wide variety of devices

Our Best Drive and Automation Solution in a Single Package

The AKD PDMM programmable drive, multi-axis master combines our AKD drive platform with the full feature set of Kollmorgen Automation Suite in a single package —providing complete machine and motion control for up to eight axes or more.

You need only one development suite and one drive family for all your projects. And you can rely on one source for all the motion components and co-engineering expertise you need to build a better machine.

With AKD PDMM, the best in machine engineering has never been easier, faster or more cost-effective.

SERV

sales@servo2go.com www.servo2qo.com

GO.com

Sold & Serviced By

Powerful Motion Controller in Small and Simple Package

The PCMM programmable motion controller delivers the same features as the drive-integrate AKD®-PDMM controller, but in a stand-alone package that offers flexibility when used with AKD®-N/C decentralized drives and for machines where the benefits of an integrated drive and controller are not required.

Ideal for OEMs that want to reduce cabinet space and machine complexity without sacrificing performance, the PCMM delivers full PLC functionality, a high-performance motion control and EtherCAT® master in one small package that easily installs in any electrical panel. Plus, programming is made easy using KAS IDE which includes PipeNetwork[™] visual programming, one-click simulation, and integrated configuration and diagnostic tools simplify machine development and help you get to market faster.

Part Number	Processor
AKC-PCM-MC-080-00N-00-000	800 MHz Standard Multi-axis Controller
AKC-PCM-M1-120-00N-00-000	1.2 GHz High Performance Multi-axis Controller

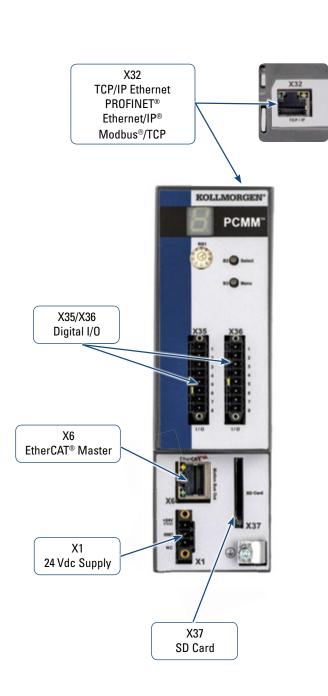
General Features and Specifications

Processor	Available with 1.2GHz or 800MHz CPU
Internal Memory	64 MB Flash memory for program storage
External Memory	Removable SD card (not included)
Input Power	24 Vdc @ 1.25 A
Operating Temperature	0 °C - 40 °C
Sealing	IP20
Local I/O	6 digital inputs, 2 digital outputs
Motion Network	EtherCAT®, max 4kHz update rate
PLC Programming	IEC-61131-3, support for all 5 languages
Motion Programming	PLCopen or PipeNetwork®
HMI Programming	KVB programming for AKI panels
Dimensions	174mm (H) x 46.6mm (W) x 111.5mm (D)
Certifications	CE / UL (planned)

Sold & Serviced By:

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

PCMM™ Hardware Features


- Up to 1.2GHz CPU meets the performance requirements for a broad range of machines
- Control 1 to 30 or more axes with a single controller
- 100BaseT connection supporting TCP/IP, MODBUS[®], EthernetIP[®], Profinet[®] to host PLC, computer, or network to easily interface with most manufacturing systems
- Cycle times as low as 250 µs
- Alphanumeric display for fast diagnostics and system troubleshooting
- Removable SD memory card for simple backup/restore and file storage
- On-board digital I/O with support for expansion I/O via EtherCAT®
- Compact size reduces cabinet space and cost

PCMM™ Software Features

- IEC 61131-3 programmable automation and motion controller
- EtherCAT[®] master for high-performance motion and device synchronization
- PipeNetwork[™] motion engine for visual programming
- Embedded RTOS for guaranteed performance and stability
- Integrated webserver for remote diagnostics and status checking
- Ideal design for modular machines and flexible manufacturing systems

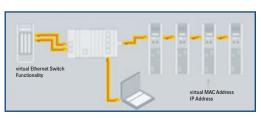
PCMM[™] System Integration

- Seamless integration with Kollmorgen's AKD[®] servo drives, AKM[®] rotary servo motors, AKI HMIs, and AKT fieldbus I/O modules for complete automation solution
- Network communication via OPC, MODBUS[®], TCP/IP, UDP, and common fieldbus for fast integration into your machine or factory
- Intuitive EtherCAT[®] configuration tools built into KAS IDE simplifies network configuration
- Integrated Kollmorgen Workbench for rapid servo tuning and machine optimization

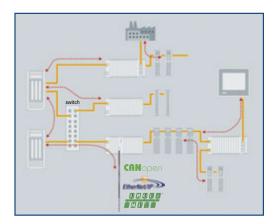
AKM[®] 2G Servo Motor

AKD®-N Servo Drive

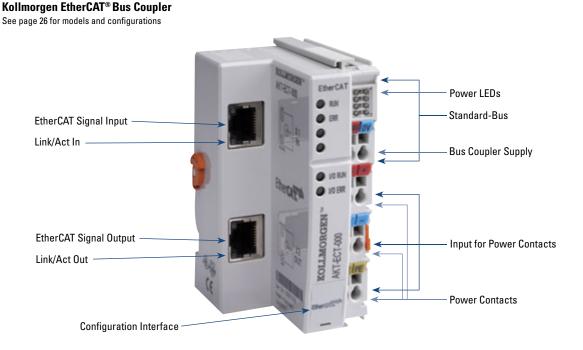
Real-time Motion Bus


Ether**CAT**

EtherCAT® Real-time Bus for Motion and I/O Connectivity


- Auto-recognition of Kollmorgen Automation Suite-compatible components
- · Guaranteed real-time update cycle down to 250 microseconds.
- Supported by 2000+ member companies
- Standard Ethernet cabling = lower implementation cost
- · Interoperability with other buses
- Wide availability of devices

EtherCAT® Performance Overview


Process Data	Update Time
256 distributed digital I/O	11 µs = 0.01 ms
1000 distributed digital I/O	30µs
200 analog I/O (16 bit)	50 µs – 20 kHz
100 Servo Axis, with 8 Bytes input and output data each	100 µs
1 Fieldbus Master-Gateway (1486 Bytes Input and 1486 Bytes Output Data)	150 µs
1000 distributed digital I/O 200 analog I/O (16 bit) 100 Servo Axis, with 8 Bytes input and output data each 1 Fieldbus Master-Gateway	30µs 50 µs – 20 kHz 100 µs

Transparent for all Ethernet protocols

Versatile network architecture

Human Machine Interface (HMI) oll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249

GO.com sales@servo2qo.com www.servo2go.com

Sold & Serviced By

SERVO

Kollmorgen HMI Panels

With Kollmorgen HMI's visualization projects can be scaled for different size screens and performance demands without having to re-write code or learn different tools.

- Choose from 5", 7", and 12" displays
- IP65 protection class screen for easy cleaning
- Rugged Plastic or Aluminum Housing

AKI2G-CDA Series

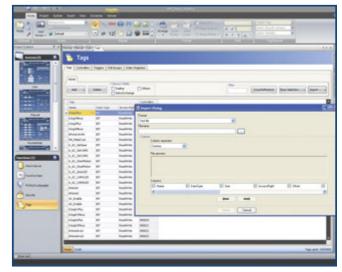
5", 7" Touchscreen HMI

Our basic industrial HMI offers a high resolution touch-screen and modern design. The panel combine IP65 corrosion resistant plastic housing with the full version of Kollmorgen Visualization Builder, providing a cost-effective yet advanced HMI solution for small to medium applications. The basic AKI2G model is the obvious choice when requiring a cost-efficient, high value, reliable HMI panel.

AKI2G-CDB Series

7". 12" Touchscreen HMI

Our advanced AKI2G series HMIs offers a range of high performance industrial panels designed for demanding applications. All with high performance ARM Cortex-A9 processors, the latest screen technology and a wide range of connectivity options to cover all your automation needs. We recommend our advanced HMI with high-performance for all applications.


HMI Software Tools

Kollmorgen Automation Suite Visualization Builder[™] HMI Software

Kollmorgen Automation Suite Visualization Builder operates from within the Kollmorgen Automation Suite integrated development environment making it quick and easy to create your HMI program and transfer it to the panel.

Features include

- Automatic mapping transfers PLC variables to HMI tags avoiding mistakes and saving time.
- · Multi-screen navigation
- Trending/Data Logging
- Recipes
- Alarm management
- Drag and Drop programming
- Password Protection

HMI developer environment

SERVO Human Machine Interface (HMI) oll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo200.com

sales@servo2go.com www.servo2go.com

GO.com

(€) (€ F(**C**) **(§**

Sold & Serviced By:

AKI2G-CDA Series

Specifications	5 inch AKI2G-CDA-MOD-05T-000	7 inch AKI2G-CDA-MOD-07T-000
General Description		
Part number	630005105	630005205
Certifications	030003103	030003203
General		
Marine	CE, FCC	ν, κου
UL	– UL 61010	0.2.201
Mechanical		J-Z-Z01
Mechanical size	170 - 107 - 40 mm	196 × 146 × 52 mm
Touch type	170 × 107 × 49 mm Resis	
Cut-out size	161 × 93 mm	186 × 136 mm
Weight	0.5 kg	0.7 kg
Housing material	0.5 kg Plastic (PC+/	
Power		ADOJ, Ulay
FUWEI	24 V DC (10 to 22 V/DC) CE. The power supply must confe	arm with the requirements according to IEC COOED and
Input voltage	24 V DC (18 to 32 VDC) CE: The power supply must confo IEC 61558-2-4. UL and cUL: The power supply must conf	orm with the requirements for class II power supplies.
Power consumption	6W	9.6W
Input fuse	Internal E	DC fuse
System		
CPU	ARM9 40	
RAM	128 1	MB
FLASH	256 MB, 200 MB free fo	or application storage
Display		
Size diagonal	5" diagonal	7" diagonal
Resolution	800 × 480) pixels
Backlight	LED Bac	sklight
Backlight life time	20 000	
Backlight brightness	300 cd/m ²	400 cd/m ²
Backlight dimming	Industrial I	
Display type	TFT-LCD with L	
Display pixel error	Class I (ISO	9241-307)
Communication Serial		
Number of serial ports	2 Port 9pi	
Serial port 1	RS 232 (R	
Serial port 2	RS422	
Serial port 3	RS 2	
Serial port 4	RS 4	85
Ethernet Communication		
Number of ethernet ports	1	
Ethernet port 1	1 × 10/100 Base-T	(shielded RJ45)
Ethernet port 2	-	
Expansion interface		
Expansion port	No	
SD card	No	
USB	1 × USB 2.	0 500mA
Environmental		
Operating temperature	-10°C to	
Storage temperature	-20° to -	
Shock	15g, half-sine, 11ms acco	
Vibration	1g, according to IEC	
Sealing front	IP6	
Sealing back	IP2	
Humidity	5% – 85% non-condensed	

)R(HE N

AKI2G-CDB Series

Specifications 7 inch AKI2G-CDB-M0D-77-000 12 inch AKI2G-CDB-M0D-12T-000 General Description 64000205 64000205 Pert number 83000025 64000205 General Maximum 05, FCC, KCC 0, U, 01019-2:01 Machanical size 024 × 163 × 50 mm 340 × 22 × 57 mm Touch spe 04 04 × 163 × 50 mm 340 × 22 × 57 mm Machanical size 04 × 163 × 50 mm 340 × 22 × 57 mm 324 × 258 mm Weight 0.8 kg mm 324 × 228 mm 324 × 228 mm Housing material Power coated aluminum, Gray 24 V DC (18 to 32 VDC) CE: The power supply mast conform with the requirements according to EE 05584:2-4 UL and cit. The power supply mast conform with the requirements for cites all power supplies. 26 Mg Power consumption FE 05584:2-4 UL and cit. The power supply mast conform with the requirements for cites all power supplies. 26 Mg Power consumption FE 05584:2-4 UL and cit. The power supply mast conform with the requirements for cites all power supplies. 26 Mg Power consumption FE 05584:2-4 UL and cit. The power supply mast conform with the requirements for cites all power supplies. 26 Mg Power consumption FE 05584:2-4 UL and cit. The power supply mast	AKI2G-CDB Series		(4) C € FC K	
General Description Formumber General member Part mumber 630000205 64000205 General Constructions 0.5, FOC, KCC General Member DVK RA, OL, RL ASS, CGS UL UL UL B1010-2.201 Mechanical size 204 × 143 × 50 mm 340 × 242 × 57 mm Nachanical Size 204 × 143 × 50 mm 340 × 242 × 57 mm Nachanical Size 188 × 128 mm 324 × 226 mm Nachanical Size 188 × 128 mm 324 × 226 mm Nachanical Size 188 × 128 mm 324 × 226 mm Housing material Power constructions with the requirements according to EC 60550 and EC 61550 24. UL and OL: The power supply must conform with the requirements facilities. Ipower supplies. Power construction 24 V DC (18 to 32 VDC) CE: The power supply must conform with the requirements facilities. Ipower supplies. Power construction 24 VDC (18 to 32 VDC) CE: The power supply must conform with the requirements facilities. Ipower supplies. Power construction 24 VDC (18 to 32 VDC) CE: The power supply must conform with the requirements facilities. Ipower supplies. Power construction 28 SDC done SDE done	Specifications	7 inch AKI2G-CDB-MOD-07T-000	12 inch AKI2G-CDB-MOD-12T-000	
Part number65000020564000205CertificationsCertificationsMarineONN KR, GL, IP, AS, CGSUILUIL SIDID-2-201Mechanical airo204 × 143 × 50 mmMechanical airo204 × 143 × 50 mmTorch type240 × 242 × 57 mmTorch type324 × 22 mmOut-sut size324 × 22 mmPower24 V DC 18 to 32 VDC 16: The power supply mats controlm with the requirements according to 16: 60959 and 16: 61959 4. UL and cUL: The power supply mats controlm with the requirements according to 16: 60959 and 16: 61959 4. UL and cUL: The power supply mats controlm with the requirements according to 16: 60959 and 16: 61959 4. UL and cUL: The power supply mats controlm with the requirements according to 16: 60959 and 	-			
Certifications Image: Certifications General CE, FCC, KCC Mechanical DVK KR, BL, BR, ASS, CCS UL UL 0101-2-201 Mechanical size 204 × 143 × 50 mm 340 × 242 × 57 mm Touch type Resistrue 24 × 220mm Out-tot size 189 × 128mm 324 × 220mm Weight 0.8 kg 24 × 220mm Housing material Powder coated aluminum, Gray 700 × 242 × 257 mm Power 24 ∨ DC (18 to 32 ∨ DC) (2E. The power supply must conform with the requirements according to EC 60950 and IEC 61950 A-41 UL and UL. The power supply must conform with the requirements occording to EC 60950 and IEC 61950 A-41 UL and UL. The power supply must conform with the requirements occording to EC 60950 and IEC 61950 A-41 UL and UL. The power supply must conform with the requirements occording to EC 60950 and IEC 61950 A-41 UL and UL. The power supply must conform with the requirements occording to EC 60950 and IEC 61950 A-41 UL and UL. The power supply must conform with the requirements occording to EC 60950 and IEC 61950 A-41 UL and UL. The power supply must conform with the requirements occording to EC 60950 and IEC 61950 A-41 UL and UL. The power supply must conform with the requirements occording to EC 60950 and IEC 61950 A-41 UL and UL. The power supply must conform with the requirements occording to EC 60950 A-41 UL and UL. The power supply must conform with the requirements occording to EC 60950 A-41 UL and UL. The power supply must conform with the requirements occording to EC 60050		63000205	640000205	
General CC, FC, CC Marine DNV, R, GL, R, AS, CCS UL UL UL Mechanical UL UL Mechanical size 204 × 143 × 50 mm 304 × 225 × 57 mm Touch type 198 × 128 mn 304 × 225 × 57 mm Touch type 198 × 128 mn 324 × 225 mm Out-out size 26 kg 324 × 225 mm Weiph 0.8 kg 26 kg Mouting material 24 V DC 118 to 32 VDC 10E: The power supplices Touch the requirements for class II power supplices Power 24 VDC 118 to 32 VDC 10E: The power supplices 28 8W Power consumption 14.40W 28 8W Power Consumption 14.40W 28 8W Power Consumption 168 28 8W OfU i MARDoal Like, Dual Contex: A9 1.0GH: 512 kBL Zeache 168 RAM 268 SSD(eMMC), 1.5GB Fer application storage 168 FLASH 268 SSD(eMMC), 1.5GB Fer application storage 168 Backlight the fine 20000 hours 168 Backlight the fine 20000 hours 50 000 hours Backlight the fine 20000 hours 50 000 hours Backlight the fine 20000 hours 50 000 hours Backlight the fine 350 cd/m² 400 cd/			0.000200	
MarineONV, RI, RI, RI, ARS, CSULUL is 101 - 201Mechanical size2014 × 143 × 50 mmSoch type340 × 222 × 57 mmCut-tot size189 × 128 cm2014 ot size340 × 222 × 57 mmWeight0.88 kgHousing material0.88 kgPower24 V DC (18 to 32 VDC) CE: The power supply must controm with the requirements for class II power supplies.Power consumption14.40 VPower consumption14.40 VPower consumption14.40 VPower consumption14.40 VPower consumption14.40 VPower consumption1.40 VDC (18 to 32 VDC) (2: The power supply must controm with the requirements for class II power supplies.Power consumption14.40 VDC (18 to 32 VDC) (2: The power supply must controm with the requirements for class II power supplies.Power consumption14.40 VDC (18 to 32 VDC) (2: The power supply must controm with the requirements for class II power supplies.System14.40 VDC (18 to 32 VDC) (2: The power supply must controm with the requirements for class II power supplies.System168 VDC (18 to 32 VDC) (2: The power supply must controm with the requirements for class II power supplies.System168 VDC (18 to 32 VDC) (2: The power supplies.Backlight fisher200 Coltrox A9 1.06Hz 512 kBL 2cacheRaw Mot Size Magonal102 VDC (18 to 32 VDC) (2: The power supplies.Backlight fisher300 cd/m2Backlight fisher50 000 hoursBacklight fisher50 000 hoursBacklight fisher50 000 hoursBacklight fisher		CE ECC	: KCC	
ULUL 6101-2-201Mechanical204 × 143 × 50 mm340 × 242 × 57 mmMachanical size324 × 225 mm324 × 225 mmTouch type0324 × 225 mm324 × 225 mmOutrow324 × 225 mm324 × 225 mm324 × 225 mmWeight0.8 kg324 × 225 mm324 × 225 mmHousing materialConvertance244 VDC (18 to 32 VDC) CE. The power supply must confrom with the requirements for class 11 power supply must confrom with the requirement for class 12 power for field for field for field for field				
Mechanical size CDV-x M3 × 50 mm 340 × 242 × 57 mm Machanical size 204 × M3 × 50 mm 340 × 242 × 57 mm Cuck ot size 189 × 128mm 324 × 226mm Weight 0.0 k kg 22 kg Houssing material Powerc 789 Power 24 V DC (18 to 32 VDC) CE: The power supply must conform with the requirements according to IEC 60950 and IEC 61955 24. U. and dL1: The power supply must conform with the requirements for class II power supplies. Power consumption 14.40 28 B/W Power for supply must conform with the requirements according to IEC 60950 and IEC 61955 24. U. and dL1: The power supply must conform with the requirements for class II power supplies. Power consumption 14.40 28 B/W Power consumption 14.40 168 Power consumption 168 168 Power consumption 168 168 Pask / B/W 28 S SUMMA/D, 156B Fee for application storage 168 Display pruse arra 50 000 hours				
Mechanical size 204 × 143 × 50 mm 340 × 242 × 57 mm Touch type Resizue 324 × 226mm Cut-ust size 189 × 128mm 324 × 226mm Weight 0.8 kg 2.8 kg Housing material Poweer 2.8 kg Power 24 V DC (18 to 32 VCC) CE. The power supply must conform with the requirements according to IEC 60950 and IEC 61554-2.4 UL and cLL: The power supply must conform with the requirements according to IEC 60950 and IEC 61554-2.4 UL and cLL: The power supply must conform with the requirements according to IEC 60950 and IEC 61554-2.4 UL and cLL: The power supply must conform with the requirements according to IEC 60950 and IEC 61554-2.4 UL and cLL: The power supply must conform with the requirements according to IEC 60950 and IEC 61554-2.4 UL and cLL: The power supply must conform with the requirements according to IEC 60950 and IEC 61554-2.4 UL and cLL: The power supple constructions constructions according to IEC 60950 and IEC 60950 and IEC 61554-2.4 UL and cLL: The power supple constructions constructions according to IEC 60950 and IEC 60				
Touch typeImage: Image: I		204 × 143 × 50 mm	340 × 242 × 57 mm	
Cut-out size 188 × 128mm 324 × 228mm Weight 0.8 kg 2.6 kg Housing material Power 2.6 kg Power 24 V DC (18 to 32 V/DC) CE: The power supply must conform with the requirements cording to IEC 60950 and IEC 61958-24. UL and cUL The power supply must conform with the requirements for class. II power supplies. Power consumption 14.4W 28 BW Input fuse Internal DC fuse System 1 GB 1 GB CPU i MXKBSolo Single Contex:A9 1 0GHz 512KBLZeache i MXKBUal Line, Dual Contex:A9 1 0GHz 512KBLZeache RAM 512 MB 1 GB 1 GB RASH 26B SSD(eMMC), 1.5GB free for application storage 1 GB Backlight If the Ima 200 000 hours 50 000 hours Backlight Ima 2.0 mm 400 cd/m² Backlight If the Ima 200 000 hours 50 000 hours Backlight Inght Past 400 cd/m² 400 cd/m² Backlight Inght Past 400 cd/m² 400 cd/m² Backlight Inght Past 50 000 hours 50 000 hours Backlight Inght Past 400 cd/m² 400 cd/m²				
Meight0.8 kg2.6 kgHousing materialPowder-coated aluminum, GrayPower24 V DC 118 to 32 VDC 1C to power supply must conform with the requirements according to IEC 60950 and IEC 61558-24. UL and LT: The power supply must conform with the requirements for class II power supplies.Power consumption14.4W28.8WInput foreInternal DC fuseSystemInternal DC fuseCPUi.MM850a Single Cortex: A9 1.0GHz 512kB12cachei.MX6DualLite, Dual Cortex: A9 1.0GHz 512kB12cacheRAM512 MB16BRASHCGB SSD(eMMC), 1.5GB free for application storageDisplayStree diagonal7° diagonalSize diagonal7° diagonal12.1° diagonalBacklight Itfe time20 000 hours50 000 hoursBacklight Itfe time20 000 hours400 cd/m²Backlight Itfe time20 000 hours400 cd/m²Backlight Itfe time20 000 hours50 000 hoursBacklight Itfe time20 000 hours400 cd/m²Backlight Itfe time20 000 hours10 StreBacklight Itfe time20 000 hou	<i>/</i> ·			
Housing material Power Power 24V DC (18 to 32 VDC) CE: The power supply must conform with the requirements according to IEC 60950 and IEC 61559-2.4. UL and cUL: The power supply must conform with the requirements for class II power supplies. Power consumption 14.4W 28.8W Input fue 14.4W 28.8W CPU I.MX85alo Single Cortex:A9 1.0GHz 512KBL2cache I.MX8DualLite, Dual Cortex:A9 1.0GHz 512KBL2cache RAM 512 MB 1 GB FLASH C605 SSD(eMMC), 1.5GH free for application storage Display 1 CB Size diagonal 12.1* diagonal Resolution 8000 Nours Backlight If 1000 hours Backlight timining 10.01/m² Backlight timining 10.01/m² Display profe 1 Port 9cin DSUB Serial ports 1 Number of serial ports Number of serial ports 1 N 10/100 Base-T (shielded RJ4S) Ethernet Communication 2 Number of serial ports Serial port 2				
Power Input voltage 24 V DC (18 to 32 VDC) CE: The power suppl must conform with the requirements according to IEC 60550 and IEC 61558-24. UL and cUE: The power suppl must conform with the requirements for class II power supplies. Power consumption 14.4W 28.8W Input fuse Internal DC fuse System 1 1 CPU 14.4W 28.8W Backlight fuse 1 1.06Hz 512kBL2cache RAM 10.6B for for any plication storage Display 26B SSD(eMMC), 1.56B free for application storage Size diagonal 7" diagonal 12.1" diagonal Backlight life time 20.000 hours 50.000 hours Backlight life time 20.000 hours 50.000 hours Backlight life time 20.000 hours 400 cd/m² Backlight life time 20.000 hours 50.000 hours Backlight life time 20.000 hours 50.000 hours Backlight life time 20.000 hours 60.000 hours Backlight life time 20.000 hours 60.000 hours Backlight life time 20.000 hours 60.000 hours Backlight life time	Ū		0	
Input voltage 24 V DC (18 to 32 VDC) CE: The power supply must curform with the requirements according to IEC 60950 and IEC 61503-24. UL and cUL: The power supply must curform with the requirements for class II power supplies. Power consumption 14.4W Internal DC fuse System 28.8W Internal DC fuse CPU iMX6Solo Single Cortex-A9 1.0GHz 512KBLZcache i.MX6DualLite, Dual Cortex-A9 1.0GHz 512KBLZcache RASH Cortex-A9 1.0GHz 512KBLZcache i.MX6DualLite, Dual Cortex-A9 1.0GHz 512KBLZcache BASH Cortex-A9 1.0GHz 512KBLZcache i.MX6DualLite, Dual Cortex-A9 1.0GHz 512KBLZcache BASH Cortex-A9 1.0GHz 512KBLZcache i.MX6DualLite, Dual Cortex-A9 1.0GHz 512KBLZcache BASH Cortex-A9 1.0GHz 512KBLZcache i.MX6DualLite, Dual Cortex-A9 1.0GHz 512KBLZcache Bask Gartes AND Gartes AND Gartes AND Bask Gartes AND Gartes AND Gartes AND Basklight II Gartes AND Gartes AND Gartes AND Basklight II trime G2000 hours Gartes AND Gartes AND Basklight II trime G2000 hours Gartes AND Gartes AND Basklight II trime G2000 hours Gartes AND <td>U U U U U U U U U U U U U U U U U U U</td> <td></td> <td></td>	U U U U U U U U U U U U U U U U U U U			
Initial Workage IEC 61558-2.4. UL and cUL: The power supply must conform with the requirements for class II power supplies. Power consumption 14.4W 28.8W Input fuse 0 28.8W GPU i.MX6Solo Single Cortex-A9 1.0EHz 512kBL2cache i.MX6Dualitie, Dual Cortex-A9 1.0EHz 512kBL2cache RAM 512 MB 1 GB FLASH 2GB SSD[eMMC], 15GB Free for application storage Display - 1 GB Stae diagonal 7" diagonal 12.1" diagonal Backlight 6000 hours 50 000 hours Backlight file time 2000 hours 50 000 hours Backlight file time 350 cd/m² 400 cd/m² Backlight timining Industrial Dimming 108 play play play Display type FFI-LCD with LED backlight 400 cd/m² Serial port 1 6 cd cd play play play play play play play play		24 V DC (18 to 32 VDC) CF: The power supply must confi	orm with the requirements according to IEC 60950 and	
Power consumption 14.4W 28.8W Input fuse Interral UC fuse PPU i.MX8Solo Single Cortex-A9 1.0GHz 512kBL/2cache i.MX8DualLite, Dual Cortex-A9 1.0GHz 512kBL/2cache RAM 512 MB 1 GB PLASH 2GB SSDIeMMCL, 1 5GB For application storage Display 1 GB 1 GB Size diagonal 7" diagonal 1 2.1" diagonal Resolution 0000 × 480 pixels 50 000 hours Backlight fit 20 000 hours 50 000 hours Backlight brightness 350 od/m² 400 cd/m² Backlight brightness 350 od/m² 400 cd/m² Backlight spree 1 Port spin DSUB 50 000 hours Backlight spree 1 Port spin DSUB 50 cd/m² Backlight spree 1 Port spin DSUB 50 cd/m² Serial port 3 1 Port spin DSUB 50 cd/m² Serial port 3 1 Port spin DSUB 50 cd/m² Serial port 3 1 Port spin SCIS 50 cd/m² Number of serial ports 1 Port spin SCIS 50 cd/m² Serial port 1 1 Port spin SC	Input voltage			
Input fuseInternal DC fuseSystemCPU on MX6Solo Single Cortex-A9 1 06Hz 512kBL2cacheRAM512 MBRAM512 MBRASHCB SSD(eMMC), 1.56B For application storageDisplaySize diagonal102 T* diagonalBacklightBacklightBacklight fie time20 000 hoursBacklight fie timeBacklight fie timeBacklight fie timeBacklight fie timeBacklight dimmingBacklight dimmingSublight dimmingSublight dimming <td col<="" td=""><td>Power consumption</td><td></td><td></td></td>	<td>Power consumption</td> <td></td> <td></td>	Power consumption		
SystemCPUi.MX8Solo Single Cortex-A9 1.0GHz 512kBLZcachei.MXBDualLite, Dual Cortex-A9 1.0GHz 512kBLZcacheRAM612 MB1 GBFLASH2GB SSD(eMMC), 1.5GB For application storageDisplay		Internal [DC fuse	
CPUiMX85olo Single Cortex-A9 1.0GHz 512kBL2cacheiMX8DualLite, Dual Cortex-A9 1.0GHz 512kBL2cacheRAM512 M81 GBRASH2GB SSD[eMMC), 1.5G Free for application storageDisplay2GB SSD[eMMC), 1.5G Tree for application storageResolution800 × 480 pixelsBacklight file time0 20 000 hoursBacklight file time0 20 000 hoursBacklight file time0 20 000 hoursBacklight file time0 350 cd/m²Backlight file time0 350 cd/m²Backlight file time0 0 0 cd/m²Serial port 20 0 0 0 cd/m²Serial port 20 0 0 0 cd/m²Serial port 21 0 0 0 Sas-T (shielded RJ45)Etheret Comunication1 × 10/100 Base-T (shielded RJ45)Etheret port 11 × 10/100 Base-T (shielded RJ45)Etheret port 20 1 × USB 2.0 500mASo card1 × USB 2.0 500mASo card2 × USB 2.0 500mASo card0 × USB 2.0 500mAStorage temperature-0°C to +0°C <td< td=""><td></td><td></td><td></td></td<>				
RAM 512 MB 1 GB FLASH 2GB SSD(eIMMC), 1.5GB free for application storage Display 2GB SSD(eIMMC), 1.5GB free for application storage Display 12.1° diagonal Resolution 800 × 480 pixels Backlight 12.1° diagonal Backlight life time 20000 hours Backlight life time 20 000 hours Backlight life time 20 000 hours Backlight life time 50 000 hours Backlight life time 20 000 hours Backlight life time 50 000 hours Backlight life time 50 000 hours Backlight life time 50 000 hours Backlight dimming 1 houstrial Dimming Display type TFT-ICD with LED backlight Display type 1 Port Spin DSUB Serial port 1 1 Port Spin DSUB Serial port 2 1 Port Spin DSUB Serial port 1 85 232 (RTS/CTS) Serial port 2 1 Number of ethemet ports 1 Number of ethemet ports 1 Serial port 2 2 Ethernet Communication 1 Ethernet Communication 1 Ethernet port 2 2 USB 1 × USB 2.0 500mA SD card		i.MX6Solo Single Cortex-A9 1.0GHz 512kBL2cache	i.MX6DualLite, Dual Cortex-A9 1.0GHz 512kBL2cache	
Display Image: Constraint of the section of the sectin of the sectin of the secting of the section of the sec		e e e e e e e e e e e e e e e e e e e		
Display Image: Constraint of the section of the sectin of the sectin of the secting of the section of the sec	FLASH	2GB SSD(eMMC), 1.5GB fre	ee for application storage	
Size diagonal12.1* diagonalResolution800 × 480 pixelsBacklightLED BacklightBacklight life time20 000 hoursBacklight life time50 000 hoursBacklight life time350 cd/m²Backlight dimming400 cd/m²Backlight dimming1dustriat DimmingDisplay type0Display pixel errorClass I (ISUS241-307)Communication SerialNumber of serial ports9Serial port 19Serial port 20Serial port 30Serial port 32Serial port 41Puber of serine ports1Number of serine ports1Serial port 32Serial port 42Serial port 42Serial port 52Serial port 52Serial port 62Serial port 62Serial port 11Serial port 12Serial port 21Serial port 22Serial port 32Serial port 12Serial port 12Serial port 12Serial port 22Serial port 22Serial port 12Serial port	Display		······	
Resolution800 × 480 pixelsBacklight life time0.000 hours50 000 hoursBacklight life time20 000 hours50 000 hoursBacklight hirpithness300 cd/m²400 cd/m²Backlight dimmingIndustrial Dimming400 cd/m²Display type0.000 hours400 cd/m²Display type0.000 hours100 ts/m²Ormmunication Serial0.000 hours100 ts/m²Serial port 30.000 hours100 ts/m²Serial port 10.000 hours100 ts/m²Serial port 20.000 hours100 ts/m²Serial port 30.000 hours100 ts/m²Serial port 30.000 hours100 ts/m²Serial port 40.000 hours100 ts/m²Serial port 30.000 hours100 ts/m²Serial port 30.000 hours100 ts/m²Serial port 40.000 hours100 ts/m²Serial port 312100 ts/m²Serial port 40.000 hours2100 ts/m²Serial port 5121<00 ts/m²		7" diagonal	12.1" diagonal	
BacklightLED BacklightBacklight fife time20 000 hours50 000 hoursBacklight brightness350 cd/m²400 cd/m²Backlight dimmingIndustrial DimmingDisplay type100 cd/m²Display typeClass I (ISUS241-307)Communication SerialNumber of serial ports100 cd /m²Serial port 1Serial port 1Serial port 2Serial port 2Serial port 2Serial port 3Of memorySerial port 3Serial port 3Serial port 3Serial port 1Serial port 2Serial port 3Serial port 3Serial port 3Serial port 3Serial port 4Serial port 3Serial port 4Serial port 5Serial port 3Serial port 5Serial port 6Serial port 6Serial port 3Serial port 5Serial port 5Serial po	-		6	
Backlight life time20 000 hours50 000 hoursBacklight brightness350 cd/m²400 cd/m²Backlight dimmingImming100 cd/m²Backlight dimmingImmingImmingDisplay typeTFFLCD with LED backlightDisplay typeCass I (ISUs241-307)Communication SerialVolt colspan="2">Serial portsSerial port 1Serial port 2Serial port 3Serial port 4Serial port 2Serial port 2 <td colspa<="" td=""><td>Backlight</td><td></td><td>sklight</td></td>	<td>Backlight</td> <td></td> <td>sklight</td>	Backlight		sklight
Backlight dimmingIndustrial DimmingDisplay typeGDisplay typeGDisplay pixel errorGCommunication SerialSal (SIQS241:307)Communication SerialFort Spin DSUBSerial port 1GSerial port 2GSerial port 3GSerial port 3GSerial port 3GSerial port 3GSerial port 42Serial port 5GSerial port 31Serial port 3CSerial port 42Serial port 51Serial port 62Serial port 62Serial port 71Number of ethernet port 12Serial port 12Serial port 31Serial port 42Serial port 51Serial port 51Serial port 62Serial port 62Serial port 71Serial port 72Serial port 81Serial port 91Serial port 91Serial port 91Serial port 91Serial port 92Serial port 91Serial port 92Serial port 92Serial port 91Serial port 92Serial port 92Serial port 91Serial port 92Serial port 93Serial port 93Serial port 9	Backlight life time			
Backlight dimmingIndustrial DimmingDisplay typeGDisplay typeGDisplay pixel errorGCommunication SerialSal (SIQS241:307)Communication SerialFort Spin DSUBSerial port 1GSerial port 2GSerial port 3GSerial port 3GSerial port 3GSerial port 3GSerial port 42Serial port 5GSerial port 31Serial port 3CSerial port 42Serial port 51Serial port 62Serial port 62Serial port 71Number of ethernet port 12Serial port 12Serial port 31Serial port 42Serial port 51Serial port 51Serial port 62Serial port 62Serial port 71Serial port 72Serial port 81Serial port 91Serial port 91Serial port 91Serial port 91Serial port 92Serial port 91Serial port 92Serial port 92Serial port 91Serial port 92Serial port 92Serial port 91Serial port 92Serial port 93Serial port 93Serial port 9	Backlight brightness	350 cd/m ²	400 cd/m ²	
Display pixel errorClass I (IS∪9241-307)Communication SerialNumber of serial portsNumber of serial portsSerial port 1Serial port 2Serial port 3Serial port 3Serial port 3Serial port 3Serial port 4Serial port 5Serial port 6Serial port 7Number of ethernet ports1Lthernet communication2Ethernet port 1Strain port 2Serial port 1Serial port 3Serial port 4Serial port 5Serial port 5Serial port 6Serial port 6Serial port 7Serial port 8Serial port 9Serial port 9Serial port 9Serial port 1Serial port 1Serial port 2Serial port 1Serial port 1Serial port 1Serial port 1Serial port 1Serial port 1Serial port 2Serial port 1Serial port 2Serial port 2 <td>Backlight dimming</td> <td></td> <td>Dimming</td>	Backlight dimming		Dimming	
Communication Serial Number of serial ports 1 Port 9in DSUB Serial port 1 RS 232 (RTS/CTS) Serial port 2 RS422/485 Serial port 3 0 Serial port 3 RS422/485 Serial port 3 0 Ethernet Communication 2 Number of ethernet ports 1 Rthernet port 1 1 × 10/100 Base-T (shielded RJ45) Ethernet port 2 0 1 × 10/100 Base-T (shielded RJ45) Ethernet port 1 1 × 10/100 Base-T (shielded RJ45) Ethernet port 2 0 1 × 10/100 Base-T (shielded RJ45) Ethernet port 2 1 × 10/100 Base-T (shielded RJ45) Ethernet port 2 1 × 10/100 Base-T (shielded RJ45) Ethernet port 2 1 × 10/100 Base-T (shielded RJ45) Ethernet port 2 1 × 10/100 Base-T (shielded RJ45) Ethernet port 2 1 × 10/100 Base-T (shielded RJ45) Ethernet port 2 2 × USB 2.0 500mA SD card SD card SD and SDHC USB 1 × USB 2.0 500mA 2 × USB 2.0 500mA Bording temperature -10°C t +60°C So Card Sbrock 15g, half-sine, 11m s according t	Display type	TFT-LCD with L	ED backlight	
Number of serial portsI Port 9in DSUBSerial port 1I CAN	Display pixel error	Class I (ISO	9241-307)	
Serial port 1RS 232 (RTS/CTS)Serial port 2RS422/485Serial port 3RS485 (only if COM 2 is RS485)Ethernet CommunicationNumber of ethernet ports1Lthernet port 11Cthernet port 2-Ethernet port 2-Expansion interfaceExpansion portYes, ciX expansion moduleSD cardSD and SDHCUSB1 × USB 2.0 500mAEnvironmentalOperating temperatureStorage temperature<	Communication Serial			
Serial port 2Genaid port 2Serial port 3Genaid COM 2 is RS485 (only if COM 2 is RS485)Ethernet Communication2Number of ethernet ports1Number of ethernet ports1Ethernet port 1Genaid CommunicationEthernet port 2Image: CommunicationEthernet port 2Image: CommunicationExpansion interface1 × 10/100 Base-T (shielded RJ45)Expansion portSD cardSD card1 × USB 2.0 500mAUSB1 × USB 2.0 500mAEnvironmental2 × USB 2.0 500mAOperating temperature-10°C to +60°CStorage temperature-20° to +70°CShockGenaid SIg, half-sine, 11ms according to IEC60068-2-27VibrationImage: CommunicationSealing frontImage: CommunicationSealing backImage: Communication	Number of serial ports	1 Port 9pi	n DSUB	
Serial port 3RS485 (only if COM 2 is RS485)Ethernet Communication2Number of ethernet ports1Number of ethernet ports2Ethernet port 11 × 10/100 Base-T (shielded RJ45)Ethernet port 2-Expansion interfaceExpansion portSD card1 × 10/100 Base-T (shielded RJ45)USB1 × USB 2.0 500mAEnvironmentalOperating temperatureOperating temperatureStorage temperatureShockShockSealing frontSealing frontSealing back	Serial port 1	RS 232 (R	TS/CTS)	
Ethernet CommunicationNumber of ethernet ports12Ethernet port 11 × 10/100 Base-T (shielded RJ45)Ethernet port 2-1 × 10/100 Base-T (shielded RJ45)Expansion interfaceExpansion portYes, ciX expansion moduleSD cardSD and SDHCUSB1 × USB 2.0 500mA2 × USB 2.0 500mAEnvironmentalOperating temperature-10°C to +60°CStorage temperature-20° to +70°CShock15g, half-sine, 11ms according to IEC60068-2-27Vibration1g, according to IEC 60068-2-6, Test FcSealing frontIP65, NEMA 4X/12 and UL Type 4X/12Sealing backIP20	Serial port 2	RS422,	/485	
Number of ethernet ports12Ethernet port 11 × 10/100 Base-T (shielded RJ45)Ethernet port 2-1 × 10/100 Base-T (shielded RJ45)Expansion interface1 × 10/100 Base-T (shielded RJ45)Expansion portYes, ciX expansion moduleSD cardSD and SDHCUSB1 × USB 2.0 500mA2 × USB 2.0 500mAEnvironmental-10°C to +60°CStorage temperature-20° to +70°CShock15g, half-sine, 11ms according to IEC60068-2-27Vibration1g, according to IEC 60068-2-6, Test FcSealing frontIP20Sealing frontIP20	Serial port 3	RS485 (only if CC	DM 2 is RS485)	
Ethemet port 11 × 10/100 Base-T (shielded RJ45)Ethemet port 21 × 10/100 Base-T (shielded RJ45)Expansion interface1Expansion portYes, ciX expansion moduleSD cardSD and SDHCUSB1 × USB 2.0 500mA2 × USB 2.0 500mAEnvironmental	Ethernet Communication			
Ethernet port 2–1 × 10/100 Base-T (shielded RJ45)Expansion interfaceExpansion portYes, ciX expansion moduleSD cardSD and SDHCUSB1 × USB 2.0 500mA2 × USB 2.0 500mAEnvironmental2 × USB 2.0 500mAOperating temperature-10°C to +60°CStorage temperature-20° to +70°CShock15g, half-sine, 11ms according to IEC60068-2-27Vibration1g, according to IEC 60068-2-6, Test FcSealing frontIP65, NEMA 4X/12 and UL Type 4X/12Sealing backIP2∪	Number of ethernet ports	1	2	
Expansion interfaceExpansion portYes, ciX expansion moduleSD cardSD and SDHCUSB1 × USB 2.0 500mA2 × USB 2.0 500mAEnvironmental2 × USB 2.0 500mAOperating temperature-10°C to +60°CStorage temperature-20° to +70°CShock15g, half-sine, 11ms according to IEC60068-2-27Vibration1g, according to IEC 60068-2-6, Test FcSealing frontIP65, NEMA 4X/12 and UL Type 4X/12Sealing backIP20	Ethernet port 1	1 × 10/100 Base-T	(shielded RJ45)	
Expansion port Yes, ciX expansion module SD card SD and SDHC USB 1 × USB 2.0 500mA 2 × USB 2.0 500mA Environmental -10°C to +60°C Storage temperature -10°C to +60°C Shock 15g, half-sine, 11ms according to IEC60068-2-27 Vibration 1g, according to IEC 60068-2-6, Test Fc Sealing front IP65, NEMA 4X/12 and UL Type 4X/12 Sealing back IP20	Ethernet port 2	-	1 × 10/100 Base-T (shielded RJ45)	
SD cardSD HUSB1 × USB 2.0 500mA2 × USB 2.0 500mAEnvironmentalOperating temperature-10°C to +60°CStorage temperature-20° to +70°CShockContract 15g, half-sine, 11ms according to IEC60068-2-27Vibration1g, according to IEC 60088-2-6, Test FcSealing frontIP65, NEMA 4X/12 and UL Type 4X/12Sealing backIP20	Expansion interface			
USB1 × USB 2.0 500mA2 × USB 2.0 500mAEnvironmentalOperating temperature-10°C to +60°CStorage temperature-20° to +70°CShock0Shock15g, half-sine, 11ms according to IEC60068-2-27Vibration1g, according to IEC 60068-2-6, Test FcSealing frontIP65, NEMA 4X/12 and UL Type 4X/12Sealing backIP20	Expansion port	Yes, ciX expan	ision module	
EnvironmentalOperating temperature-10°C to +60°CStorage temperature-20° to +70°CShockShock15g, half-sine, 11ms according to IEC60068-2-27Vibration1g, according to IEC 60068-2-6, Test FcSealing frontSealing backIP20	SD card	SD and	SDHC	
Operating temperature-10°C to +60°CStorage temperature-20° to +70°CShock15g, half-sine, 11ms according to IEC60068-2-27Vibration1g, according to IEC 60068-2-6, Test FcSealing frontIP65, NEMA 4X/12 and UL Type 4X/12Sealing backIP20	USB	1 × USB 2.0 500mA	2 × USB 2.0 500mA	
Storage temperature-20° to +70°CShock15g, half-sine, 11ms according to IEC60068-2-27Vibration1g, according to IEC 60068-2-6, Test FcSealing frontIP65, NEMA 4X/12 and UL Type 4X/12Sealing backIP20	Environmental			
Shock15g, half-sine, 11ms according to IEC60068-2-27Vibration1g, according to IEC 60068-2-6, Test FcSealing frontIP65, NEMA 4X/12 and UL Type 4X/12Sealing backIP20	Operating temperature	-10°C to	+60°C	
Vibration 1g, according to IEC 60068-2-6, Test Fc Sealing front IP65, NEMA 4X/12 and UL Type 4X/12 Sealing back IP20	Storage temperature	-20° to -	+70°C	
Sealing front IP65, NEMA 4X/12 and UL Type 4X/12 Sealing back IP20	Shock	-	-	
Sealing back IP20	Vibration			
	Sealing front	IP65, NEMA 4X/12 a	and UL Type 4X/12	
Humidity 5% – 85% non-condensed	-	IP20		
	Humidity	5% – 85% non-condensed		

I/O Terminals

SERVOZGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Sold & Serviced By:

Advanced Kollmorgen Terminal (AKT)

The Kollmorgen Automation Suite[™] includes an array of I/O options for applications that need more I/O than can be provided by the onboard I/O of the drives or for applications that need specialized functionality such as thermocouple management through I/O. The DIN rail mount IP20 terminals simply slide together and connect to the system's EtherCAT[®] bus where they are auto-recognized for easy configuration.

Typical Bus Coupler

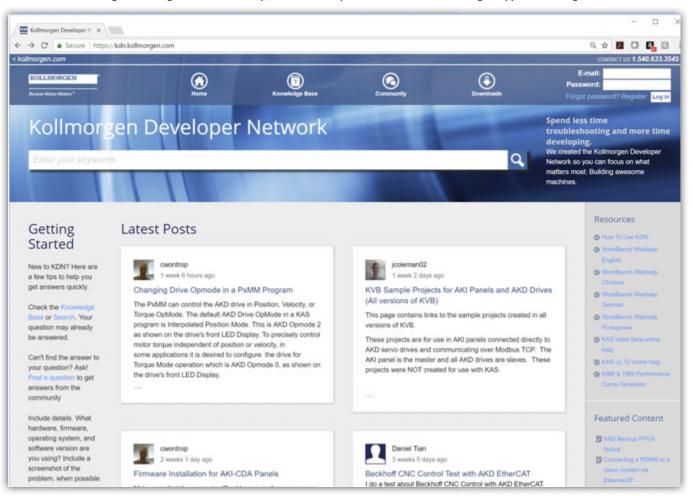
EtherCAT® bus coupler

Typical I/O Terminal

Front wiring view

Side	label	view	

Available Digital Input Terminal Models		
AKT-DN-004-000	4 channel digital input module, 3ms	
AKT-DNH-004-000	4 channel digital input module, .2ms	
AKT-DN-008-000	8 channel digital input module, 3ms	
AKT-DNH-008-000	8 channel digital input module, .2ms	
Available Specialty Terminal Models		
AKT-EM-000-000	End module	
AKT-IM-000-000	Isolation module	
AKT-PS-024-000	Bus feed terminal, 24 Vdc	
AKT-PSF-024-000	Bus feed terminal, 24 Vdc, fused	
Available Field Bus Coupler Models		
AKT-PRB-000-000	Profibus Bus Coupler	
AKT-ENP-000-000	Ethernet/IP Bus Coupler	
Stepper Driver		
AKT-SM-L15-000	Stepper Module, 24 Vdc, 1.5 A	
AKT-SM-L50-000	Stepper Module, 50 Vdc, 5 A	


Available Motion Bus Coupler Model			
AKT-ECT-000-000	EtherCAT [®] Bus Coupler		
Available Analog Input Terr	ninal Models		
AKT-AN-410-000	4 channel analog input module, 0-10 Vdc		
AKT-AN-420-000	4 channel analog input module, 0-20 ma		
AKT-AN-810-000	8 channel analog input module, 0-10 Vdc		
AKT-AN-820-000	8 channel analog input module, 0-20 ma		
AKT-AN-200-000	2 channel thermocouple input module		
AKT-AN-400-000	4 channel thermocouple input module		
Available Analog Output Terminal Models			
AKT-AT-220-000	2 channel analog output module, 0-20 ma		
AKT-AT-410-000	4 channel analog output module, 0-10 Vdc		
AKT-AT-420-000	4 channel analog output module, 0-20 ma		
AKT-AT-810-000	8 channel analog output module, 0-10 Vdc		
AKT-AT-820-000	8 channel analog output module, 0-20 ma		
Available Digital Output Terminal Models			
AKT-DT-004-000	4 channel digital output module, 0.5A		
AKT-DT-008-000	8 channel digital output module, 0.5A		
AKT-DT-2RT-000	2 channel relay output module, 2.0A, N/O		

Kollmorgen Developer Network Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249

SERVO GO.com sales@servo2go.com www.servo2qo.com

Sold & Serviced By:

Kollmorgen Developer Network (KDN) is the central location for engineers to quickly get support on all Kollmorgen products, interact with and learn from the larger Kollmorgen user community, and receive expert instruction from Kollmorgen Applications Engineers and staff.

Ask a Question

Ask a question, or search and respond to existing questions. Provide an answer, or vote on the best answer. Leverage the global scope of Kollmorgen to get up to speed quickly.

Start a Discussion

Want to share a best practice, get feedback, or understand how others are solving similar problems? Start a new discussion, or join an active one, to share in the collabrative experience and knowledge of Kollmorgen product developers.

Propose a Feature

Have an idea for a new product, or feature? Submit it here. Customers speak and we listen. We know one size does not fit all. Our product is flexible, but sometimes differentiation requires a collaborative approach.

Latest Downloads

Keep up with our continually improving product, with access to the latest downloads.

 $\overline{}$

AKD[®] Servo Drive

Our AKD series is a complete range of Ethernet-based servo drives that are fast, feature-rich, flexible and integrate quickly and easily into any application. AKD ensures plug-and-play commissioning for instant, seamless access to everything in your machine. And, no matter what your application demands, AKD offers industry-leading servo performance, communication options, and power levels, all in a smaller footprint.

This robust, technologically advanced family of drives delivers optimized performance when paired with our best-in-class components, producing higher quality results at greater speeds and more uptime. With Kollmorgen servo components, we can help you increase your machine's overall equipment effectiveness (OEE) by 50%.

KOLLMORGEN

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

The Benefits of AKD Servo Drive

Optimized Performance in Seconds	• Auto-tuning is one of the best and fastest in the industry		
	 Automatically adjusts all gains, including observers 		
	 Immediate and adaptive response to dynamic loads 		
	Precise control of all motor typesCompensation for stiff and compliant transmission and coupling		
Greater Throughput and Accuracy	 Up to 27-bit-resolution feedback yields unmatched precision and excellent repeatability 		
	 Very fast settling times result from a powerful dual processor system that executes industry-leading and patent pending servo algorithms with high resolution 		
	 Advanced servo techniques such as high-order observer and bi-quad filters yield industry-leading machine performance 		
	 Highest bandwidth torque-and-velocity loops. Fastest digital current loop in the market 		
 Easy-to-use Graphical User Interface (GUI) for Faster Commissioning and Troubleshooting 	 Six-channel real-time software oscilloscope commissions and diagnoses quickly 		
	 Multi-function Bode Plot allows users to quickly evaluate performance 		
	 Auto-complete of programmable commands saves looking up parameter names 		
	 One-click capture and sharing of program plots and parameter settings allow you to send machine performance data instantly 		
	 Widest range of programming options in the industry 		
Flexible and Scalable to Meet any Application	• 3 to 48 Arms continuous current; 9 to 96 Arms peak		
	 Very high power density enables an extremely small package 		
	 True plug-and-play with all standard Kollmorgen servo motors and actuators 		
	 Supports a variety of single and multi-turn feedback devices— Smart Feedback Device (SFD), EnDat2.2, 01, BiSS, analog Sine/ Cos encoder, incremental encoder, HIPERFACE[®], and resolver 		
	 Tightly integrated Ethernet motion buses without the need to add large hardware: EtherCAT[®], SynqNet[®], Modbus[®] TCP, EtherNet/IP[™], PROFINET[®] RT, SERCOS[®] III, and CANopen[®] 		
	 Scalable programmability from base torque-and-velocity throug 		

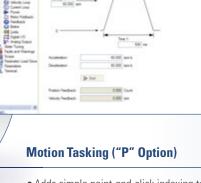
• Scalable programmability from base torque-and-velocity through multi-axis master

Scalable Programmability

Kollmorgen delivers cutting-edge technology and performance with the AKD® servo drive and KAS controls platform. Whether your application requires a single axis or over 100 fully synchronized axes, Kollmorgen's intuitive software and tools scale to meet your needs. From simple analog torque control to the latest high-performance automation network, the AKD servo drive packs power and flexibility for virtually any application into one of the most compact footprints of any digital servo drive in the industry.

- Patented auto-tuning delivers optimized performance in seconds.
- 1.5MHz current loop and 16KHz velocity loops offers greater bandwidth and performance Optimized performance in seconds
- Greater throughput and accuracy
- Easy-to-use Graphical User Interface (GUI) for faster commissioning and troubleshooting
- Flexible and scalable to meet any application

BASIC Programmable 1.5 Axis Drive ("T" Option)


- Adds BASIC programmability to base AKD
- 4Khz programmable interrupt service routines
- Conditional statements, built-in math functions, user functions and subroutines
- Includes 2 high-speed digital inputs
- Same package size as base drive
- Expandable to 31 digital I/O and 4 analog I/O
- Optional integrated SD card for easy backup and drive cloning
- Includes electronic camming functionality

Single-Axis

- Controlled by analog torque-and-velocity commands
- Includes electronic gearing via X9 connector
- Includes access to 11 digital I/O and 2 analog I/O on base drive
- Includes 2 high-speed digital inputs
- Expandable to 31 digital I/O and 4 analog I/O

KOI.I.MORGEN

My Service Mo

- Adds simple point-and-click indexing to base drive
- Provides user with pre-programmed options
- Guides novice user through simplified steps to create indexing moves
- Network connectivity to EtherCAT[®], CANopen[®], Profinet[®] RT, Ethernet/IP[™], TCP/IP, SynqNet[®] and others
- MODBUS port for communication with HMI

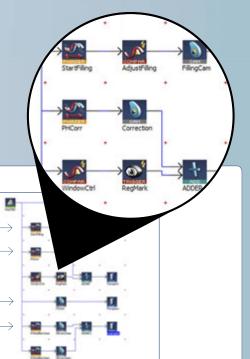
Basic Operation

RANGE OF KOLLMORGEN AUTOMATION SUITE CTOIL Free Phone: 877-378-0240

GO.com sales@servo2go.com www.servo2qo.com

Programmable Drive Multi-Axis Master PDMM ("M" Option)

- · Scalable solution for use as a single-axis drive with integrated programmable automation controller
- Choose from all five IEC 61131-3 languages for soft PLC process programming
- Program motion using your choice of PLCopen for motion or our innovative Pipe Network™
- 4KHz PLC scan rate and EtherCAT® updates
- Complete line of HMI panels with integrated software to simplify GUI development
- Exclusive function blocks, such as "wait," enable your program to act as a scanning or sequential language
- On-board I/O includes 17 digital (with 2 high speed inputs) and 2 analog
- Connects to AKT[™] network I/O for nearly unlimited expandability


AKD Serve

Seamlessly add additional axes and AKD PDMM serves as a high-performance multi-axis machine controller

- SD card for easy backup and system updates
- IoT-enabled integrated webserver for diagnostics and troubleshooting from any computer or mobile device
- · Provide true synchronized-path control of up to 16 axes
- Reduce cabinet size and wiring requirements with a single, compact package
- Easily manage remote I/O and the I/O of all attached drives via EtherCAT®
- Use industry standard PLCopen for motion, or step up to Kollmorgen's Pipe Network[™] to program sophisticated camming and gearing applications in a matter of minutes

5

Pipe Network[™]

Kollmorgen Visual Motion Programming

- Accelerate development by programming tasks in hours that would otherwise take weeks
- Improved coding quality through visual programming and by using pre-built modules that have been thoroughly tested and optimized
- Easy knowledge transfer, replacing pages of complex code with easily understood graphical representations
- Available on PDMM controllers

Programming

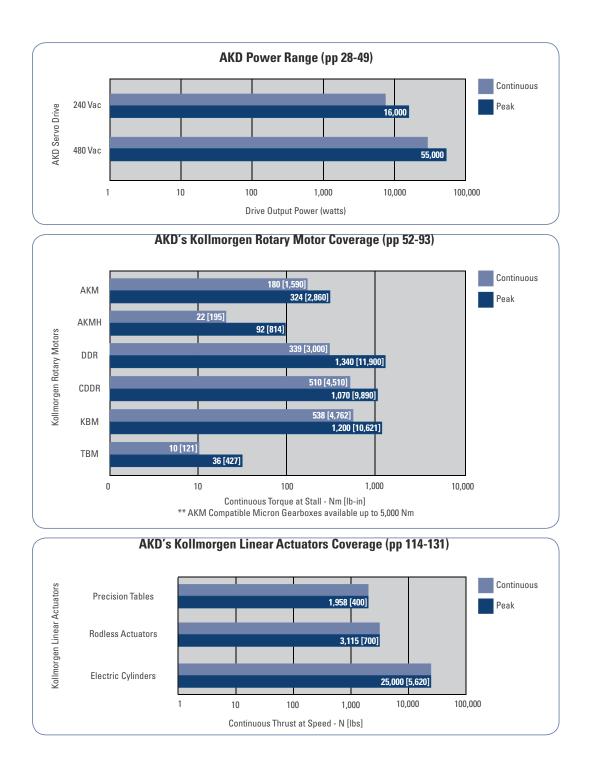
Multi-Axis Programming

Pipe Network provides a one-to-one translation of a mechanical system into a logical world as shown in the

for examples of common machine architectures to further accelerate your development.

Vertical Form Fill and Seal machine above. Click and build your motion program in minutes, or contact Kollmorgen

AKD[®] Servo Drive


The AKD servo drive delivers cutting-edge technology and performance with one of the most compact footprints in the industry. These feature-rich drives provide a solution for nearly any application, from basic torque-and-velocity applications, to indexing, to multi-axis programmable motion with embedded Kollmorgen Automation Suite[™]. The versatile AKD sets the standard for power density and performance.

Range of Coverage

When you pair the AKD servo drive with any of our Kollmorgen motors or linear actuators, you'll achieve optimized performance. From 3 to 48 Arms continuous current and 9 to 96 Arms peak current, the feature-rich AKD provides a solution for nearly any application.

AKD[®] BASIC Drives

High Performance Capabilities in an Integrated Drive/Control Solution

Add co-engineering to your toolbox. Save money, simplify your machine and customize performance to meet the specific needs of each customer or application – as needed, today or tomorrow.

Our new Kollmorgen AKD[®] BASIC drives add BASIC-programmable machine and motion control to the superior performance of our AKD drive platform. So engineers can quickly customize performance at the drive level without touching the PLC. In fact, for many applications you can avoid the expense, wiring and cabinet space of a PLC altogether.

Whether you rely on your own engineering expertise or Kollmorgen's, the base and Expanded I/O versions of our AKD BASIC drive give you the unprecedented machine and motion control flexibility in a compact, fully integrated drive package. It's one more example of our co-engineering mission to help you deliver exactly what your customers want – when they want it – in solutions that are more cost-effective to build, simpler in design and faster to market.

AKD BASIC Language Programmable Drive

In addition to the wide selection and key features of our proven AKD, the standard version of our AKD BASIC drive offers:

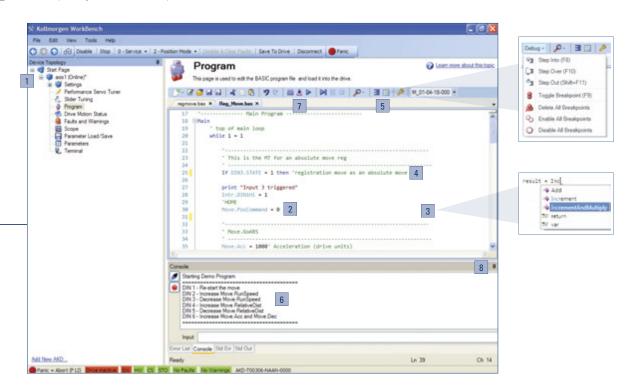
- Programmable machine control built into the drive, so you can engineer perfect axis-level performance without touching the machine controller. In fact, AKD BASIC can eliminate the need for a PLC in single and 1.5 axis applications – reducing wiring requirements, panel space, design complexity and cost.
- High performance motion control built into the drive, enabling increased speed for more complex moves in a simpler design with reduced wiring.
- BASIC Language programming, providing simple program flow control in a solution that's easy to learn, quick to master and universally accepted.
- An integrated development environment, allowing single-point programming, de-bugging, commissioning, tuning and management of your AKD BASIC drive from within AKD WorkBench. Our BASIC editor provides innovative features that speed development time and reduce coding errors.
- Source code lockout with password protection, freeing you to differentiate your product with drive-level control while safeguarding your intellectual property.

I/0 Capabilities	Base Version	Expanded I/O Version
Digital Inputs	8	20
Digital Outputs	3	13
Analog Inputs	1	2
Analog Outputs	1	2

Expanded I/O AKD BASIC Programmable Drive

Building on the features of the AKD BASIC drive, we also offer an expanded I/O version that adds:

- A total of 20 digital inputs, 13 digital outputs, 2 analog inputs and 2 analog outputs, reducing or eliminating the need for remote I/O and its associated installation and wiring costs.
- An SD memory card slot for loading, and restoring programs and parameters, without the need for a PC.


Development Tools that Speed Programming and Improve Quality

Co-engineering is a powerful tool. To make it easy for you to provide better solutions for your customers, we provide an innovative BASIC programming environment within Kollmorgen WorkBench. So there's only one software package to use for all of your drive setup, configuration, tuning and management tasks in addition to motion and machine control programming.

Pre-built code templates give your application a head-start, while automatic formatting, highlighting and other ease-of-use features increase programming speed and accuracy. Complete access to all programming capabilities and drive features within a single environment helps speed your development of complete, optimally engineered solutions.

Novice users will enjoy a short ramp-up time to productive coding, while experienced users will discover well-designed tools that take their programming skills to new levels of speed and quality.

- 1 Integrated axis setup
- 2 Code snippets simplify formatting
- 3 Auto-complete helps speed coding and reduce errors
- 4 Automatic color coding makes it easy to distinguish comments, parameters, print statements and other types of code
- 5 Full debugger accelerates development
- 6 Packaged program console provides instant program status
- 7 Menu-driven navigation provides intuitive look and feel
- 8 Window pinning maximizes workspace

SERVO GO.com AKD[®] PDMM Drive-Resident Control sales@servo2go.com

Build Simpler and Better with Drive-Resident Machine and Motion Control

Extend your design options. Control as many as eight axes or more without the need for a PLC or PAC. Reduce cabinet space and wiring requirements. Program perfect machine and motion control for any project using a single, fully integrated programming environment. Build a better machine at a lower cost.

Our new addition to the AKD® drive family combines one servo axis, a master controller that supports multiple additional axes, and the full automation capability of Kollmorgen Automation Suite[™]—all in a single, compact package.

Welcome to the AKD® PDMM programmable drive, multi-axis master.

Performance Specifications

120/240 Vac 1- and 3-Phase	Continuous Current (Arms)	Peak Current (Arms)	H (mm/inches)	W (mm/inches)	D (mm/inches)
AKD-M00306-MCEC-0000	3	9	168 / 6.61	89 / 3.50	156 / 6.14
AKD-M00606-MCEC-0000	6	18	168 / 6.61	89 / 3.50	156 / 6.14
AKD-M01206-MCEC-0000	12	30	196 / 7.72	107 / 4.21	187 / 7.36
AKD-M02406-MCEC-0000	24	48	248 / 9.76	96 / 3.78	228 / 8.98
240/400/480 Vac 3-Phase	Continuous Current (Arms)	Peak Current (Arms)	H (mm/inches)	W (mm/inches)	D (mm/inches)
AKD-M00307-MCEC-0000	3	9	256 / 10.08	99 / 3.90	185 / 7.28
AKD-M00607-MCEC-0000	6	18	256 / 10.08	99 / 3.90	185 / 7.28
		10	2007 10.00	33 / 3.30	10377.20
AKD-M01207-MCEC-0000	12	30	256 / 10.08	99 / 3.90	185 / 7.28
AKD-M01207-MCEC-0000 AKD-M02407-MCEC-0000	12 24		,	,	,

Features

- Kollmorgen Automation Suite[™] provides fully integrated programming, testing, setup and commissioning
- Embedded web server utility simplifies service

Sold & Serviced By:

@ 877-378-0240 378-0249

www.servo2qo.com

- Control 32 axes or more* while reducing machine footprint
 - EtherCAT® multi-axis master motion controller integrated with a standard AKD[®] drive axis
 - Full IEC61131-3 soft PLC for machine control, with support for all 5 programming languages
 - Choice of PLCopen for motion or Pipe Network™ for programming motion control
 - 32 KB non-volatile memory stores machine data to eliminate scrap upon restart after power failure
 - SD Card slot simplifies backup and commissioning, with no PC required
 - On-board I/O includes 13 digital inputs, 4 digital outputs, 1 analog input, 1 analog output (expandable with AKT series of remote I/O)
- · Works with Kollmorgen Visualization Builder for programming AKI human-machine interface panels

*Maximum axis count depends on motion/automation complexity and performance (8 axes nominal based on medium complexity at 4 kHz network update rate)

⊳

DI.I.MOR(HFI

SERVOZGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Sold & Serviced By:

A Single, Scalable Development Suite

Kollmorgen Automation Suite[™] simplifies and accelerates development through a unified system of software, hardware, and collaborative co-engineering. This scalable solution provides a fully integrated development environment for any application, whether you're programming a single axis of motion, a multi-axis AKD[®] PDMM system, or a PCMM-based system up to 64 axes or more. Kollmorgen Automation Suite has been proven to:

- Improve product throughput by up to 25% with industry-leading motion bandwidth
- Reduce scrap by up to 50% with world-class servo accuracy, seamless power-failure recovery and highly dynamic changeovers
- Increase precision for better quality, reduced waste and less downtime using EtherCAT®—the field bus with motion bus performance
- Enable more adaptable, sustainable and innovative machines that measurably improve marketability and profitability

A Single Family of Servo Drives

Kollmorgen AKD® servo drives deliver cutting-edge performance in a compact footprint. From basic torque-and-velocity applications, to indexing, to multi-axis programmable motion, these feature-rich drives offer:

- Plug-and-play compatibility with your servo motor
- All the advantages of Kollmorgen's breadth of motor platforms including AKM[®], CDDR[®], and other direct-drive technologies
- The fastest velocity and position loop updates
- Full-frequency auto-tuning for perfect motion across the performance spectrum
- · Real-time feedback from a wide variety of devices

Our Best Drive and Automation Solution in a Single Package

The AKD PDMM programmable drive, multi-axis master combines our AKD drive platform with the full feature set of Kollmorgen Automation Suite in a single package —providing complete machine and motion control for up to eight axes or more.

You need only one development suite and one drive family for all your projects. And you can rely on one source for all the motion components and co-engineering expertise you need to build a better machine.

With AKD PDMM, the best in machine engineering has never been easier, faster or more cost-effective.

To learn more about the programmability of AKD drives, please refer to the Kollmorgen Automation Suite section.

120 / 240 Vac 1 & 3 Phase (85 -265 V)	Continuous Current (Arms)	Peak Current (Arms)	Drive Continuous Output Power Capacity (Watts)	(Wa	l Regen atts) ims)	Height mm (in)	Width mm (in)	Depth mm (in)	Depth with Cable Bend Radius mm (in)
AKD-x00306	3	9	1100	0	0	168 (6.61)	59 (2.32)	156 (6.14)	184 (7.24)
AKD-x00606	6	18	2000	0	0	168 (6.61)	59 (2.32)	156 (6.14)	184 (7.24)
AKD-x01206	12	30	4000	100	15	196 (7.72)	78 (3.07)	187 (7.36)	215 (8.46)
AKD-x02406	24	48	8000	200	8	247 (9.72)	100 (3.94)	228 (8.98)	265 (10.43)

240/480 Vac 3 Phase (187-528 V)	Continuous Current (Arms)	Peak Current (Arms)	Drive Continuous Output Power Capacity (Watts)	(W	al Regen 'atts) nms)	Height mm (in)	Width mm (in)	Depth mm (in)	Depth with Cable Bend Radius mm (in)
AKD-x00307	3	9	2000	100	33	256 (10.08)	70 (2.76)	185 (7.28)	221 (8.70)
AKD-x00607	6	18	4000	100	33	256 (10.08)	70 (2.76)	185 (7.28)	221 (8.70)
AKD- x 01207	12	30	8000	100	33	256 (10.08)	70 (2.76)	185 (7.28)	221 (8.70)
AKD-x02407	24	48	16,000	200	23	306 (12.01)	105 (4.13)	228 (8.98)	264 (10.39)
AKD-x04807	48	96	35,000	_	-	385 (15.16)	185 (7.28)	225 (8.86)	260 (10.23)

EtherNet/IP>

For complete AKD servo drive nomenclature, please see page 176.

PROFI Net

CANODE

38

Feedback & I/O

AKD[®] servo drive is specifically designed with the versatility, communications, and power you need to expand machine performance and increase integration speeds. Motor set-up is plug-and-play and multiple Ethernet connectivity options provide both open and closed protocols. Online troubleshooting and data verification enable faster, bug-proof programming. And a broad power range in a smaller, compact design allows you to use these robust drives with a single interface while experiencing industry-leading, high-performance servo loops.

AKD Specifications

	Standard Drive	With I/O expansion - AKD-T only			
Encoder Output or AUX Encoder Input	2.5 MHz Maximum line frequency				
Feedback	Smart Feedback Device (SFD), EnDat2.2, EnDat2.1, BiSS, analog Sine/Cos encoder, incremental encoder, HIPERFACE®, and resolver				
Logic supply	24 Vdc				
Digital input (24 Vdc)	8 (1 dedicated to enable)	20 (1 dedicated to enable)			
Digital output (24 Vdc)	3 (1 dedicated to fault relay)	13 (1 dedicated to fault relay)			
Analog input (+/- 10 Vdc, 16-bit)	1	2			
Analog output (+/- 10 Vdc, 16-bit)	1	2			
Programmable inputs	7	19			
Programmable outputs	2	12			
Sink/Source inputs/outputs	Yes	Yes			

AKD[®] Servo Drive

Sold & Serviced By:

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Ethernet Connectivity

- Ethernet-based AKD servo drive provides the user with multiple bus choices
- EtherCAT[®] (DSP402 protocol), Modbus[®] TCP, SynqNet[®], EtherNet/IP[™], PROFINET[®] RT, SERCOS III, and CANopen[®]
- No option cards are required

Industrial Design

- Rugged circuit design and compact enclosure for space-saving, modern appearance – minimizes electrical noise emission and susceptibility
- Full fault protection
- UL, cUL listed, CE, and EAC
- No external line filters needed (480 Vac units) for CE & UL compliance
- Removable screw terminal connectors for easy connections
- DC Bus sharing

Safe-Torque-Off (STO)

- Switches off the power stage to ensure personnel safety and prevents an unintended restart of the drive, even in fault condition
- Allows logic and communication to remain on during power stage shut down
- AKD-x003 AKD-x024: SIL2 / PL d
- AKD-x048: SIL3 / PL e

Internal Regenerative Braking Resistor

(all models except 120/240 V AC 3 Aeff and 6 Aeff , as well as 480 V AC, 48 Aeff)

- Simplifies system components
- Saves overhead of managing external regeneration when internal regeneration is sufficient

Performance Servo Tuner (PST)

• Exclusive patent pending auto-tuner reaches optimized set-up in seconds

DLLMORGE

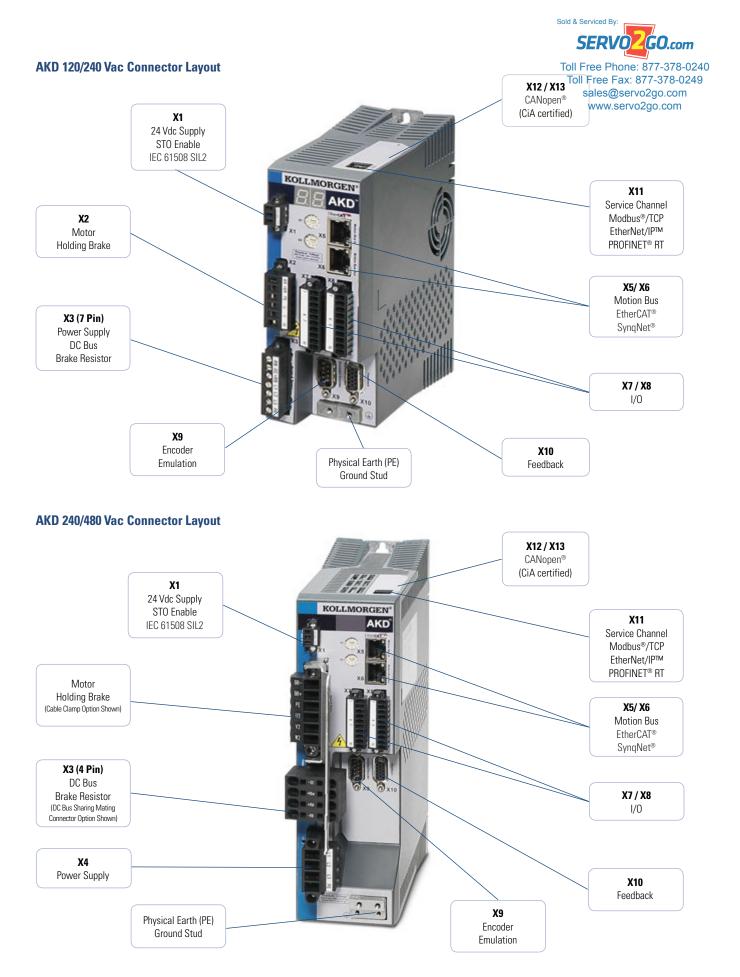
- Handles inertia mismatches up to 1000:1
- Industry leading bandwidth under compliant and stiff load conditions, no matter the mechanical bandwidth of the machine

Plug-and-Play with Kollmorgen Motors and Actuators

- Electronic motor nameplates allow parameters to automatically load for fast commissioning
- Motion in seconds
- Custom motor parameters easily entered

I/O (Base Drive)

- 8 digital inputs (1 dedicated to enable)
- 2 high-speed digital inputs (maximum time delay of 1.0 μs)
- 3 digital outputs (1 dedicated to fault relay)
- 1 analog input 16 bit
- 1 analog output 16 bit



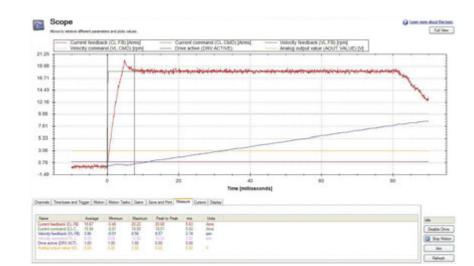
 \triangleright

 $\overline{}$

Kollmorgen Workbench

Our simple Graphical User Interface (GUI), Kollmorgen WorkBench, is designed to expedite and streamline the user's experience with the AKD® servo drive. From easy application selection and reduced math, to a sleek six-channel scope; the user interface is extremely easy to use. Kollmorgen WorkBench supports intuitive access to the exclusive Performance Servo Tuner (PST) available inside AKD. The patent pending PST makes auto-tuning the AKD high-performance servo drive with world-class Kollmorgen motors very simple.

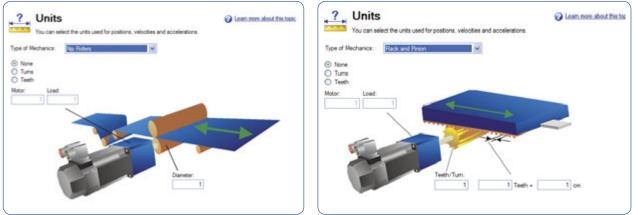
User-Friendly Environment


Logical flow, colorful icons and easy access simplify interactions with the AKD servo drive. The folder structure allows for instant identification and easy navigation.

Sleek Six-Channel "Real-Time" Software Oscilloscope

The easy-to-use AKD servo drive interface has a sleek digital oscilloscope that provides a comfortable environment for users to monitor performance. There are multiple options to share data in the format you prefer at the click of a button.

- Save as an image
- Load to an e-mail
- Print



Application Selection

Simplifies set-up by allowing use of machine or application-based units. Nip roller and rack and pinion set-ups shown.

Nip Roller Application Selection

Rack and Pinion Application Selection

Data-Sharing

The ease-of-sharing continues in the parameters window. Kollmorgen WorkBench provides the user the easy options of printing or emailing the parameter values at the click of a button.

Full Name	Value	Units	Parameter 3	Read/Write	I	2	
Active Disable							
Deceleration during active disable	3000.000	rpm/s	AD.DEC	read-write			
Time-out	1000	ms	AD.DISTO	read-write			
State	0	ms	AD.STATE	read-only			
Velocity window	120,000	rpm	AD.VELTHRESH	read-write			
Time delay after velocity window	6	mə	AD.VELTHRESHTM	read-write			
Analog Input							
Analog input low pass filter cutoff free	5.000.000	Hz	AIN.CUTOFF	read-writ			
Analog input signal deadband	0.000	V	AIN DEADBAND	read-writ	🖬 Dr	tve Pa	arameter List - Message (Plain Text)
Analog input mode	0 - Inactive		AIN.MODE	read-writ	the second	in the	
Analog input offset	0.000	٧	AIN.OFFSET	read-writ	Ele	Edit	Yew Insert Format Tools Actions Help
Analog input signal	0.000	V	AIN.VALUE	read-only		iend 🚆	· · · A B I U E E
Analog Input/Output							
Analog input torque scale	0.001	AN.	AIO ISCALE	read-writ	-		
Analog input velocity scale	0.060	rpm/V	AIO.VSCALE	read-writ		īo	
Analog Output					0		
Analog output mode	0 - User Variable		AOUT MODE	read-writ	-		
Analog output value	0.000	V	AOUT.VALUE	read-writ	B	CC	
Bode					0.4	riect:	Drive Parameter List
Current Loop						Jern	Drive Parameter List
Current command	0.000	A	CL.CMD	read-only	Att	ach	DriveParameterList.csv (16 KB) Attachment Options
Current command - user	0.000	A	CL.CMDU	read-writ			
Current command - D component	0.000	A	CLOCMD	read-only			
Current command - user D component	0.000	A	CL DCMDU	read-writ	Dr.	ive F	Parameter List is attached.

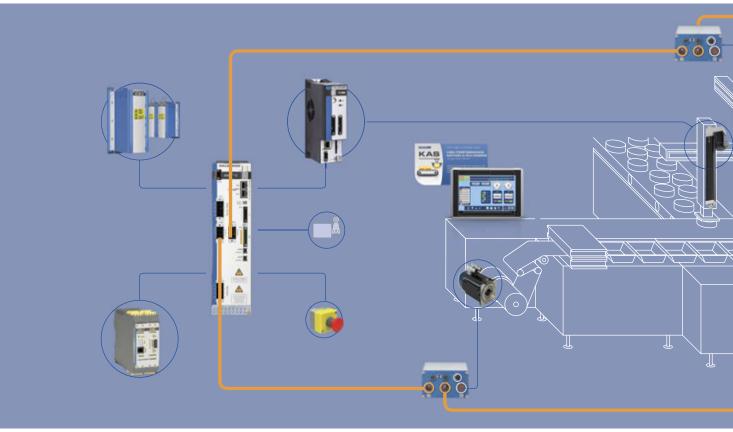
AKD[®]-N Decentralized Servo Drive

The new decentralized AKD-N servo drives from Kollmorgen can be placed in the immediate vicinity of the motor thanks to its robust, compact construction and protection class IP67, plug-in connections, excellent motor compatibility and high degree of integrated functionality. With the decentralized AKD-N servo drives, you can develop drive and automation architectures that are easily comprehensible, and integrate with the central AKD servo drives. Using EtherCAT[®] as a system bus, we reduce complexity further since the AKD-N can collect I/O signals on the axis and pass them on in bundled form.

Improved Overall Equipment Effectiveness (OEE)

With AKD-N you increase the effectiveness beyond the entire life cycle of your machine (OEE, Overall Equipment Effectiveness). The design configuration and simple connection technology decrease the time for assembly, installation, and start-up. During the operating phase, the AKD-N plays a valuable part in energy savings due to the integrated DC connection. Further advantages in production are faster cleaning cycles, thanks to a higher protection class, as well as fewer cables in combination with a space-saving switch cabinet superstructure. Moreover, the assembly and connection technology increases the availability – and thereby productivity – because maintenance and service tasks are completed faster.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com


The Advantages of Decentralized Servo Drives

 Reduced cabling because DC and network, power supply, I/O level as well as safety (STO) run in one cable
• Faster and simple assembly, even without special knowledge, through ready-made and tested cables
 Lack of derating enables smaller motor and servo drive combinations compared to integrated system with the same output power
Smaller and therefore more easily integrated switch cabinets
 Servo drives in the immediate vicinity of the motor
• Robust construction in Protection class IP67 makes protective enclosures superfluous
Plug connectors in IP67 for connection without tools
• At only eleven millimeters, the thin hybrid cable can be laid in a space-saving manner – even in tight machine corners, thanks to a small bending radius
 Simple connection of I/O systems or networks directly to the drive
Parameterization with the tools of the Kollmorgen WorkBench
Design supports fast and effective cleaning
 High operating safety through robust construction
Precision through digital feedback
• Everything at a glance: Status display on servo drive
• Compatible with all motors from Kollmorgen with single-cable, or dual-cable, connection
• Simple combination of central and decentralized controllers within the comprehensive AKD family
 Faster modification and upgrade options through linear topology as well as I/O and network interfaces at the axis

AKD[®]-N Decentralized Servo Drives^{Toll Free Phone: 877-378-0240} Toll Free Fax: 877-378-0249 sales@servo2go.com

Next Gen Machine Design Now

Next gen design requires the perfect interplay of standardized drive and automation components. Selection of a functional, freely scalable solution ultimately ensures the highest degree of design freedom in building machines that operate efficiently without complexity.

Kollmorgen Automation Suite™

- Scalable automation solution for drive-dominant applications
- Graphic motion programming
- Compatible with IEC 61131-3 and PLCopen Motion
 Control

AKD-C Central Power Supply Module

- Power supply for up to 16 AKD-N
- Complete integration in the AKD family
- EtherCAT[®] Network
- 2 STO inputs SIL 2 / PLd
- 1 each digital input and output, 1 relay output

AKD-N Distributed Servo Amplifier

- Less cabling through single-cable solution
- Fast installation, simple assembly and connection
- IP65/IP67, UL design 4x
- Options: local EtherCAT® interface or local STO (SIL2/PLd), connection for feedback systems

PCMM[™] Stand-Alone Controller

- Up to 128 axes of coordinated motion with a single controller
- Up to 1.2GHz CPU for both motion and machine control

Sold & Serviced By:

www.servo2qo.com

- PipeNetwork[™] motion engine for visual programming or PLCOpen Motion engine
- High performance control with flexible cycle time as low as 250 µs
- 100BaseT connection supporting MODBUS TCP/IP, EthernetIP®, Profinet®, HTTP, and UDP

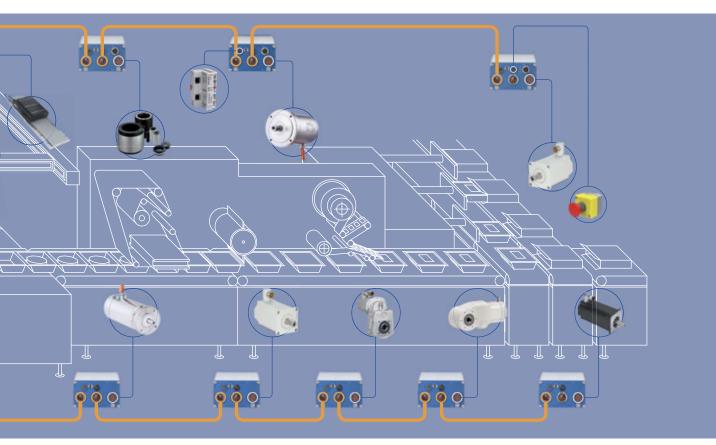
KCM Condenser Modules

- Reduces the energy costs and prevents downtime
- Simple implementation
- No harmonics in the power cables
- Scalable capacity

KSM safety controller

- Machine and motion safety in one device
- More than 200 verified safety functions
- Flexible scalable from 1 to 12 secure axes
- High safety standard Safety Level SIL 3 / PLe

KOLLMORGE



Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

AKM® Servo Motors

- High torque density
- High precision and dynamics
- Produced in Europe, US and Asia regions •

AKM® 2G Servo Motors

- · Average continuous torque increases of 30% or greater
- The same performance in 20% less space.

AKM Washdown Servo Motors

- Applications with regular cleaning
- Housing coating is Ecolab®-certified

AKM Washdown Food Servo Motors

- · For use in the food and beverage industry
- Protection class IP67, FDA compliant

AKMH[™] Stainless Steel Motors

- For the highest hygienic requirements
- Protection class IP69K •
- **Fulfills EHEDG directive**

• The highest hygienic requirements

AKM Food-Grade Gearmotor

- High efficiency
- Single-cable connection

Cartridge Direct Drive Rotary® DDR

- Direct load coupling without gears or belts
- High precision, low noise generation

KBM Direct Drives with No Housing

- · Low weight, exceptionally compact
- Modular system

DDL Linear Motor

- High power density
- Large dynamics (>10g)
- Patented anti-cogging design

AKD

3 Z

DECENTRALIZED

SERVO

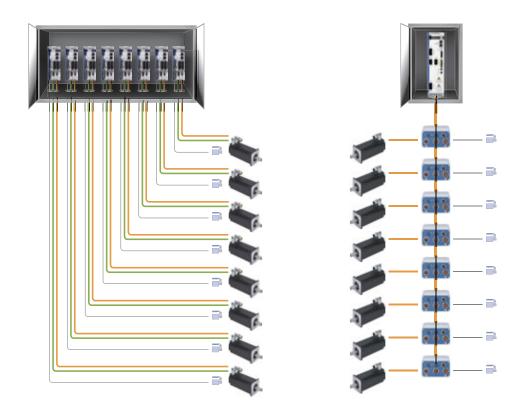
DRIVES

AKD[®]-N Decentralized Servo Drives Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249

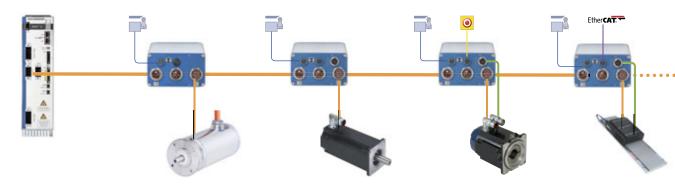
sales@servo2go.com www.servo2go.com

Sold & Serviced By:

Our Way of Making Machines Simpler and More Efficient



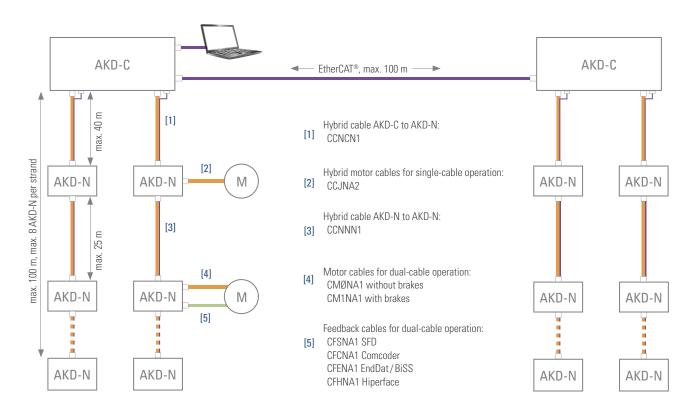
S


Why Lay 1220 ft. of Cable when 138 ft. Will Suffice?

Imagine your machine includes eight axes each with a distance of three meters. The switch cabinet is 5 meters away and on each axis there is also a switch. With this thoroughly realistic example, that equates to a total of 1220 feet of cable – with our AKD-N it would have been 138 feet. The decentralized servo technology of the AKD-N saves 1082 feet here! That is cable that does not have to be purchased or laid and which does not require any space in the machine construction. We find that these are very good grounds for starting the comparison. We combine the AKD-N servo controllers and their power supply modules with pre-assembled and tested system cables – it doesn't get much simpler than this.

Regardless of which Motor: Plug and Play

Our AKD-N decentralized servo controllers work optimally with every motor. Within our Kollmorgen system, you can also thoroughly use all advantages of the single-cable connection technology individually.


SERVO AKD[®]-N Decentralized Servo Drives Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249

sales@servo2go.com www.servo2qo.com

GO.com

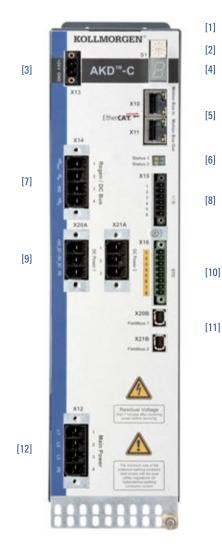
Sold & Serviced By:

Technical Data and Topology

AKD-N Decentralized Servo Drives

Continuous current	3 A, 6 A, 12 A
Peak current	9 A, 18 A, 36 A
Continuous input power	1.5 kVA, 3 kVA, 6 kVA
Protection class	IP67
Digital inputs/outputs	3 digital inputs / 1 digital output
Safety function	STO SIL 2 (only AKD-N-DS)
Feedback systems Dual-cable (not with -DB)	SFD (digital resolver), BISS-C, Comcorder, hall sensor, Endat 2.1 and 2.2, Hiperface
Feedback systems Single-cable	SFD3 (digital resolver)
Communication	EtherCAT
Dimensions (W x H x D)	Housing: 3 A, 6 A: 130 x 75 x 201 (mm) 12 A: 130 x 75 x 301 (mm) With plugs 3A, 6 A: 130 x 75 x 228 (mm) 12 A: 130 x 75 x 328 (mm)
	* Subject to change

AKD-C Power Supply Module

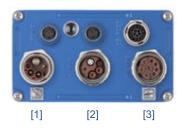

Line voltage	400/480 V
Overall performance	10 kW
Intermediate circuit voltage	560/680 V DC
Output current	17 A (peak 34 A)
Protection class	IP20
Output strands	2, for up to 8 AKD-N apiece
Safety function	one STO Enable and STO Status apiece for each strand, SIL 2
Digital inputs/outputs	1 input, 1 output, 1 relay output
Communication	EtherCAT®, TCP/IP service interface
Dimensions (W x H x D)	Housing (Front) 80 x 260 x 198 (mm) Installation dimension with plugs 80 x 329 x 231 (mm)

For complete AKD-N and AKD-C nomenclature, please see page 178.

⊳

Connections and Controls

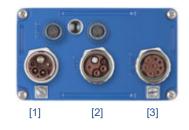
- [1] Network connection for service PC (TCP/IP) (on the top)
- [2] Setting the IP address
- [3] 24 V DC power supply
- [4] Error and status displays
- [5] Motion Bus I/O connections (EtherCAT®)
- [6] Status display of the local network
- [7] Connection for external brake resistor and KCM buffer module
- [8] I/O (1 each digital input and output, 1 relay output)
- [9] DC outputs for connection of up to eight decentralized AKD-N servo drives apiece
- [10] STO input, STO status output (one each per strand),
- [11] Local network for communication with AKD-N
- [12] Power connection 400 V / 480 V AC


Connection Options for AKD-N

AKD-N-	Single-cable technology	Separate feedback	Digital I/O	Tertiary fieldbus	Local STO
DB	\checkmark	✓ —			—
DF	—	\checkmark	\checkmark	\checkmark	—
DG	\checkmark	—	\checkmark	\checkmark	—
DS	—	\checkmark	\checkmark		\checkmark
DT	\checkmark	_	\checkmark		\checkmark

AKD-N-DF, -DS

[4] [5] [6]


[7]

[4] 3 digital inputs, 1 digital outputs[5] Status/error display with LED

AKD-N-DG,-DT

[4] [5] [6]

- [6] STO connection (-DS) / Tertiary fieldbus (-DF)
- [7] Connection for feedback with dual-cable technology

AKD-N-DB

[4] [5]

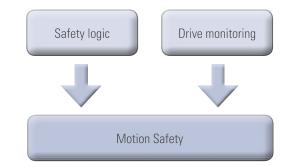
Safe Motion

Why should a whole production line be brought to a standstill during user interventions when only one part of it is affected? Kollmorgen has put the idea of building drives with safe motion instead of safe standstill into practice with its Motion Safety solution that integrates the safety logic and monitoring within the drive. Without compromising on safety, drives utilizing or using Motion Safety achieve considerably higher productivity and offer more flexibility when adjusting to new requirements.

Kollmorgen offers safety expansion cards for installation in the S700 servo drive and the KSM compact and KSM modular safety control systems.

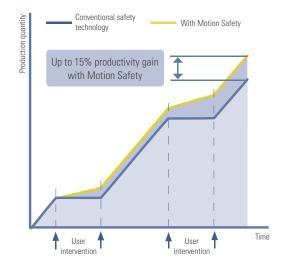
Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Make the Most of the Advantages of the Kollmorgen Motion Safety Strategy


Higher productivity	 Motion Safety enables user interventions in running processes Safe motion instead of safe deactivation Risk-dependent triggering of safety functions
Low system costs	Optimal adjustment to requirements due to modular structureWide range of standard productsSafety control and drive monitoring in one device
• Flexible	Modular concept and simple upgrade of existing drivesSeamless transition from hardwired to configurable safety logic
• Simple and fast implementation	 Important motion-related safety functions are integrated Predefined safety function blocks Intuitive tools for programming and parameterization in the field by the customer

Safe Motion

Safety Logic and Drive Monitoring Integrated within the Drive


With Motion Safety: Safe Motion Instead of Safe Standstill

Motion Safety combines the safety logic and the drive monitoring in the drive. Conventional safety technology keeps the user away from areas with dangerous motion. By contrast, drives with Motion Safety work according to the safe motion principle and permit user interventions without interrupting the process. The safety logic in the drive controls motion sequences so that no danger can result from them and the process is not interrupted.

Productivity Gains with Motion Safety

Safety functions for areas with dangerous motion are activated when intervening in a running process. With intelligent safety functions, motion sequences are controlled so that each motion is safe. For example, this is performed through position monitoring and restricting the range of motion or by increasing the cycle times. Parts of the machine that do not constitute a risk to the user are not affected. The graph clearly shows the productivity gains when using Kollmorgen's Motion Safety technology.

Kollmorgen – your Competent Partner for Safe Drive Solutions

As the leading manufacturer of electrical drive technology, Kollmorgen boasts extensive expertise gained from thousands of drive projects around the world. Safety logic, servo drives, motors, through to complete automation solutions – Kollmorgen supplies coordinated components for safe drive solutions, all from one source. Whether it is a standard implementation or a new development as part of a co-engineering project, make use of Kollmorgen's innovative capacity and experience for developing your safe drive.

Extensive Safety Functions for Safe Motion

STO (Safe Torque Off)

STO safely interrupts the power supply to the motor in the servo drive. The motor becomes torque-free.

SS1 (Safe Stop 1)

The drive is brought to a standstill by controlled braking.

SS2 (Safe Stop 2)

The drive is brought to a standstill by controlled braking and subsequently remains in controlled standstill. The control functions of the drive are maintained.

SDI (Safe Direction)

The SDI function ensures that the drive can only move in a defined direction. In the event of an error, SS1 is triggered.

SLS (Safe Limited Speed)

Monitors that the drive observes a defined speed limit. In the event of an error, SS1 is triggered.

SLP (Safe Limited Position)

Monitors the absolute position of the drive. If the limit value is reached or the brake torque is too low to keep the drive within the limit value, SS1 is triggered.

Then the power supply to the motor is safely interrupted and the motor becomes torque-free.

SOS (Safe Operating Stop)

Monitors the stop position reached and triggers SS1 in the event of deviations beyond the specified limits. The control functions of the drive remain active.

SSR (Safe Speed Range) 1

Monitors that the drive observes a defined speed limit. In the event of an error, SS1 is triggered.

SBC (Safe Brake Control), SBT

SBT (Safe Brake Test) (non-standardized) Test function for external brakes and the internal

motor holding brake

SLI (Safe Limited Increments)

Monitors the relative position of the drive with respect to the current position when activating the SLI function. SS1 is triggered when the prescribed limit value is reached.

KSM Safety Control System

The Safety Chain for Motion from the Sensor to the Drive

Safe drive solutions with higher productivity: The KSM safety control system achieves SIL 3/PL e and perfectly meets the requirements of modern safety concepts thanks to its modular structure. From safe dual-axis drives with just a few safe I/O through to a 12-axis drive with 100 or more safe I/O, in combination with AKD servo drives and Kollmorgen automation solutions, you can develop expandable, safe drives that offer more power and higher productivity with lower system costs.

Safety functions for PL e and SIL 3

- Safe stop functions: STO, SS1, SS2, SOS
- Safe speed functions: SLS, SSM, SSR, SMS
- Safe position functions: SLP, SCA, SLI
- Safe direction functions: SDI
- Safe braking functions: SBC

KSM Compact Safety Control

With KSM compact you can turn a drive into a safe one in next to no time. Important safety and monitoring functions for motion and function blocks for the processing of sensor and actuator signals are already integrated.

• For 1 or 2 axes

KSM compact:

single module for up to 2 axes

- Up to 2 expansion modules
- Basic module with 16 safe inputs/outputs
- Expandable to up to 60 safe inputs/outputs
- 1 safe relay output, expandable
- 2 pulse and 2 message outputs
- Expandable to up to 6 pulse and 6 message outputs
- Up to 800 function blocks
- Space-saving, compact design

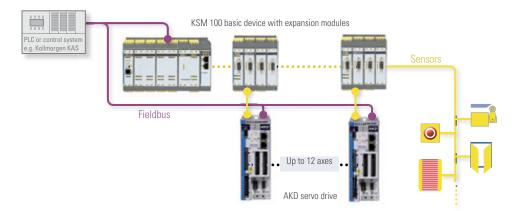
KSM Modular Safety Control System / Safety PLC

KSM modular is designed for drive solutions with complex safety functions and a large number of interfaces. With up to 3000 function blocks, KSM modular offers the functionality of a safety PLC.

- Up to 12 axes
- Up to 8 expansion modules
- Basic module with to up to 56 safe inputs/outputs
- Expandable to up to 200 safe inputs/outputs
- 1 safe relay output, expandable
- 2 pulse and up to 10 message outputs
- Expandable to up to 14 pulse and 22 message outputs
- Up to 3000 function blocks
- For applications with many interfaces

KOLLMORGEN

Safety Solutions


Compact, Simple Safety Solution for up to 2 Axes

KSM compact safety control system with AKD servo drive for drives with up to 2 axes and up to 32 secure I/O

High-Performance Safety Control System for Demanding Safety Requirements

KSM modular: The modular safety control system for demanding, safe drives with up to 12 axes and up to 200 secure I/O

Servo Motors

When you need precise position control, choose from Kollmorgen's broad portfolio of servo system components. Our unparalleled product line breadth provides great flexibility for any application. Whether it's any combination of motors and drives, cables, controller, electric cylinders or gearboxes, all components are plug-and-play for easy, seamless integration. These best-in-class servo systems can be matched with single-axis or multi-axis motion controllers for a system solution that's precise, reliable and durable.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

The Advantages of Kollmorgen Servo Motors

applications

 Optimized AKM and direct drive motor windings for the AKD[®] servo drive Amplifier and motor dimensions reduced Lower system costs 	• With the same size, the AKM offers up to 47% more power on the motor shaft
 Quicker start-up of all servo systems 	Start-up of amplifiers with plug-and-play detection for AKM and Start-idea DDD social posterior
 Immediate and adaptive reaction to dynamic loads optimizes performance within seconds 	Cartridge DDR series motors
 Precise regulation of all motor types 	
 Compensation for stiff and compatible gearboxes and clutches 	
• More precise machines due to higher resolution and improved accuracy	New, cost-efficient multi-turn feedback option
 With multi-turn absolute encoders: reduced cycle times and lower costs for sensors and cabling through the omission of conventional reference run methods 	
Machine design independent of motor size	Motors with the highest power densities in the whole industry
 Installation of motors in the tightest space 	
 Millions of standard motor versions available in various mounting, connection, and feedback variants, as well as further options 	 AKM offers 28 housing and design length combinations, as well as 120 different standard windings for a single motor series
 Available with single cable technology with digital feedback (Digital Resolver SFD3 or HIPERFACE[®] DSL) 	
• Our flexible products deliver a perfectly suited solution to your application	
 Simplifies mechanical modifications and design adjustments or renders them totally superfluous 	
 AKM Washdown and AKM Washdown Food also offer maximum reliability and a long service life for the most demanding industrial applications. 	New IP67 option for AKM

Kollmorgen Servo Motor Overvier Phone: 877-378-0240 sales@servo2go.com

Sold & Serviced By

Kollmorgen offers a comprehensive range of servo motors including electric cylinders, rodless actuators, and precision tables to meet a wide range of application requirements. For actuator products not included in this catalog go to www.kollmorgen.com for information about other Kollmorgen linear positioning products.

	Model	Product Family	Applications
Contraction of the second	AKM [®] Servo Motors	AKM	Designed with industry leading torque density and configurability. The AKM line includes over 4.8 million standard options to fit applications from general automation to applications that require IP67 sealing.
(he	AKMH IP69K Hygienic Motors	АКМН	The AKMH meets the food industry's strictest hygienic design criteria while being rugged enough to withstand the toughest of daily washdown regimens. Perfect for Food Processing, Primary Food Packaging, Pharmaceutical and Medical applications.
O	Cartridge Direct Drive Servo Motors	CDDR	The CDDR is designed to provide the benefit of embedded frameless motor technology in an easy-to-integrate package. Perfect for applications in Printing, Packaging and Converting.
	Housed Direct Drive Servo Motors	HDDR	Housed DDR motors are designed for precise positioning of larger loads without the use of a mechanical transmission. Increasing OEE through the removal of belts and gearboxes that fail unexpectedly or require frequent maintenance.
	KBM Frameless Direct Drive Motors	KBM	With a wide variety of sizes and an extensive range of torque and speed options the KBM frameless direct drive motors are engineered to provide the high-performance, long life and simple installation that today's design engineers demand.
	TBM Frameless Direct Drive Motors	TBM	The Kollmorgen TBM frameless direct direct drive motors are designed for applications that require high power in a small, compact form factor with minimized weight and inertia. These motors provide the highest performance in applications such as robotic joints, medical robotics, sensor gimbals, guidance systems and other motion-critical applications.
	Direct Drive Linear Servo Motors	IC IL	Ideal for applications requiring very low bearing friction, high acceleration of lighter loads, and for maximizing constant velocity, even at ultra low speeds.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Model	Product Family	Features
AKM Servo Motors	AKM	Designed to deliver precise motion and more power for your money. More than 500,000 standard configurations that include various feedback, connector, paint and sealing options.
AKMH IP69K Hygienic Motor	АКМН	The AKMH is designed to withstand the toughest of daily washdown regimens without the need for covers. The AKMH's hygienic design makes it easy to clean, keeping your machine running and protecting your brand. Designed with a single cable that combines power, feedback and an innovative venting feature that extends the life of the motor.
Cartridge Direct Drive Servo Motors	CDDR	The CDDR is a patented design that allows for this torque dense frameless motor to be installed on your machine in 5 minutes. The CDDR lowers your machines maintenance, increases your machines uptime and increase your machines peformance.
Housed Direct Drive Servo Motors	HDDR	Housed DDR motors are maintenance free and run more quietly and with better dynamics than systems that use gears, belts, cams or other mechanical transmission components.
KBM Frameless Direct Drive Motors	KBM	KBM motors cover a range of frameless motor solutions across a variety of applications. KBM is engineered to provide the high-performance, long life and simple installation that today's design engineers demand.
TBM Frameless Direct Drive Motors	TBM	Typical applications include robotic joints, weapon stations, sensor gimbals, sight systems, UAV propulsion and guidance, as well as many others.
Direct Drive Linear Servo Motors	IC IL	Kollmorgen linear motors provide precise placement of product by directly coupling to your load and eliminating the backlash associated with high maintenance linear transmission components.

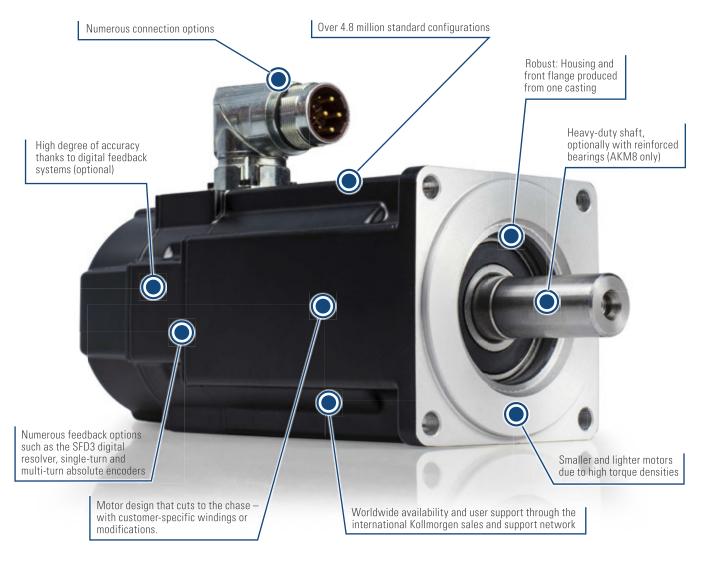
AKM[®] Servo Motor

Kollmorgen's AKM family of servo motors gives you unprecedented choice and flexibility from a wide range of standard products so you can select the best servo motor for your application. By pairing AKM servo motors with our family of plug-and-play AKD[®] servo drives, selecting the right motion control products has never been easier. Pick from thousands of servo motor/servo drive combinations outlined in this selection guide or go to our website to find the best solution for your application.

Standard AKM servo motors and AKD servo drives offer the best of both worlds – the exact specifications of a custom solution with the faster delivery times and lower cost of a standard catalog product. For your truly unique motion control applications, work with our engineering team to customize a solution for your machine design. Either way, standard product or customized, we can help you choose the motion control solution that meets your exact requirements.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

AKM® SERVO MOTOR


The Benefits of AKM[®] Servo Motor

Best-in-Class Performance	 Industry-leading motor power density
	• Same size AKM/AKD system delivers up to 47% more shaft power
	• Compensation for stiff and compliant transmissions and couplings
	Exceptionally low cogging
• Flexibility to Find an Exact-fit Solution in a Standard Product	 AKM offers 28 frame-stack combinations and 120 standard windings in a single motor line
	• 4.8 million possible AKM part number combinations and growing
	 Simplifies or eliminates mechanical modifications and engineering adaptation
	 Available with single cable technology with digital feedback (Digital Resolver SFD3 or HIPERFACE[®] DSL)
	 Washdown and Food Grade options for AKM
	Higher torque models up to 180 Nm of continuous torque
Ease-of-Use and Faster Commissioning	Plug-and-play motor recognition drive commissioning
	 Reduce cycle time and sensor-and-wiring costs by eliminating traditional homing methods
	Reduction in set-up time for each servo system

AKM[®] Brushless Servo Motor

The AKM[®] brushless servo motor stands alone in the marketplace in terms of flexibility and performance advantages. Kollmorgen's culture of continuous improvement has paid dividends again. The AKM servo motor's innovative design has been polished and optimized. With the new AKD amplifier, the distinguished AKM servo motor sets a new standard of refined servo performance, designed to deliver precise motion and more power for your money. Nowhere else will you find a more versatile and complete servo family to meet your needs and exceed your expectations.

- 8 frame sizes from 40 to 260 mm
- 28 housing and design length combinations
- 120+ standard windings for 120/240/400/480 V
- Winding options for low DC voltage

- Numerous flange and shaft options
- Minimal cogging and high degree of efficiency
- Extensive customization options with special windings and shafts

SERVO M

0 T 0 R

S

AKM B

₽

ഗ

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Power Range

AKM frame sizes 1 to 8, standstill torques of 0.16 to 180 Nm, speed range 1000 to 8000 rpm, voltages 75 Vdc, 120, 240, 400, or 480 Vac.

Application Criteria

Universally deployable, brushless servo motors for all positioning and motion tasks with normal and high requirements and with accuracy and speed in a torque range between 0.16 Nm and 180 Nm.

Feedback Systems and Connectivity

Standard with SFD3 and HIPERFACE DSL single-cable options. In addition, AKM supports dual-cable feedback options such as Resolver, Encoder, EnDAT, and BiSS.

Protection Class

IP65 with optional Teflon[®] shaft seal, IP67 in the Washdown or Washdown Food version (page 68). Standard version IP40.

Smooth Running and Long Service Life

Very smooth running due to minimal cogging. The single-cast stator ensures high stability and improved heat dissipation from the motor. Front flange and motor housing are produced from a single cast. This ensures a high degree of sealing and strength and a long service life.

High Accuracy

		Sin	gle-turn absol	ute	Μι	ılti-turn absol	ute
	AKM Motor	Accuracy (arc-min)	Resolution (bits)	Motor key	Accuracy (arc-min)	Resolution (bits)	Motor key
ne	AKM1	16	24	CA	-	-	-
Value line	AKM2 - AKM3	9	24	CA	8	18	LB
Va	AKM4 - AKM8	9	24	CA	4.66	18	LB
nce	AKM1	7.2	9	GP	7.2	9	GR
Performance line	AKM2 - AKM4	1.0	20	DA	1.0	20	DB
Perf	AKM5 - AKM8	0.333	20	DA	0.333	20	DB

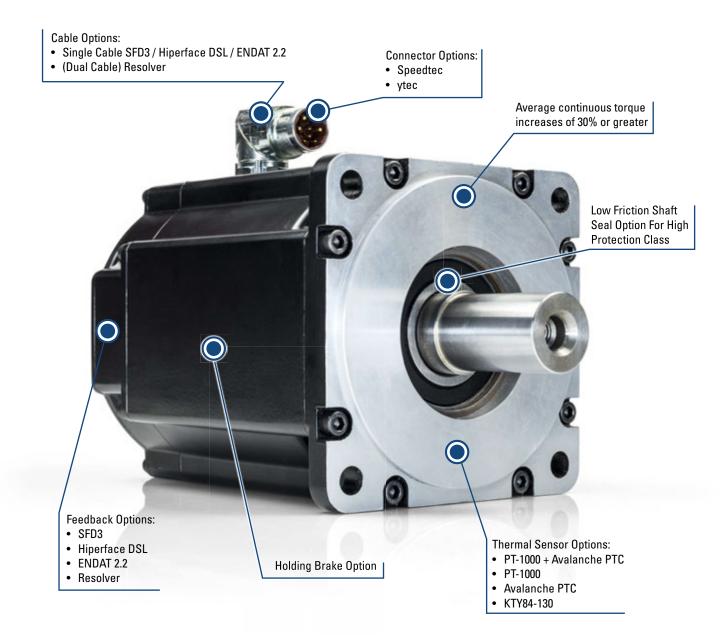
The AKM1 – one of the smallest servo motors on the market offers outstanding power density despite its compact design

65

AKM® 2G Brushless Servo Motore Fax: 877-378-0240

AKM[®]2G represents the latest evolution of the industry leading AKM motor product family.

Sold & Serviced By SERV


GO.com

sales@servo2go.com www.servo2go.com

With average continuous torque increases of 30%, OEMs and users can achieve substantial machine performance increases without increasing the size of the motor.

The improved torque density allows a smaller motor to be used which reduces the machine footprint without sacrificing performance.

- Extensive Selection of Feedback options to match application and performance requirements
- Shaft, mounting and connector options for optimal flexibility
- Holding Brake option

S

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Get the same performance in 20% less space.

For new machine designs, the AKM2G allows customers to decrease the size, footprint, and complexity of the machine, while still getting the power and performance they need.

The AKM2G drops right into existing machine designs to increase performance, when compared to competing motors, without increasing the size of the motor.

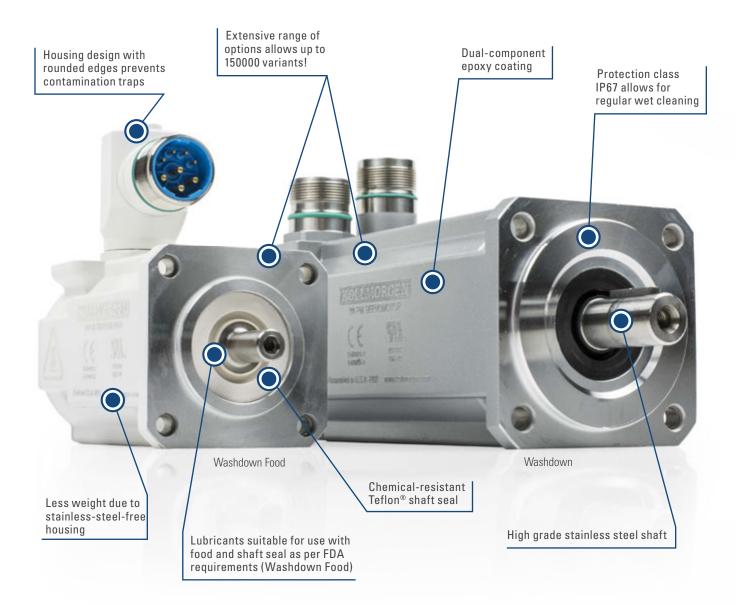
The AKM2G features six sizes with performance levels between 0.3 and 10kW. It will offer selectable options such as feedbacks, mounting configurations, and performance capabilities. Due to the modular structure of their products, Kollmorgen is better equipped than competitors to adapt motors to the requirements of a specific application in parallel with standard production needs. Machine builders are then able to choose from a wider range of standard models that leverage Kollmorgen's extensive product and application knowledge.

AKM2G Performance Data*

										Frame							
				Α	KM2G-2	2x			A	KM2G-3	х			Α	KM2G-4	x	
Parameters	Sym	Units	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Continuos Torque	т	Nm	0.65	1.10	1.49	1.80	-	1.72	2.92	3.84	-	-	2.82	5.17	7.13	8.64	-
at Stall	Т _С	lb-in	5.76	9.74	13.19	15.93	-	15.22	25.84	33.99	-	-	24.96	45.76	63.11	76.47	-
Rated Speed	N _{rtd}	rpm	8000	8000	8000	8000	-	8000	8000	8000	-	-	6000	6000	6000	5600	-
Datas Intaria		kg-cm ²	0.0930	0.1549	0.2169	0.2789	-	0.4264	0.8130	1.1996	-	-	0.7738	1.3597	1.9455	2.5314	-
Rotor Interia	Jm	lb-in-s ²	8.23E-05	1.37E-04	1.92E-04	2.47E-04	-	3.77E-04	7.20E-04	1.06E-03	-	-	6.85E-04	1.20E-03	1.72E-03	2.24E-03	-

				A	KM2G-5	ōx			A	KM2G-6	òx		AKM2G-7x					
Parameters	Sym	Units	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	
Continuos Torque	т.	Nm	6.75	11.8	16.0	19.9	-	-	15.9	22.1	27.3	32.0	23.8	44.2	61.4	75.2	-	
at Stall	I C	lb-in	59.74	104.44	141.61	176.13	-	-	140.73	195.60	241.63	283.22	210.65	391.2	543.44	665.58	-	
Rated Speed	N _{rtd}	rpm	6000	5800	5300	4600	-	-	6000	5000	4300	3800	5000	3500	3200	3000	-	
D + 1 + 1		kg-cm ²	2.5246	4.5822	6.6398	8.6974	-	-	9.1010	12.9863	16.8715	20.7568	25.8569	46.7815	67.7062	88.6308	-	
Rotor Interia	Jm	lh-in-s ²	2 23E-03	4 06F-03	5 88F-03	7 70E-03	_	_	8 06E-03	1 15E-02	1 49F-02	1 84F-02	2 29E-02	4 14F-02	5 99E-02	7 84F-02	_	

*Preliminary technical data - please consult factory for final technical data and product availability



AKM2G Series Servo Motor Family

SERVO AKM[®] Washdown and Washdown sales@servo2go.com

Servo motors Suitable for use with Food

More durable in washdown conditions than standard AKM motors, lighter and more cost-effective than stainless-steel servo motors: In many applications with demanding environmental requirements, the AKM Washdown and Washdown Food versions are good alternatives to costly stainless steel motors or expensive protective enclosures.

Specially for applications with demanding environmental requirements in the

- Packaging industry
- Pharmaceutical industry
- Food industry

- Beverage industry
- Laboratory automation
- Medical device technology

FRI CE VROHS

Sold & Serviced By

GO.com

www.servo2qo.com

378-0240 8-0249

0 æ

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Power Range

AKM frame sizes 2 to 6 with standstill torques of 1 to 25 Nm, supply voltages of 75 to 480 V, large selection of different construction lengths, winding variants, as well as feedback systems and connection technologies.

Application Criteria

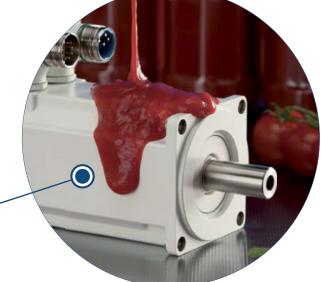
Designed for environments with acids, bases, or aggressive substances such as frequent cleaning with cleaning agents with pH values of between 2 and 12 (painted areas only).

Housing Coating

The coating material of the AKM Washdown motors is resistant to acids and bases and aggressive substances and meets the global migration requirement of the FDA. The rounded and smooth surfaces prevent hazardous contamination traps and germ formation.

Seals and Bearings

Both Washdown versions meet the IP67 protection rating. The proven AKM PTFE shaft seal is used. For the AKM Washdown Food version, the shaft seal meets FDA requirements and only food-safe lubricants are used.


Connectors and Cables

Each in size 1 with special stainless steel design and smooth surface. Cables with special mating connectors are used from stainless steel or a material appropriate for maintaining food quality. The cables are clamped using a special clamping method.

> Also proven in harsh environments: The AKM Washdown Food is resistant to most acids and bases, as well as aggressive substances.

International Standards

UL, CE, FDA*, RoHS, EAC *Global migration requirement

m R V O \leq 0 -0 В S ⊳ $\overline{}$ \leq ω RUS т Ē S S S E R < 0 \leq

0 T 0

Ъ

69

S

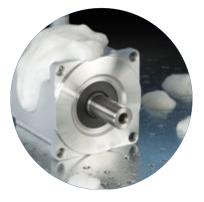
AKM[®] Servo Motors

AKM, AKM Washdown, and AKM Washdown Food

Performance Data

		ш Г		Ē		75 V DC		115 V				230 V			400 V		480 V				
AKM Servo Motor	Flange size [mm]	Cont. Torque at Stall Tcs [Nm]	Continuous Current I _o [A]	Peak Torque at stall Tps [Nm]	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm]	Rated Power Prtd [kW]	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm]	Rated Power Prtd [kW]	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm]	Rated Power Prtd [kW]	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm]	Rated Power Prtd [kW]	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm]	Rated Power Prtd [kW]	Inertia (Jm) [kg·cm²]	Weight [kg]
11B	40	0.18	1.16	0.61	-	-	-	4000	0.18	0.08	8000	0.17	0.14	-	-	-	-	-	-	0.017	0.35
11C	40	0.18	1.45	0.61	-	-	-	6000	0.18	0.11	-	-	-	-	-	-	-	-	-	0.017	0.35
11E	40	0.18	2.91	0.61	6000	0.18	0.11	-	-	-	-	-	-	-	-	-	-	-	-	0.017	0.35
12C	40	0.31	1.51	1.08	-	-	-	4000	0.30	0.13	8000	0.28	0.23	-	-	-	-	-	-	0.031	0.49
12E	40	0.31	2.72	1.08	3000	0.31	0.10	8000	0.28	0.23	-	-	-	-	-	-	-	-	-	0.031	0.49
13C	40	0.41	1.48	1.46	-	-	-	3000	0.41	0.13	8000	0.36	0.30	-	-	-	-	-	-	0.045	0.63
13D	40	0.40	2.40	1.44	2000	0.40	0.08	7000	0.36	0.27	-	-	-	-	-	-	-	-	-	0.045	0.63
21C 21E	60	0.48	1.58	1.47	-	-	- 0.10	2500 7000	0.46	0.12	8000	0.39	0.32	-	_	-	-	-	-	0.11 0.11	0.82
21E 21G	60	0.50 0.50	3.11 4.87	1.49	2000	0.48 0.46			0.41	0.30	-	-	-	-		-		-	-	0.11	0.82 0.82
21G 22C	60 60	0.50	4.87	1.51 2.73	4000	0.40	0.19 —	- 1000	- 0.83	- 0.09	- 3500	- 0.78	- 0.29	- 8000	- 0.68	- 0.57	- 8000	- 0.68	- 0.57	0.11	1.10
220 22E	60	0.87	2.73	2.76	1000	0.85	0.09	3500	0.03	0.30	8000	0.70	0.25	-	0.00	-	_	0.00	-	0.16	1.10
22G	60	0.88	4.82	2.79	2500	0.83	0.22	7000	0.74	0.54	-	-	-	_	_	-	-	_	_	0.16	1.10
23C	60	1.13	1.41	3.77	-	-	-	1000	1.11	0.12	2500	1.08	0.28	5500	0.99	0.57	7000	0.95	0.70	0.22	1.38
23D	60	1.16	2.19	3.84	_	_	_	1500	1.12	0.18	5000	1.03	0.54	8000	0.92	0.77	8000	0.92	0.77	0.22	1.38
23F	60	1.18	4.31	3.88	1500	1.15	0.18	4500	1.07	0.50	8000	0.94	0.79	_	_	_	_	-	_	0.22	1.38
24C	60	1.38	1.42	4.67	-	-	-	-	-	-	2000	1.32	0.28	4500	1.25	0.59	5500	1.22	0.70	0.27	1.66
24D	60	1.41	2.21	4.76	-	-	-	1500	1.36	0.21	4000	1.29	0.54	8000	1.11	0.93	8000	1.11	0.93	0.27	1.66
24F	60	1.42	3.89	4.82	1000	1.39	0.15	3000	1.33	0.42	8000	1.12	0.94	-	-	-	-	-	-	0.27	1.66
31C	80	1.15	1.37	3.88	-	-	-	-	-	-	2500	1.12	0.29	5000	1.00	0.52	6000	0.91	0.57	0.33	1.55
31E	80	1.20	2.99	4.00	750	1.19	0.09	2500	1.17	0.31	6000	0.95	0.60	-	-	-	-	-	-	0.33	1.55
31H	80	1.23	5.85	4.06	2000	1.20	0.25	6000	0.97	0.61	-	-	-	-	-	-	-	-	-	0.33	1.55
32C	80	2.00	1.44	6.92	-	-	-	-	-	-	1500	1.95	0.31	3000	1.86	0.58	3500	1.83	0.67	0.59	2.23
32D	80	2.04	2.23	7.10	-	-	-	1000	2.00	0.21	2500	1.93	0.51	5500	1.65	0.95	6000	1.58	0.99	0.59	2.23
32E	80	2.04	2.82	7.11	-	-	-	-	-	-	3500	1.87	0.69	7000	1.41	1.03	7000	1.22	1.02	0.59	2.23
32H	80	2.10	5.50	7.26	1200	2.06	0.26	3000	1.96	0.62	7000	1.45	1.06	-	-	-	-	-	-	0.59	2.23
33C	80	2.71	1.47	9.76	-	-	-	-	-	-	1000	2.64	0.28	2000	2.54	0.53	2500	2.50	0.65	0.85	2.9
33E	80	2.79	2.58	9.96	-	-	-	-	-	-	2000	2.62	0.55	4500	2.34	1.10	5000	2.27	1.19	0.85	2.9
33H	80	2.88	5.62	10.22	800	2.82	0.24	2500	2.66	0.70	5500	2.27	1.31	-	-	-	-	-	-	0.85	2.9
41C	90	1.95	1.46	6.12	-	-	-	-	-	-	1200	1.88	0.24	3000	1.77	0.56	3500	1.74	0.64	0.81	2.44
41E 41H	90 90	2.02 2.06	2.85 5.6	6.28 6.36	- 1000	- 1.99	- 0.21	1200 3000	1.94 1.86	0.24 0.58	3000 6000	1.82 1.62	0.57 1.02	6000 _	1.58	0.99 —	6000	1.58	0.99 —	0.81 0.81	2.44 2.44
4111	90	3.35	1.40	11.3	1000	1.33	0.21		1.00	0.00		1.02	1.02	1500	3.10	0.49	2000	3.02	0.63	1.5	3.39
420 42E	90 90	3.35	2.74	11.3	_	_	_	_	_	_	- 1800	3.12	0.59	3500	2.81	2.35	4000	2.72	1.14	1.5	3.39
42G	90	3.53	4.80	11.5	_	_	_	_	_	_	3500	2.90	1.06	6000	2.35	1.48	6000	2.35	1.48	1.5	3.39
42J	90	3.56	8.4	11.6	_	_	_	3000	3.03	0.95	6000	2.36	1.50	-	_	-	-	_	-	1.5	3.39
43E	90	4.70	2.76	15.9	_	_	_	_	_	-	1500	4.24	0.67	2500	3.92	1.03	3000	3.76	1.18	2.1	4.35
43G	90	4.80	4.87	16.1	_	-	-	_	-	-	2500	4.00	1.05	5000	3.01	1.58	6000	2.57	1.61	2.1	4.35
43K	90	4.90	9.60	16.4	-	-	-	2500	4.08	1.07	6000	2.62	1.65	_	_	-	-	_	-	2.1	4.35
44E	90	5.76	2.90	19.9	-	-	-	-	-	-	1200	5.22	0.66	2000	4.80	1.01	2500	4.56	1.19	2.7	5.3
44G	90	5.88	5.00	20.3	-	-	-	-	-	-	2000	4.90	1.03	4000	3.76	1.57	5000	3.19	1.67	2.7	5.3
44J	90	6.00	8.80	20.4	-	-	-	-	-	-	4000	3.84	1.61	6000	2.75	1.73	6000	2.75	1.73	2.7	5.3
51E	115	4.70	2.75	11.6	_	-	-	-	-	-	1200	4.41	0.55	2500	3.98	1.04	3000	3.80	1.19	3.4	4.2
51G	115	4.75	4.84	11.7	-	-	-	-	-	-	2500	4.02	1.05	5000	2.62	1.37	6000	1.94	1.22	3.4	4.2
51H	115	4.79	6.00	11.7	-	-	-	-	-	-	3000	3.87	1.22	6000	1.95	1.23	6000	1.95	1.23	3.4	4.2
51K	115	4.90	9.40	11.9	-	-	-	2500	4.15	1.09	5500	2.35	1.35	-	-	-	-	-	-	3.4	4.2

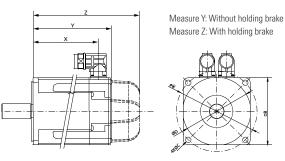
æ


Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Performance Data

		[m]		[Ĺ		230 V			400 V			480 V			
AKM Serva Matar	Frame size [mm]	Cont. Torque at Stall Tcs [Nm]	Continuous Current 1 ₀ [A]	Peak Torque at stall Tps [Nm]	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm]	Rated Power Prtd [kW]	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm]	Rated Power Prtd [kW]	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm]	Rated Power Prtd [kW]	Inertia (Jm) [kg·cm²]	Weight [kg]
52E	115	8.34	2.99	21.3	-	-	-	1500	7.61	1.20	2000	7.28	1.52	6.2	5.8
52G	115	8.43	4.72	21.5	1200	7.69	1.21	2500	7.06	1.85	3000	6.66	2.09	6.2	5.8
52H	115	8.48	5.90	21.6	1800	7.53	1.42	3500	6.26	2.30	4000	5.77	2.42	6.2	5.8
52K	115	8.60	9.30	21.9	3000	6.80	2.14	5500	3.90	2.25	6000	3.25	2.04	6.2	5.8
52M	115	8.60	13.1	21.9	4500	5.20	2.45	-	-	-	-	-	-	6.2	5.8
53G	115	11.4	4.77	29.7	1000	10.7	1.12	2000	9.85	2.06	2400	9.50	2.39	9.1	7.4
53H	115	11.5	6.60	30.0	-	-	-	3000	8.63	2.77	3500	8.23	3.02	9.1	7.4
53K	115	11.6	9.40	30.3	2000	10.1	2.12	4000	7.65	3.20	4500	6.85	3.23	9.1	7.4
53M	115	11.4	13.4	29.7	3000	8.72	2.74	-	-	-	-	-	-	9.1	7.4
53P	115	11.4	19.1	29.8	5000	5.88	3.08	-	-	-	-	-	-	9.1	7.4
54G	115	14.3	5.00	38.0	-	-	-	1500	12.9	2.03	2000	12.3	2.57	12	9
54H	115	14.2	5.50	37.5	-	-	-	1500	12.6	2.38	2000	12.2	2.56	12	9
54K	115	14.4	9.7	38.4	1800	12.7	2.39	3500	10.0	3.68	4000	9.25	3.87	12	9
54L	115	14.1	12.5	37.5	2500	11.5	3.00	4500	8.13	3.83	-	-	-	12	9
54N	115	14.1	17.8	37.6	3500	9.85	3.61	-	-	-	-	-	-	12	9
62G	142	11.9	4.9	29.7	-	-	-	1800	10.4	1.96	2000	10.2	2.14	17	8.9
62K	142	12.2	9.6	30.2	2000	10.4	2.18	3500	9.00	3.30	4500	8.00	3.77	17	8.9
62M	142	12.2	13.4	30.2	3000	9.50	2.98	6000	5.70	3.58	6000	5.70	3.58	17	8.9
62P	142	12.3	18.8	30.3	4500	8.10	3.82	-	-	-	-	-	-	17	8.9
63G	142	16.5	4.5	42.1	-	-	-	1200	14.9	1.87	1500	14.6	2.29	24	11.1
63K	142	16.8	9.9	42.6	1500	14.9	2.34	3000	12.9	4.05	3500	12.0	4.40	24	11.1
63M	142	17.0	13.8	43.0	2000	14.3	2.99	4000	11.3	4.73	4500	10.5	4.95	24	11.1
63N	142	17.0	17.4	43.0	3000	13.0	4.08	5000	9.60	5.03	6000	7.00	4.40	24	11.1
64K	142	20.8	9.2	53.5	1200	18.8	2.36	2000	17.2	3.60	2500	16.3	4.27	32	13.3
64L	142	21.0	12.8	54.1	1500	18.4	2.89	3000	15.6	4.90	3500	14.4	5.28	32	13.3
64P	142	20.4	18.6	52.9	2500	16.0	4.19	4500	11.9	5.62	5500	9.00	5.18	32	13.3
640	142	20.0	20.7	53.2	3000	15.3	4.81	5000	10.7	6.45	6000	7.40	4.65	32	13.3
65K	142	24.8	9.8	64.5	1000	22.8	2.39	2000	20.2	4.23	2200	19.7	4.54	40	15.4
65M	142	25.0	13.6	65.2	1500	21.9	3.44	2500	19.2	5.03	3000	18.1	5.69	40	15.4
65N	142	24.3	17.8	63.7	2000	19.8	4.15	3500	16.0	5.86	4000	14.7	6.16	40	15.4
65P	142	24.5	19.8	64.1	2400	19.1	4.8	4000	14.9	6.24	5000	11.6	6.08	40	15.4
72K	180	29.7	9.3	79.4	-	-	-	1500	25.1	3.94	1800	24.0	4.52	65	19.7
72M	180	30.0	13.0	79.8	-	-	-	2000	23.6	4.94	2500	22.1	5.79	65	19.7
72P	180	29.4	18.7	78.5	1800	23.8	4.49	3000	20.1	6.31	3500	18.2	6.67	65	19.7
720	180	29.5	23.5	78.4	2000	23.2	4.89	4000	16.3	6.83	4500	14.1	6.65	65	19.7
73M	180	42.0	13.6	112	-	-	-	1500	33.8 20 E	5.31	1800	32.1	6.05	92	26.7
73P	180	41.6	19.5	111	1300	34.7	4.72	2400	28.5	7.16	2800	26.3	7.71	92	26.7
730	180	41.5	24.5	111	1500	33.4	5.25	3000	25.2	7.92	3500	22	8.07	92	26.7
74L 74P	180	53.0	12.9	143	-	-	-	1200	43.5	5.47	1400	41.5	6.08	120	33.6
74P 74Q	180	52.5	18.5	142	-		- E 71	1800	39.6 21 E	7.46	2000	35.9	7.52	120	33.6
74U 82T	180	52.2 75	26.1 48	141 210	1300	41.9	5.71	2500	31.5	8.25	3000	27.3	8.58	120	33.6
	260			210	-	-	-	2500	47.5	12.4	3000	38.0	11.9	172	49
83T 83V	260 260	130 130	62 91	456 304	-	-	-	2200 3000	70.0 65	16.1 20.4	2500 -	60.0 —	15.7 _	334 334	73 73
84T	260	180	67	668	_	_	_	1800	105	19.8	2000	93.0	- 19.5	334 495	97
041	200	100	07	000		_		1000	105	13.0	2000	33.0	13.0	490	5/

AKM[®] Brushless Servo Motor


SERVOZGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Sold & Serviced By:

AKM, AKM Washdown, and AKM Washdown Food

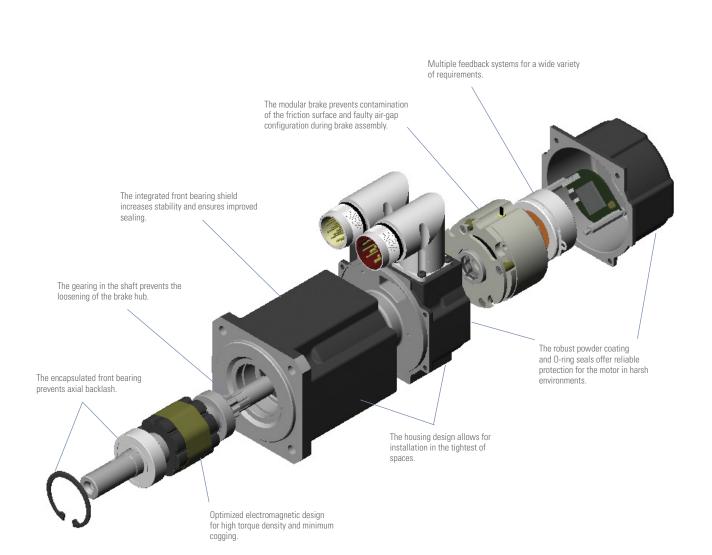
Model with Power and Signal Connector

Dimensional drawing for AKM11 - AKM84

All measurement specifications in mm – Measure Y: Measurement without holding brake, Measure Z: Measurement with holding brake

Model	Х	Resc	olvers	Com	coder	Biss/	Endat	Hipe	rface	Drive	e Cliq	Flange	Bolt circle	Bore diameter	Centering collar
		Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	□B	ØW	ØC	ØD
AKM11	56.1	69.6	106.6	79.0	-	-	-	79	116	-	-	40	46	4.3	30
AKM12	75.1	88.6	125.6	98.0	-	-	-	98	135	-	-	40	46	4.3	30
AKM13	94.1	107.6	144.6	117.0	-	-	-	117	154	-	-	40	46	4.3	30
AKM21	76.1	95.4	129.5	95.4	129.5	95.4	129.5	113.4	147.1	-	-	58	63	4.8	40
AKM22	95.1	114.4	148.5	114.4	148.5	114.4	148.5	132.4	166.1	-	-	58	63/65(1)	4.8	40
AKM23	114.1	133.4	167.5	133.4	167.5	133.4	167.5	151.4	185.1	-	-	58	63/65(1)	4.8	40
AKM24	135.1	152.4	186.5	152.4	186.5	152.4	186.5	170.4	204.1	-	-	58	63/65(1)	4.8	40
AKM31	87.9	109.8	141.3	109.8	141.3	109.8	141.3	125.3	159.3	-	-	70	75/85(2)	5.8	60
AKM32	118.9	140.8	172.3	140.8	172.3	140.8	172.3	156.3	190.3	-	-	70	75/85 (2)	5.8	60
AKM33	149.9	171.8	203.3	171.8	203.3	171.8	203.3	187.3	221.3	-	-	70	75/85(2)	5.8	60
AKM41	96.4	118.8	152.3	118.8	152.3	118.8	152.3	136.8	170.3	152.3	170.3	84	90/100(3)	7	60/80(3)
AKM42	125.5	147.8	181.3	147.8	181.3	147.8	181.3	165.8	199.3	181.3	199.3	84	90/100(3)	7	60/80(3)
AKM43	154.4	176.8	210.3	176.8	210.3	176.8	210.3	194.8	228.3	210.3	228.3	84	90/100(3)	7	60/80(3)
AKM44	183.4	205.8	239.3	205.8	239.3	205.8	239.3	223.8	257.3	239.3	257.3	84	90/100(3)	7	60/80(3)
AKM51	105.3	127.5	172.5	127.5	172.5	145.0	189.0	145.0	189.0	146.0	189.0	108	115/130 (4)	7	95/110(4)
AKM52	136.3	158.5	203.5	158.5	203.5	177.0	220.0	177.0	220.0	177.0	220.0	108	115/130 (4)	7	95/110(4)
AKM53	167.3	189.5	234.5	189.5	234.5	208.0	251.0	208.0	251.0	208.0	251.0	108	115/130 (4)	7	95/110(4)
AKM54	198.3	220.5	265.5	220.5	265.5	239.0	282.0	239.0	282.0	239.0	282.0	108	115/130 (4)	7	95/110(4)
AKM62	130.5	153.7	200.7	153.7	200.7	172.2	219.7	172.2	219.7	172.2	219.7	138	165	11	130
AKM63	155.5	178.7	225.7	178.7	225.7	197.2	244.7	197.2	244.7	197.2	244.7	138	165	11	130
AKM64	180.5	203.7	250.7	203.7	250.7	222.2	269.7	222.2	269.7	222.2	269.7	138	165	11	130
AKM65	205.5	228.7	275.7	228.7	275.7	247.2	294.7	247.2	294.7	247.2	294.7	138	165	11	130
AKM72	164.5	192.5	234.5	192.5	234.5	192.5	234.5	192.5	234.5	201.7	253.3	188	215	13,5	180
AKM73	198.5	226.5	268.5	226.5	268.5	235.7	287.3	235.7	287.3	235.7	287.3	188	215	13,5	180
AKM74	232.5	260.5	302.5	260.5	302.5	269.7	321.3	269.7	321.3	269.7	321.3	188	215	13,5	180
AKM82	170	267	333	267	333	267	333	267	333	-	-	260	300	18.5	250
AKM83	250.5	347.5	413.5	347.5	413.5	347.5	413.5	347.5	413.5	-	-	260	300	18.5	250
AKM84	331	428	494	428	494	428	494	428	494	-	-	260	300	18.5	250

72


(2) ØW = 75 mm AKM3xx-Ax (3) ØW = 10 ØW = 85 mm AKM3xx-Cx ØW = 9

(3) ØW = 100 mm, ØV = 80 mm AKM4xx-Ax ØW = 90 mm, ØV = 60 mm AKM4xx-Cx (4) ØW = 130 mm ØV = 110 mm AKM5xx-Ax ØW = 115 mm ØV = 95 mm AKM5xx-Ax

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

The Design Features of AKM in the 3D Model

Ъ

AKMH[™] Hygienic Stainless Steel Servo Motors

For more than 70 years, Kollmorgen has been developing special motors for use in difficult environments. For example, the remotely controlled submarine vehicle called the Jason Jr. discovered the wreck of the Titanic with the help of Kollmorgen motors developed especially for this purpose.

Long motor life and improved uptime. The specially designed AKMH housing, seals and cables can endure daily wash downs with high pressure, high temperature, and caustic chemicals. These features ensure that AKMH motors are able to have a long life even in extremely harsh wash-downs, which ultimately leads to minimization of downtime and improved uptime of machines.

Fast cleaning and higher productivity. The water and chemical resistant designs in housing, seals and cables of AKMH mean that guards and covers are not required to protect the motor from harsh cleaning regimens, so that clean-up and changeover time can be significantly reduced to save labor cost and increase productivity.

Reduced recall risk. Designed to meet the toughest hygienic requirements in the industry, AKMH carefully eliminates flat surfaces, cracks, and crevices to prevent the build-up of foreign material and bacteria. That significantly reduces the possibility of food borne illnesses and costly recalls enforced by Food Modernization Safety Act (FMSA).

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

The Advantages of AKMH Hygienic Stainless Steel Servo Motors

Increase in Overall Equipment Effectiveness (OEE)
Faster and environmentally friendly cleaning	 Open, hygienic machine design without protective housings Considerably lower consumption of cleaning agents; less dirty water
No machine downtimes as a result of cleaning or corrosion	 Protection class IP69K for motor housing, cable gland, and shaft seal Designed for regular high-pressure and high-temperature cleaning Cable and sealing components are resistant to common cleaning agents No corrosion inside the motor: Pressure compensation through the cable prevents moisture in the motor
Lower operating costs	 Higher machine availability due to quicker cleaning Faster cleaning reduces the consumption of cleaning agents and energy High energy efficiency due to motor / servo drive combination with a high degree of efficiency
Higher throughput	 Quick and precise drives in combination with the AKD servo drives Process monitoring and optimization with Kollmorgen's software tools
Lower risk of recalls	
Hygiene-optimized housing design	 Housing is 316L or DIN 1.4404 Stainless Steel with smooth surface prevents the build-up of pathogens Fluids drained with vertical installation thanks to convex cover No place for pathagens to hide - no nooks and crannies in housing design Thanks to a laser annealed nameplate, the surface finish is undisturbed
Use of approved hygienic components	 Bearing lubrication and shaft seals FDA-approved Observance of the EHEDG and 3A Sanitary Certificate hygienic regulations
Hygienic cable technology	 Silicon tubing option provides an FDA-approved cable option suitable for use with food Low cabling costs due to single-cable technology - no need for expensive stainless steel conduit Non absorbant cabling prevent pathogens from hiding in the cable jacket material
Reduced development times and design freed	lom
Ideal motor design	 Large selection of standard motors allowing customers to optimize their motor selection 19 frame sizes, flange and shaft measurements as per IEC and NEMA Continuous torques up to 22 Nm, peak torques up to 92 Nm Speeds up to 8000 rpm⁻¹ SFD3 and Hiperface DSL digital feedback systems Brake and cable options
Simple start-up and parameterization	 Plug-and-play connection with pre-assembled connectable cables, no screw connections Simple machine architecture due to single-cable and decentralized connection technology Digital nameplate for quick start-up Software tools for parameterization and drive monitoring
Low energy consumption	High efficiency due to permanent magnet technology20% less derating due to special motor design
Kollmorgen support	Kollmorgen's global support team has a wealth of industry knowledge to help optimize your machine
Co-engineering	Kollmorgen welcomes customization to help optimize your motor/drive solution

Sold & Serviced By:

www.servo2go.com

The stainless steel AKMH motors have been designed for hygienic machine applications in wet areas with food contact in accordance with the EHEDG regulations and they comply with 3A, USDA* and NFS hygiene standards. Shorter cleaning times and high reliability ensure noticeably greater overall equipment effectiveness.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Higher Productivity Due to Quicker Cleaning

- Ideal for machines with an open design
- · No costly protective equipment; no hidden spaces to trap pathogens
- Quick, easy, yet safe cleaning

Reduced Recall Risk

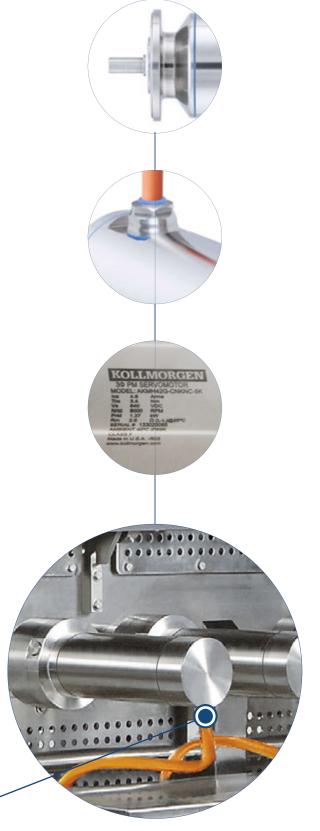
- Lubricants and seals meet FDA standards.
- Round, stainless steel housing with a roughness of < 0.8 µm and the design of all edges with radii of R1.5 prevent dirt deposits

Higher Machine Uptime

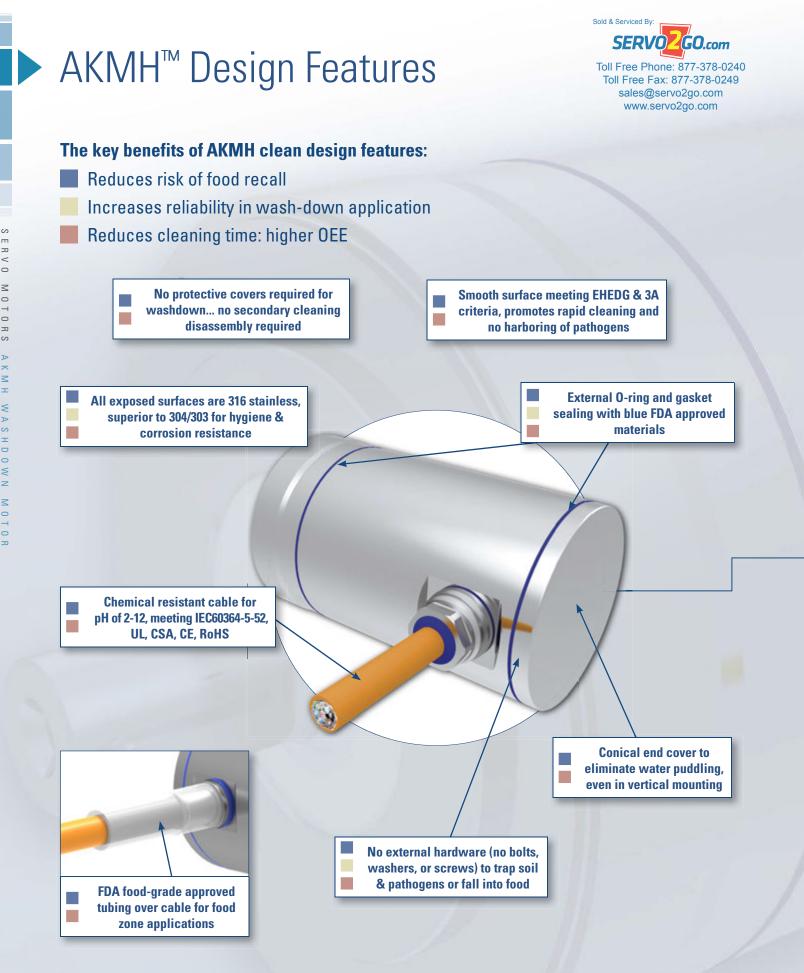
- IP69K: Motor is protected for water pressures up to 1450 PSI
- Cable is directly mounted to motor; no connectors to fail or trap pathogens
- Single-cable technology with digital feedback (SFD3 or HIPERFACE[®] DSL digital resolvers); less cabling to clean

Outstanding Efficiency Thanks to Novel Motor Design

- Torque derating under 20%
- High speeds of up to 8000 RPM offer more flexibility for gearbox attachment and higher productivity due to higher output speeds with the same torque
- · AKMH2 is the most compact hygienic servo motor on the market


Optimized Motion with 19 Frame Sizes

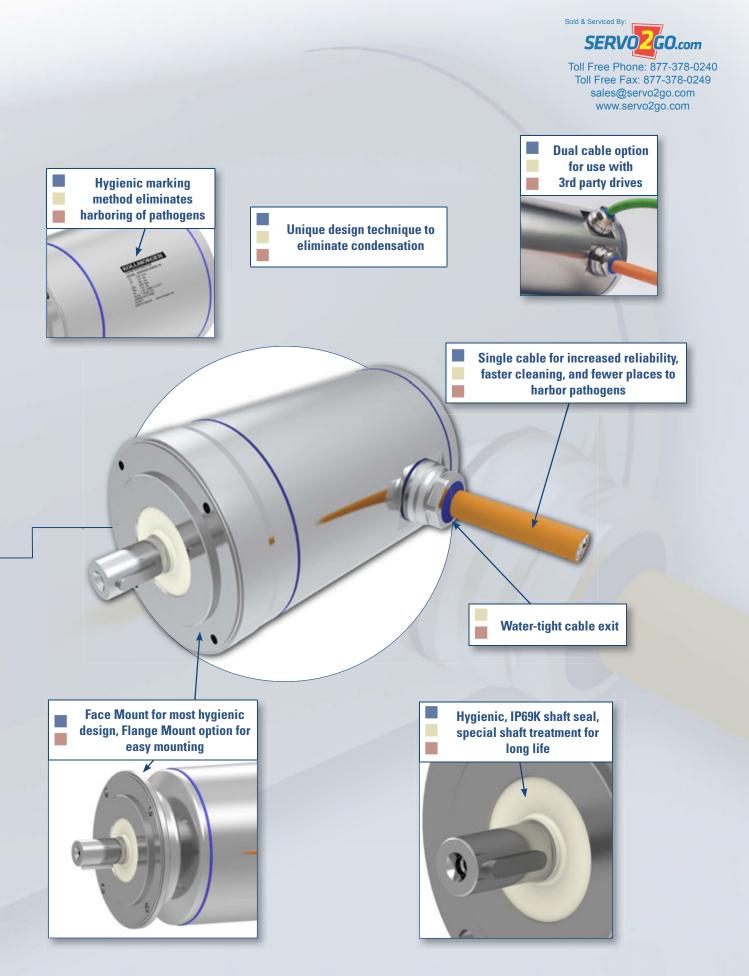
- 5 sizes each with 4 rotor lengths and winding options for perfect adaptation to servo drives
- Two housing shapes for front and flange mounting


One Source for Your Complete Automation Solution

- The Kollmorgen Automation Suite[™] provides all the tools for motion and PLC programming and for drive management in operation
- AKD®-PDMM multi-axis controller: The 3-in-1 solution combines servo drive, motion controller, and PLC in one device

Thanks to the open machine design without protective housings, machines can also be cleaned quickly and safely using high-pressure and high-temperature processes.

S



KOHHMORCHIN

₽ < 0 \leq 0 0 Ъ < Ŧ \leq Þ လ Ŧ 0 \leq z \leq 0 Т 0

78

S

AKMH Hygienic Stainless Steel Server Steel S

Sold & Serviced By:

www.servo2go.com

Performance Data

		~															
AKMH Servo Motor	Cont. Torque at Stall Tcs [Nm] ①@@	Continuous Current I_ [A] $\odot @ @$	Peak Torque at stall Tps [Nm] 0@3	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm] ①②③	Rated Power Prtd [kW] ①②③	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm] @@@	Rated power P _n [kW]	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm] ①②③	Rated Power Prtd [kW] ①②③	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm] ①②③	Rated Power Prtd [kW] ①②③	Inertia (Jm) [kg·cm²]	Weight [kg]
21C	0.3	1.33	1.76	2500	0.34	0.09	8000	0.27	0.23	8000	0.25	0.21	8000	0.25	0.21	0.11	3.6
21E	0.35	2.61	1.81	7000	0.30	0.22	-	-	-	-	-	-	-	-	-	0.11	3.6
21G	0.36	4.02	1.60	-	-	-	-	-	-	-	-	-	-	-	-	0.11	3.6
22C	0.6	1.16	3.16	1000	0.62	0.06	3500	0.59	0.22	8000	0.44	0.37	8000	0.44	0.37	0.16	4.1
22E	0.63	2.27	3.23	3500	0.62	0.23	8000	0.60	0.22	-	-	-	-	-	-	0.16	4.1
22G	0.63	3.90	3.27	7000	0.51	0.37	-	-	-	-	-	-	-	-	-	0.16	4.1
23D	0.83	1.84	4.37	1500	0.86	0.14	5000	0.75	0.39	8000	0.55	0.46	8000	0.54	0.45	0.22	4.6
23E	0.88	2.34	4.43	2500	0.86	0.23	6500	0.63	0.46	-	-	-	-	-	-	0.22	4.6
23F	0.86	3.55	4.46	4500	0.78	0.37	8000	0.56	0.47	-	-	-	-	-	-	0.22	4.6
24D	1.07	1.92	5.35	1500	1.09	0.17	4000	0.97	0.41	8000	0.64	0.54	8000	0.62	0.52	0.27	5.1
24E	1.13	2.47	5.36	2000	1.09	0.23	5500	0.89	0.51	-	-	-	-	-	-	0.27	5.1
24F	1.10	3.35	5.39	3000	1.03	0.32	8000	0.65	0.54	-	-	-	-	-	-	0.27	5.1
31C	0.89	1.22	3.76	-	-	-	2500	0.86	0.23	5000	0.73	0.38	6000	0.67	0.42	0.33	4.1
31E	0.94	2.58	3.88	2500	0.91	0.24	6000	0.71	0.46	-	-	-	-	-	-	0.33	4.1
31H	0.97	4.93	3.95	6000	0.74	0.46	-	-	-	-	-	-	-	-	-	0.33	4.1
32C	1.64	1.27	6.92	-	-	-	1500	1.60	0.25	3000	1.46	0.46	3500	1.40	0.51	0.59	5.0
32E	1.65	2.44	7.06	-	-	-	3500	1.47	0.54	7000	0.91	0.67	8000	0.63	0.53	0.59	5.0
32H	1.73	4.71	7.21	3000	1.59	0.50	7000	0.92	0.67	-	-	-	-	-	-	0.59	5.0
33C	2.41	1.34	9.94	-	-	-	1000	2.37	0.25	2000	2.25	0.47	2500	2.18	0.57	0.85	5.9
33E	2.45	2.29	10.19	-	-	-	2000	2.34	0.49	4500	1.90	0.90	5000	1.77	0.93	0.85	5.9
33H	2.55	4.90	10.43	2500	2.37	0.62	5500	1.71	0.98	8000	-	-	-	-	-	0.85	5.9
41C	1.73	1.43	5.75	-	-	-	1200	1.70	0.27	3000	1.59	0.50	3500	1.54	0.56	0.81	6.1
41E	1.71	2.67	5.84	1500	1.74	0.27	3000	1.62	0.51	6000	1.28	0.79	6000	1.23	0.77	0.81	6.1
41H	1.79	5.23	5.92	3000	1.69	0.53	6000	1.30	0.82	-	-	-	-	-	-	0.81	6.1
42C	3.08	1.38	10.62	-	-	-	-	-	-	1500	2.96	0.46	2000	2.89	0.61	1.45	7.4
42E	3.05	2.58	10.79	-	-	-	1800	2.92	0.61	3500	2.56	0.94	4000	2.40	1.01	1.45	7.4
42H	3.08	5.53	11.04	2000	3.09	0.65	4500	2.38	1.12	6000	1.26	0.79	6000	1.04	0.65	1.45	7.4
42J	3.30	7.95	11.08	3000	2.99	0.94	6000	1.60	1.01	-	-	-	-	-	-	1.45	7.4
43E	4.29	2.56	15.50	-	-	-	1500	4.17	0.66	2500	3.84	1.01	3000	3.65	1.15	2.09	8.8
43H	4.45	5.11	15.65	-	-	-	3000	3.93	1.23	6000	1.47	0.92	6000	0.97	0.61	2.09	8.8
43L	3.93	9.72	15.58	3000	3.48	1.09	6000	0.64	0.40	-	-	-	-	-	-	2.09	8.8
44E	5.37	2.67	19.77	-	-	-	1200	5.31	0.56	2000	4.93	1.03	2500	4.71	1.23	2.73	10.2
44H	5.36	5.19	19.73	-	-	-	2500	4.87	1.27	5000	2.64	1.38	5000	2.21	1.16	2.73	10.2
44K	5.37	9.35	19.75	2000	5.07	1.06	5000	2.56	1.34	-	-	-	-	-	-	2.73	10.2
51E	3.84	2.55	10.09	-	-	-	1500	3.76	0.59	2500	3.52	0.92	3000	3.39	1.06	3.42	8.9
51H	3.71	5.37	10.17	-	-	-	3000	3.38	1.06	5500	2.43	1.40	5500	2.03	1.17	3.42	8.9
51L	3.81	10.36	10.33	3000	3.48	1.09	5500	2.14	1.23	-	-	-	-	-	-	3.42	8.9

Motor winding excess temperature, ΔT = 100 K with ambient temperature = 40°C

 $\ensuremath{\textcircled{O}}$ All specifications refer to sinusoidal supply

③ Rated data with reference flange (aluminum, dims (mm): AKMH2, AKMH3, AKMH4: 254 x 254 x 6.35 AKMH5: 305 x 305 x 12.7 AKMH6: 457 x 457 x 12.7)

80

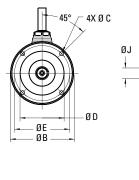
Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

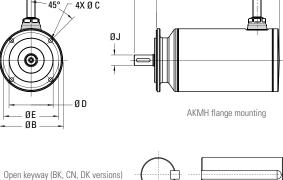
Performance Data

	ତ ତ				160 V DC			320 V DC V	1		560 V DC			640 V DC			
AKMH Servo Motor	Cont. Torque at Stall Tcs [Nm]	Continuous Current $I_{0}\left[A ight] \oplus \mathbb{O}$	Peak Torque at stall Tps [Nm] 0@©	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm] ①②③	Rated Power Prtd [kW] 0.0	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm] @@@	Rated power P [KW]	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm] ①②③	Rated Power Prtd [kW] © © ©	Rated Speed Nrtd [RPM]	Rated Torque Trtd [Nm] ①②③	Rated Power Prtd [kW]	Inertia (Jm) [kg·cm²]	Weight [kg]
52E	6.55	2.63	18.79	-	-	-	-	-	-	1500	6.28	0.99	2000	6.10	1.28	6.22	11.1
52H	6.58	5.06	19.01	-	-	-	1500	6.42	1.01	3500	5.22	1.91	4000	4.70	1.92	6.22	11.1
52L	6.51	9.67	19.30	-	-	-	3500	5.26	1.93	4500	2.42	1.14	4500	1.26	0.59	6.22	11.1
52M	6.56	10.92	19.20	-	-	-	4500	4.15	1.96	-	-	-	-	-	-	6.22	11.1
53H	9.25	5.80	26.74	-	-	-	-	-	-	3000	6.82	2.14	3500	5.88	2.16	9.12	13.4
53L	8.80	9.88	26.95	-	-	-	3000	6.70	2.10	3500	3.85	1.41	3500	2.82	1.09	9.12	13.4
53P	8.12	15.34	26.56	-	-	-	3500	3.80	1.39	-	-	-	-	-	-	9.12	13.4
54H	12.94	5.19	35.62	-	-	-	1000	12.64	1.32	2000	11.48	2.40	2000	11.27	2.36	11.90	15.7
54L	11.84	11.06	35.65	-	-	-	2500	9.94	2.60	3000	7.14	2.24	-	-	-	11.90	15.7
54P	11.56	16.34	36.08	-	-	-	3000	7.59	2.38	-	-	-	-	-	-	11.90	15.7
62H	10.3	5.21	32.24	-	-	-	1000	9.93	1.04	2000	8.96	1.88	2000	8.89	1.86	16.90	19.6
62L	9.91	10.83	33.03	-	-	-	2500	8.17	2.14	5000	1.89	0.99	4500	3.07	1.45	16.90	19.6
62M	10.10	12.27	33.13	_	_	-	3000	7.67	2.41	4500	3.31	1.56	4500	2.46	1.16	16.90	19.6
63H	14.3	5.31	44.73	_	_	-	_	_	_	1500	13.04	2.05	2000	12.36	2.59	24.20	23.1
63L	13.80	10.02	45.29	-	-	-	2000	12.22	2.56	3000	9.83	3.09	3500	8.31	3.06	24.20	23.1
63M	13.90	12.33	46.02	-	-	-	2000	12.22	2.56	4000	6.67	2.79	4500	3.38	1.59	24.20	23.1
64K	17.6	8.56	55.79	-	-	-	1000	16.99	1.78	2000	15.09	3.16	2500	13.91	3.64	31.60	26.7
64L	17.50	11.63	56.46	-	_	-	1500	16.24	2.55	3000	12.29	3.86	3500	10.22	3.75	31.60	26.7
65K	20.9	9.15	65.87	-	-	-	1000	20.23	2.12	2000	18.03	3.76	2500	16.66	4.36	40.00	30.2
65L	21.00	11.21	66.72	-	-	-	1500	19.61	3.08	2500	16.63	4.35	3000	14.77	4.54	40.00	30.2
65M	20.70	12.32	66.63	-	-	-	1500	19.24	3.02	3000	14.69	4.61	3000	14.02	4.40	40.00	30.2

 \odot Motor winding excess temperature, ΔT = 100 K with ambient temperature = 40°C

② All specifications refer to sinusoidal supply

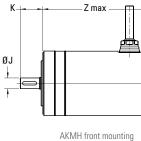

③ Rated data with reference flange (aluminum, dims (mm): AKMH2, AKMH3, AKMH4: 254 x 254 x 6.35 AKMH5: 305 x 305 x 12.7 AKMH6: 457 x 457 x 12.7)

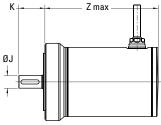

Туре	AC	AN	BK	BN	CC	CN	DK	DN	EK	EN	GC	GN	HC	HN	LK
Mounting	Flange	Flange	Flange	Flange	Front	Front	Front	Front	Front	Front	Flange	Flange	Front	Front	Flange
Standard	IEC	IEC	NEMA	NEMA	IEC	IEC	NEMA	NEMA	NEMA	NEMA	IEC	IEC	IEC	IEC	NEMA
Shaft	Closed Keyway	Smooth	Open Keyway	Smooth	Closed Keyway	Smooth	Open Keyway	Smooth	Open Keyway	Smooth	Closed Keyway	Smooth	Closed Keyway	Smooth	Open Keyway
AKMH 2x	•	•	-	•	•	•	-	•	-	-	-	-	-	-	-
AKMH 3x	•	•	-	•	•	_	-	-	-	-	-	-	-	-	-
AKMH 4x	•	•	•	•	•	•	•	•	•	•	-	-	-	-	•
AKMH 5x	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-
AKMH 6x	•	•	_	_	•	•	•	•	•	•	_	_	_	_	_

Flange/Shaft Combinations

SERVO GO.com AKMH Hygienic Stainless Steel Servo 0240 249 sales@servo2go.com

www.servo2go.com

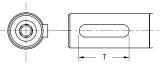




Zmax

Ν

Κ



Sold & Serviced By:

Closed keyway (AC, BN, GC, HC versions)

Dimensions (mm)

Model	Z m SFD3 digit	ax. al resolver	Z rr Hiperfa	nax. Ice DSL	Flange
	without brake	with brake	without brake	with brake	ØВ
AKMH21	167.2	201.2	180.2	214.2	79
AKMH22	186.2	220.2	199.2	233.2	79
AKMH23	205.2	239.2	218.2	252.2	79
AKMH24	224.2	258.2	237.2	271.2	79
AKMH31	166.5	198.0	182.5	214.0	89
AKMH32	197.5	229.0	213.5	245.0	89
AKMH33	228.5	260.0	244.5	276.0	89
AKMH41	166.7	201.0	182.7	217.0	113
AKMH42	195.7	230.0	211.7	246.0	113
AKMH43	224.7	259.0	240.7	275.0	113
AKMH44	253.7	288.0	269.7	304.0	113
AKMH51	187.4	229.4	198.4	240.4	148
AKMH52	218.4	260.4	229.4	271.4	148
AKMH53	249.4	291.4	260.4	302.4	148
AKMH54	280.4	322.4	291.4	333.4	148
AKMH61	209.9	256.5	220.9	267.5	186
AKMH62	234.9	281.5	245.9	292.5	186
AKMH63	259.9	306.5	270.9	317.5	186
AKMH64	284.9	331.5	295.9	342.5	186

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Dimensions (mm)

АКМН	XX-	AC	AN	BK	BN	CC	CN	DK	DN	EK	EN	GC	GN	HC	HN	LK
Mounting		Fla	nge	Flar	nge	Front	Front	Front	Front	Front	Front	Flange	Flange	Front	Front	Flange
Standard		IE	EC	NEI	MA	IEC	IEC	NEMA	NEMA	NEMA	NEMA	IEC	IEC	IEC	IEC	NEMA
Shaft		Closed Keyway	Smooth	Open Keyway	Smooth	Closed Keyway	Smooth	Open Keyway	Smooth	Open Keyway	Smooth	Closed Keyway	Smooth	Closed Keyway	Smooth	Open Keyway
	ØC	4.	80	-	5.10	M4 x 0	.7 x 8.0	-	UNF10-32	-	_	-	-		_	-
	ØD	4	10	-	38.10	4	0	-	38.1	-	-	-	-		_	-
AKMH 2x	ØE	6	63	-	66.68	6	3	-	66.68	-	-	-	-		-	-
ANIVITI ZX	ØJ	1	1	-	9.524	1	1	-	9.524	-	-	-	-		_	-
	К	3	80	-	31.8	30	0.0	-	31.8	-	-	-	-		-	-
	N/T	T = 16	NA	-	NA	T = 16	NA	-	NA	-	-	-	-		_	-
	ØC	5.	80	-	-	M5 x 0.	8 x 10.0		-	-	-	-	-		-	-
	ØD	6	60	-	-	6	0		-	-	-	-	-		-	-
AKMH 3x	ØE	7	'5	-	-	7	5		-	-	-	-	-		-	-
AIXIVII I JA	ØJ	1	4	-	-	1	4		-	-	-	-	-		-	-
	К	3	80	-	-	30	0.0		-	-	-	-	-		-	-
	N/T	T = 16	NA	-	-	T = 16	NA		_	-	-	-	-		_	-
	ØC	7	.0	6.9	91	M6 x	1 x 12	UNC 1/4	- 20 x 12.3	M6 x	1 x 12	-	-		-	UNC 3/8 - 16 x 19.1
	ØD	8	80	73.0	025	8	0	73.025	73	8	0	-	-		-	114.30
AKMH 4x	ØE	11	00	98.	.43	1(00	98	.43	1(00	-	-		-	149.23
AIXIVII I 4A	ØJ	1	9	15.8	375	1	9	15.	875	1	6	-	-		-	15.862
	К	4().0	52.	.40	40	0.0	52	.40	52	.40		-		-	50.8
	N/T	T = 25	NA	N = 34.93	NA	T = 25	NA	N = 34.93	NA	N = 30.00	NA		-		-	T = 25
	ØC	:	9	8.3	33	M8 x 1.2	25 x 16.0	UNC 3/8 -	16 x 19.05	M8 x 1.2	25 x 16.0	9	9	M8 x 1.2	25 x 16.0	-
	ØD	1	10	55.5	560	11	10	55.	563	1	10	g	5	ę	15	-
AKMH 5x	ØE	1:	30	125	i.73	13	30	125	5.73	1:	30	11	15	1	15	-
ARTINIT OA	ØJ	2	24	19.	.05	2	4	19	.05	2	4	2	4	2	24	-
	К	50).0	57.	.15	50	0.0	57	.15	50).0	50).0	50).0	-
	D	T = 36	NA	N = 38.1	NA	T = 36	NA	N = 38.1	NA	N = 36.00	NA	T = 36	NA	T = 36	N = 38.1	-
	ØC	11	.00	-	-	M10 x 1	.5 x 20.0	UNC 3/8 -	16 x 19.05	M10 x 1	.5 x 20.0		-		-	-
	ØD	1:	30	-	-	13	30	11	4.3	1:	30		-		-	-
AKMH 6x	ØE	16	5.0	-	-	16	5.0	149	9.23	16	5.0		-		-	-
	ØJ	3	32	-	-	3	2	28.	580	2	8	-	-		-	-
	Κ	5	58	-	-	5	8	69	9.9	60).0		-		-	-
	D	40	NA	-	-	T = 40	NA	N = 38.10	NA	N = 45.00	NA	-	-		_	-

Direct Drive Linear Motor

Our direct drive linear motor series provide new dimension in performance with high throughput, accuracy, and zero maintenance. The product line are frameless, permanent magnet, three phase, brushless servo motors. The DDL product line consists of two fundamental constructions, Ironless (slotless) and Ironcore. Ironless motors have no attractive force between the framless components and zero cogging for the ultra smooth motion. Ironcore motors provide the highest force per frame size. They feature a patented anti-cogging design which yields extremely smooth operation.

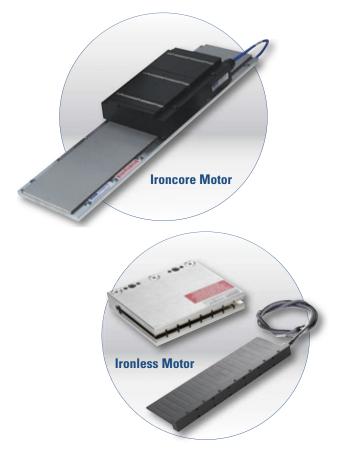
Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

The Benefits of Direct Drive Linear Motor

Zero Maintenance with Greater Accuracy and Higher Bandwidth	Smoother velocity and reduced audible noise
	Power transmission without backlash
	 Transmission elements such as couplings, toothed belts, ball/lead screws, rack & pinions, and other fitted components can be eliminated
	 No gears or screws, no lubrication required
	 Improved machine reliability
Wide Range of Sizes and Force to Cover any Linear Application	• Increased performance for the entire system
	• Flat, compact drive solution
	 Easily mix / match motors and drives
	• Real-life acceleration up to 10 G
 Simplified, High Force Permanent Magnet Design 	 Higher bandwidth and faster response than ball/lead screws or rack & pinion solutions
	 Rapid indexing of heavy loads with peak force up to 12,500 N (2,800 lb)
	• Reduced audible noise, fewer parts and lower cost of ownership
	Mara compact machine design

Direct Drive Linear (DDL) Motor Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249

GO.com SERVO sales@servo2go.com www.servo2go.com


Sold & Serviced By

Direct Drive Linear Motor Options

Two types of linear motors are available, **Ironcore** and **Ironless**. Each one provides characteristics and features that are optimal depending upon the application. Ironcore motors have coils wound on silicon steel laminations, to maximize the generated force, with a single sided magnet way.

Using a patented electromagnetic design, DDL linear motors have the highest rated force per size, a high Km motor constant (equals low thermal losses), and low cogging forces without the need for skewing of the magnets. The high thrust forces possible with these motors make them ideal for accelerating and moving high masses, and maintaining stiffness during machining or process forces. Ironless motors have no iron, or slots for the coils to be wound on.

Therefore, these motors have zero cogging, a very light mass, and absolutely no attractive forces between the coil assembly and the magnet way. These characteristics are ideal for applications requiring very low bearing friction, high acceleration of lighter loads, and for maximizing constant velocity, even at ultra low speeds. The modular magnet ways consists of a double row of magnets to maximize the generated thrust force and to provide a flux return path for the magnetic circuit.

Feedback Types

All brushless motors require feedback for commutation. The conventional rotary motor typically utilizes a resolver mounted on the rear of the motor or Hall effect devices mounted integrally in the coil windings. For a linear motor, commutation feedback can also be accomplished with a variety of methods. Digital or linear Hall effect devices are available from Kollmorgen for the DDL motor series which allow the drive electronics to commutate the linear motors in a manner identical to rotary motors.

For exceptionally smooth motion requirements, sinusoidal drive electronics such as the Kollmorgen's AKD® series, using digital Hall effects, provide sinusoidal drive currents to the motor for the best constant force and velocity performance. As an alternative, it is typical for linear motor applications to have a linear encoder present in the system for position feedback. It is increasingly common today for drive amplifiers, such as the AKD digital amplifier, to derive the necessary commutation information directly from this linear encoder, either with or without supplemental digital Hall effect devices on startup. Other types of feedback used on linear motor applications include linear Inductosyns, laser interferometers, and LVDT.

86

Advantages

Wide Speed Range

Since the frameless parts of the linear motor are non-contact, and no limitations of a mechanical transmission are present, both very high speeds and very low speeds are easily obtainable. Speeds are truly not limited by the motor. Instead, by eliminating the mechanical transmission, speed becomes limited by other elements in the system such as the linear bearings, and the achievable bandwidth from any feedback devices. Application speeds of greater than 5 meters per second (200 in./sec.) or less than 1 micron per second (.00004 in./sec.) are typically achievable. In comparison, mechanical transmissions such as ball screws are commonly limited to linear speeds of 0.5 to 0.7 meters per second (20-30 in./sec.) because of resonances and wear. In addition to a wide speed range, linear motors, both ironcore and ironless, have excellent constant velocity characteristics, typically better than ± 0.01% speed variation.

High System Dynamics

In addition to high speed capability, direct drive linear motors are capable of very high accelerations. Limited only by the system bearings, accelerations of 3 to 5 G are quite typical for the larger motors and accelerations exceeding 10 G are easily achievable for smaller motors.

Easy Selection Process:

- 1. Determine peak and continuous force required for your applications (see Motioneering Online, page 219, for information about sizing)
- 2. Use the motor selection guide on pages 84-86 to choose your motor
- 3. Refer to the appropriate pages in the data publication for technical details
- 4. Build model number for ordering using pages 78-80 of the Direct Drive Linear Motor Selection Guide

Smooth Operation and Positional Accuracy

Both ironless and ironcore motors exhibit very smooth motion profiles due to the inherent motor design of Kollmorgen's DDL series. Cogging, which is a component of force, is greatly reduced in the ironcore designs and is zero in the ironless designs. As a result, these direct drive linear motors provide very low force and velocity ripple for ultra smooth motion. Positioning accuracies are limited only by the feedback resolution, and sub-micron resolutions are commonly achievable.

Unlimited Travel

With the DDL motor series, magnet ways are made in 5 modular sections: 64 mm, 128 mm, 256 mm, 512 mm and 1024 mm long. Each module can be added in unlimited numbers to any other module to allow for unlimited travel. Whether the travel required is 1mm (0.04 inches) or 100 meters (330 feet), the DDL series can accommodate the need.

No Wear or Maintenance

Linear motors have few components, therefore the need for ball screw components such as nuts, bearing blocks, couplings, motor mounts and the need to maintain these components have been eliminated. Very long life and clean operation, with no lubrication or maintenance of these parts are the result.

Integration of Components is Much Simpler

Frameless linear motors require much fewer components than rotary motors with mechanical transmissions. A 0.8 mm airgap (0.031 inches) for the ironcore design and 0.5 mm airgap (0.020 inches) for the ironless design is the only alignment of the frameless linear motor components that is necessary. No critical alignments are required as with ball screws. Straightness of travel as provided by the system linear bearings is more than sufficient for the Kollmorgen linear motors.

Typical Applications for Linear Motors Include:

Machine Tool Drilling Milling Grinding Laser cutting Cam grinding Semiconductor Wafer handling process Wafer-inspection Wafer slicing Tab bonding Wire bonding lon implantation Lithography Textile Carpet tufting

Measurement/inspection Coordinate measurement machines Electronic assembly Pick-and-place machines Component insertion Screen printers Adhesive dispensers PC board inspection, drilling

Other applications include: Flight simulators Acceleration sleds Catapult G-Force measurement S

m

Direct Drive Linear (DDL) Motor Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249

SERVO GO.com sales@servo2go.com www.servo2go.com

Sold & Serviced By:

Ironless Linear Motors

		Co	ontin	nuou	s Fo	rce l	N	Pe	ak F	orce	Ν											
No	wtons →		_	_							_	0	0	0	0	0	0	0	Conti	ax nuous rce		eak rce
INC		0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	Ν	(lbf)	Ν	(lbf)
	IL06-030																		30.3	6.81	120	27.0
	IL06-050																		49.7	11.2	200	45.0
	IL06-075																		67.6	15.2	300	67.4
	IL06-100																		82.8	18.6	400	89.9
			•				Ī									•						
	IL12-030																		62.1	14.0	240	54.0
	IL12-050																		88.4	19.9	400	89.9
	IL12-075																		119	26.8	600	135
ype	IL12-100																		148	33.3	800	180
orT																						
Motor Type	IL18-030																		92.1	20.7	360	80.9
	IL18-050					1													131	29.4	600	135
	IL18-075				+		+	-											173	38.9	900	202
	IL18-100				+		+	-				+	+						211	47.4	1200	270
														_	_			1				
	IL24-030	-				1													109	24.5	480	108
	IL24-050		+		+		-	-											155	34.8	800	180
	IL24-075	-	+		+		-	-			+	+-	+-	+	+				211	47.4	1200	270
	IL24-100		+	+			+	+			+	+	+	+					262	58.9	1600	360
															1			1	202	00.0		

ICD Linear Motors

	Co	ntin	uous	s For	ce N		Do	ak Er	orce	N											
		(No	n-Co	oole	d)		I G		100										ax	Pe	ak
Newtons —	•	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600		nuous rce		rce
ICD05-030		1																Ν	(lbf)	N	(lbf)
ICD05-050			-															57.0	12.8	165	37.1
ICD05-075		+	+-	+	+-	+												87.0	19.6	295	66.3
	-	÷	+-	+-	+-	+	-				_		_		_			125	28.1	441	99.1
A ICD05-100		1		_	_													157	35.3	588	132
Motor Type	_																				
≥ ICD10-03			I															104	23.4	330	74.2
ICD10-05)																	171	38.4	550	124
ICD10-07	5																	246	55.3	824	185
ICD10-100)																	315	70.8	1099	247

Note: Performance data summarized here represents motor data only. For system performance data with Kollmorgen drives use the Motioneering Application Engine sizing software. See page 219 for more information about Motioneering.

Note: See the DDL Selection Guide for more detailed motor data and dimension drawings.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Ironcore Linear Motors

	Continuous Force N (Non-Cooled)	Peak Force N						
Ne	wtons → 00 00 00	4000 5000 6000	7000 8000 9000	10000	M Conti Fo	nuous 'ce	Foi	ak 'ce
		20 40	00 00 00	10	N	(lbf)	N	(lbf)
	IC11-030				144	32.4	320	71.9
	IC11-050				263	59.1	533	120
	IC11-075				413	92.8	800	180
	IC11-100				574	129	1067	240
	IC11-150				861	194	1600	360
	IC11-200				1197	269	2135	480
	T							
	IC22-030				280	62.9	624	140
	IC22-050				526	118	1039	234
	IC22-075				825	185	1558	350
	IC22-100				1148	258	2077	467
	IC22-150				1723	387	3117	701
ype	IC22-200				2393	538	4156	934
Motor Type								
Mot	IC33-030				431	96.9	944	212
	IC33-050				789	177	1572	353
	IC33-075				1238	278	2358	530
	IC33-100				1722	387	3144	707
	IC33-150				2583	581	4716	1060
	IC33-200				3590	807	6291	1414
	IC44-030				560	126	1259	283
	IC44-050				1053	237	2096	471
	IC44-075				1651	371	3144	707
	IC44-100				2296	516	4192	942
	IC44-150				3445	774	6289	1414
	IC44-200				4786	1076	8388	1885

Note: Performance data summarized here represents motor data only. For system performance data with Kollmorgen drives use the Motioneering Application Engine sizing software. See page 219 for more information about Motioneering.

Note: See the DDL Selection Guide for more detailed motor data and dimension drawings.

Direct Drive Linear (DDL) Motor Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com

SERVO GO.com www.servo2go.com

Sold & Serviced By:

				s Force cooled)	N	Pea	k Force	• N								
Nev	wtons →		0	0	0	0	0	0	0	0	0	00	Conti	ax nuous rce		eak rce
1101	c	-	1000	2000	3000	4000	5000	6000	7000	8000	0006	10000	N	(lbf)	Ν	(lbf)
	IC11-030												254	57.1	315	70.8
	IC11-050												432	97.1	525	118
	IC11-075												649	146	798	179
	IC11-100												864	194	1051	236
	IC11-150												1285	289	1576	354
	IC11-200												1712	385	2102	473
	IC22-030												519	117	630	142
	IC22-050												864	194	1051	236
	IC22-075												1284	287	1576	354
	IC22-100												1715	386	2106	473
	IC22-150		1										2566	577	3152	709
ype	IC22-200		1										3458	777	4204	945
Motor Type																
Mot	IC33-030												769	173	945	212
	IC33-050												1283	288	1575	354
	IC33-075												1926	433	2365	532
	IC33-100												2593	583	3152	709
	IC33-150		1										3849	865	4724	1063
	IC33-200		1										5135	1154	6306	1418
								•				•				
	IC44-030												1036	233	1260	283
	IC44-050												1711	385	2101	472
	IC44-075		1										2568	577	3154	709
	IC44-100		<u> </u>										3457	777	4202	945
	IC44-150		<u> </u>	-									5133	1154	6303	1417
	IC44-200 Performance d		}		-								6916	1555	<u>8/107</u>	1.200

Note: Performance data summarized here represents motor data only. For system performance data with Kollmorgen drives use the Motioneering Application Engine sizing software. See page 213 for more information about Motioneering.

Note: See the DDL Selection Guide for more detailed motor data and dimension drawings.

KOHLMORCH

90

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

										-							
		+ +					++			-					++		
										-							
		+++					 ++	++-				+ +			+		
										-					+ +	_	
							 			_					+		
										_							
										_			_				
										_						_	
		\downarrow				\square	$\downarrow \downarrow$								\downarrow		
							++								$\uparrow \uparrow$		
							++							\square	++		
		++				+	++			-					++		
										-							
		+ +										+ +			+ +		
							 								++		
										-					+ +	_	
										_			_	-		_	
										_							
										_			_			_	
										_							
Image: 1 Image: 1																	
					Image: Sector												
					Image: Sector												
					Image: Sector												
					Image: Sector												
													Image: Amage:				

Direct Drive Rotary (DDR[™]) Motors

Kollmorgen offers a comprehensive selection of direct drive motors in different sizes and performance ranges. Direct drive motors are characterized by their high precision, reliability, and above all being maintenance-free. Mechanical components for power transmission such as belts or gearheads are not necessary – you just need the motor and bolts for mounting.

The Cartridge and Housed DDR motors combine the performance advantages of direct drives with the simple installation and the handling advantages of conventionally housed motors. By contrast the KBM[™] and TBM series direct drive motors, with no housing, can be perfectly tailored to the application thanks to a unique construction kit principle.

All drives can be combined with AKD or ADK PDMM series servo drives, and the powerful Kollmorgen Automation Suite development environment is available for application programming.

Regardless which drive technology you decide on, Kollmorgen provides right solution and optimum support during the development phase.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

The Advantages of Rotary Direct Drives

Superb performance data	 Maximum torque density thanks to innovative, electromagnetic design minimizes the motor's spatial requirements. 				
	 Extremely quiet running with low cogging values and low harmonic distortion (THD) 				
	Wide speed range and high acceleration values				
Reliable and safe operation through careful construction	 Doubly secured magnet mounting on the rotor of the high-speed models through bonding and additional Kevlar[®] tape overlay 				
	 155°C-approved internal winding temperature and thermistor overtemperature protection guarantee safe continuous operation in demanding applications 				
	 Insulation materials with UL approval facilitate the certification of higher-level assemblies 				
	• All materials are RoHS-compliant				
• Configurable design reduces the time-to-solution to a minimum	• KBM series offers 14 frame sizes with several design lengths				
	• TBM series offers 3 frames sizes with 3 stack lengths per frame				
	• Cartridge DDR series offers 5 frame sizes with several design length				
	Housed DDR series offers 4 frame sizes				
	 Standard sensor feedback with hall effect sensors 				
	 Insulation types for high and low voltage 				
	 Several winding options with customer-specific windings upon request 				

• Changes to the mechanical connection are easy to perform

Direct Drive Rotary Motors

Conventional servo systems commonly have a mechanical transmission which can consist of gears, gearboxes, belts/pulleys or cams connected between the motor and the load. With Direct Drive Rotary Motors, the mechanical transmission is eliminated and the motor is coupled directly to the load.

Why Use Direct Drive Rotary Motors?

Increased Accuracy and Repeatability

A "precision" planetary gearbox could have a backlash of 1 arc-minute. This can result in the load moving by 1 arc-minute with an absolutely stationary drive motor. Kollmorgen's standard direct drive rotary (DDR) servo motors have repeatability better than 1 arc-second. Therefore, a direct drive motor can hold a position 60 times better than a conventional motor/gearbox.

The increased accuracy of direct drive rotary motors results in a higher quality product out of the machine:

- Print registration is more accurate
- Cut or feed lengths can be held more precisely
- Coordination with other machine axes is more accurate
- Indexing location is more exact
- Tuning issues due to backlash are eliminated

Higher Bandwidth

Mechanical transmission components impose a limit on how fast a machine can start and stop and also extend the required settling time. These factors limit the possible throughput of a machine.

Direct drive rotary motors remove these limitations and allows for much faster start/ stop cycles and also provide greatly reduced settling time. Machine users of direct drive systems have reported up to a 2X increase in throughput.

Improved Reliability and Zero Maintenance

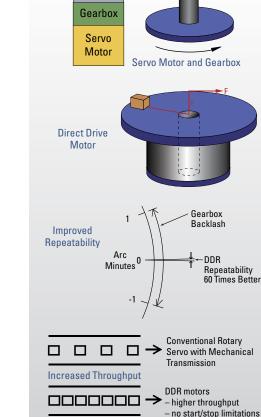
Gears, belts, and other mechanical transmission parts break. By eliminating these parts and using DDR motors, the reliability of the machine is improved. Gearboxes require periodic lubrication and/or replacement in aggressive start/stop applications. Belts require periodic tightening. There are no time-wear components in a direct drive motor and consequently they require zero maintenance.

Fewer Parts

With direct drive motors, all you need is the motor and the mounting bolts. This often replaces many parts including brackets, guards, belts, pulleys, tensioners, couplings, and bolts, resulting in:

- Fewer parts on the BOM. Less parts to purchase, schedule, inventory and control, and less parts to assemble.
- Assembly time of the servo drops from several hours with the mechanical transmission to several minutes with the DDR.
- Reduced cost. Although a direct drive motor may carry a small price-premium compared to a motor/gearbox with the same torque, consider that there is an overall cost reduction when eliminating the parts and labor of all the extra components required in a servo system with mechanical transmission.

No Inertia Matching


Servo systems with mechanical transmissions require inertia matching that limits the reflected load inertia at 5 to 10 times the motor inertia. If this limitation is not met, the system becomes difficult to control due to instability issues. Inertia matching limitations of mechanical transmission systems often force machine designers to use a larger motor than would otherwise be required just to satisfy the inertia matching requirement.

Such sizing conventions are not required with direct drive rotary motors. Since the motor is directly connected to the load, the inertia of the motor and the load become a common inertia. Therefore, no inertia matching is required when using DDR. DDR applications have run with inertia ratios greater than 11,000:1.

Reduced Audible Noise

KOLLMORGEN

Machines with DDR motors have audible noise levels as low as 20 dB less than the same machine with a mechanical transmission.

Sold & Serviced By:

SERV

GO.com

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

RS

Which DDR Product is Right for Your Application?

Kollmorgen's 70 years of electromagnetic and electromechanical design experience combined with our quality and service, allowed us to refine and expand DDR motors into three product categories for easy installation, use, and short lead times: Frameless DDR, Housed DDR, and the Cartridge DDR. This allows you to select the right DDR solution for your application.

Applications where the load rides on the motor's bearings such as indexing or rate tables

Cartridge DDR

This motor is the first in the industry to combine the space-saving and performance advantages of Frameless DDR motors with the ease of installation of a full-frame motor. Consisting of a rotor, stator, and factory-aligned high-resolution feedback device, the motor uses the machine's bearings to support the rotor. An innovative compression coupling engages the rotor to the load and the frame of the motor mounts to the machine with a bolt circle and pilot diameter just like a conventional servo motor, saving space and design time and simplifying the overall system.

Any application with existing bearings

Housed DDR

The Housed DDR is a housed motor assembly featuring a factory aligned high-resolution feedback device and precision bearings, allowing it to function as the core of rotary indexing and rate table applications. The system can also be used as a flexible indexer, providing programmable, rapid indexing far exceeding the throughput and accuracy of conventional mechanical or variable reluctance indexers.

Applications where size and weight must be absolutely minimized

Frameless DDR

Frameless motors include a rotor and stator as separate components which are integrated into, ride on the bearings of, and become a part of the driven load. Frameless motors offer the most compact and lightweight DDR solution available. The KBM™ and TBM series are Kollmorgen's Frameless DDR products. The KBM provides excellent torque/volume with the use of a proprietary neodymium-iron magnet rotor structure and skewed armature assembly. The KBM series is the first UL recognized parts set available on the market. This provides OEMs with the benefits of UL component ratings for easier agency approval on their machines. The TBM frameless motor is a series of direct drive torque motors designed for applications that require high power in a small, compact form factor with minimized weight and inertia.

S E

Cartridge Direct Drive Rotary (DDR Direct Driv

The Cartridge DDR[®] Motor is the first in the industry to combine the space-saving and performance advantages of frameless DDR technology with the ease of installation of a full-frame motor. Cartridge DDR motors also feature an advanced electromagnetic design that provides up to 50% more torque density than comparably sized conventional servo motors.

Consisting of a rotor, stator, factory-aligned high-resolution feedback device, the Cartridge DDR motor uses the machine's bearings to support the rotor. An innovative compression coupling secures the Cartridge DDR's rotor to the machine shaft, and the Cartridge DDR's housing is bolted to the machine frame with a bolt circle and pilot – just like a conventional servo motor. Also, mechnical transmission components are eliminated, saving space and design time while simplifying the overall system.

Advantages of the Cartridge DDR Motors

- Quick assembly within 5 minutes
- Direct power transmission without mechanical components reduces operating and maintenance costs
- Low cogging and thus smooth running at low speeds
- The backlash-free design improves the system's response characteristics

Performance Overview

- 5 frame sizes from 108 to 350 mm
- 17 different lengths and 52 standard windings

Sold & Serviced By:

- Continuous torques of 4.57 Nm to 510 Nm
- Speeds up to 2500 rpm
- Integrated, high-resolution sinus encoder (optional)

S

c**W**us CE

The Cartridge DDR[™] Advantage – Press Feed Machine

Consider how Cartridge DDR technology improves a Press Feed machine:

Reduced Assembly Time

The assembly time for the original mechanical transmission system was 4 hours. In contrast, the Cartridge DDR motor is installed in less than 5 minutes, resulting in a significant cost savings in labor.

Reduced Parts Count

The original mechanical transmission system comprises 2 bracket pieces, 12 bolts, 2 pulleys, 2 set screws, 2 keys, a timing belt, a housing to protect operators from the timing belt, a tension system for the timing belt, and motor/gearbox. With the Cartridge DDR system, this is all replaced by the motor and 4 mounting bolts, resulting in fewer parts to maintain and cost savings.

Improved Accuracy

The best planetary gearboxes have a backlash between 1 and 2 arcminutes. Over the life of the gearbox, the backlash will increase. The Cartridge DDR system has an absolute accuracy of 26 arc-seconds and a repeatability of 0.7 arc-seconds. The Press Feed machine with the Cartridge DDR has a feed accuracy of +/- 0.0005 inch where the Press Feed machine with the mechanical transmission has a feed accuracy of 0.002 inch. Therefore, there was an overall four times improvement in machine accuracy with the Cartridge DDR system.

Increased Throughput

The cycle rate of the Cartridge DDR system is two times better than the mechanical transmission. This results in an increase in throughput of 100 percent.

Press feed machine built with a conventional servo motor, gearbox, belt and pulleys.

Improved Reliability and Simplified Maintenance

The Cartridge DDR system eliminates parts that wear, change over time, or fail. Gearboxes are prone to wear, and backlash increases over time. Belts and pulleys stretch and require maintenance to maintain proper belt tension. By eliminating these components, the Cartridge DDR system delivers greater system reliability.

Press Feed Example

Gearboxes have a finite life span, especially in a demanding cyclic application such as a Press Feed. On this machine, the gearbox must be replaced every 10,000 hours and the belt must be tensioned every 2,000 hours. By contrast, the Cartridge DDR motor has no wear components and requires no maintenance thus simplifying the maintenance schedule for the machine and reducing operating costs.

Reduced Audible Noise

The Cartridge DDR system has as much as a 20 dB reduction in noise compared to a mechanical transmission servo system. This can dramatically reduce the overall noise level of the machine. A quieter machine gives the perception of quality. This is rightfully so as the noise emitted by gears and belts is caused by the wearing of the parts.

Total Reduced Cost

A Cartridge DDR motor typically costs 20 percent more than a comparable motor/gearbox combination. However, the elimination of parts and assembly time typically results in a lower total cost for the Cartridge DDR solution.

Same machine with a Cartridge DDR motor installed. Here, the shaft of the driven roll is extended into the Cartridge DDR motor and the motor applies torque directly to the driven roll.

S

Cartridge Direct Drive Rotary Motor Free Fune 23-378-0240 sales@servo2go.com

Sold & Serviced By:

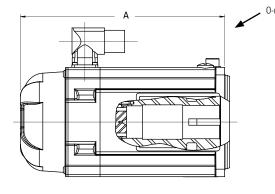
240 Vac Performance Data

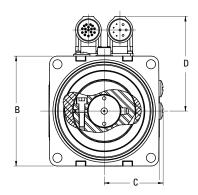
		Frame Size	Continuous Torque	Peak Torque	Maximum Speed	Weight	Inertia (Jm)
Cartridge DDR Motor	Servo Drive	mm (in)	Nm (lb-in)	Nm (lb-in)	RPM	kg (lb)	kg-cm² (Ib-in-s² x10 [.] 3)
C041A	AKD-X00306	108 (4.25)	4.57 (40.4)	12.3 (109)	1750	4.08 (9.00)	5.86 (5.19)
C041B	AKD-X00606	108 (4.25)	4.52 (40.0)	12.2 (108)	2500	4.08 (9.00)	5.86 (5.19)
C042A	AKD-X00606	108 (4.25)	8.25 (73.0)	22.2 (196)	1700	5.67 (12.5)	8.87 (7.85)
C042B	AKD-X01206	108 (4.25)	8.45 (74.8)	22.8 (202)	2500	5.67 (12.5)	8.87 (7.85)
C043A	AKD-X00606	108 (4.25)	11.1 (98.2)	30.0 (265)	1250	7.26 (16.0)	11.9 (10.5)
C043B	AKD-X01206	108 (4.25)	11.2 (99.1)	30.2 (267)	2500	7.26 (16.0)	11.9 (10.5)
C044A	AKD-X00606	108 (4.25)	13.9 (123)	37.4 (331)	1050	8.84 (19.5)	14.9 (13.2)
C044B	AKD-X01206	108 (4.25)	14.1 (125)	37.9 (335)	2150	8.84 (19.5)	14.9 (13.2)
C051A	AKD-X00606	138 (5.43)	11.7 (104)	30.2 (267)	1200	8.39 (18.5)	27.4 (24.2)
C051B	AKD-X01206	138 (5.43)	11.9 (105)	30.6 (271)	2450	8.39 (18.5)	27.4 (24.2)
C052C	AKD-X00606	138 (5.43)	16.9 (150)	43.1 (381)	950	10.7 (23.5)	35.9 (31.8)
C052D	AKD-X01206	138 (5.43)	16.5 (146)	42.3 (374)	2050	10.7 (23.5)	35.9 (31.8)
C053A	AKD-X01206	138 (5.43)	21.0 (186)	54.1 (479)	1350	13.2 (29.0)	44.3 (39.2)
C053B	AKD-X02406	138 (5.43)	20.2 (179)	50.1 (443)	2500	13.2 (29.0)	44.3 (39.2)
C054A	AKD-X01206	138 (5.43)	24.9 (220)	63.8 (565)	1200	15.4 (34.0)	52.8 (46.7)
C054B	AKD-X02406	138 (5.43)	23.8 (211)	61.2 (542)	2500	15.4 (34.0)	52.8 (46.7)
C061A	AKD-X01206	188 (7.40)	33.8 (299)	86.8 (768)	900	18.6 (41.0)	94.1 (83.2)
C061B	AKD-X02406	188 (7.40)	32.6 (288)	75.6 (669)	1950	18.6 (41.0)	94.1 (83.2)
C062C	AKD-X01206	188 (7.40)	48.4 (428)	117 (1040)	700	23.6 (52.0)	126 (112)
C062B	AKD-X02406	188 (7.40)	44.6 (395)	102 (900)	1400	23.6 (52.0)	126 (112)
C063C	AKD-X01206	188 (7.40)	61.8 (547)	157 (1380)	550	29.0 (63.0)	157 (139)
C063B	AKD-X02406	188 (7.40)	59.0 (522)	136 (1200)	1050	29.0 (63.0)	157 (139)
C091A	AKD-X02406	246 (9.68)	50.2 (444)	120 (1060)	600	27.7 (61.0)	280 (248)
C092C	AKD-X02406	246 (9.68)	102 (900)	231 (2050)	450	41.3 (91.0)	470 (416)
C093C	AKD-X02406	246 (9.68)	139 (1230)	317 (2800)	350	54.4 (120)	660 (584)
C131C	AKD-X02406	350 (13.8)	189 (1670)	395 (3500)	250	63.5 (140)	1240 (1100)
C132C	AKD-X02406	350 (13.8)	362 (3200)	818 (7240)	120	101 (223)	2250 (1990)
C133C	AKD-X02406	350 (13.8)	499 (4410)	1070 (9890)	100	132 (292)	3020 (2670)

400/480 Vac Systems Performance Data

		Frame Size	Continuous Torque	Peak Torque	Maximu	m Speed	Weight	Inertia (Jm)
Cartridge DDR Motor	Servo Drive			NI (11 °)	RPM		l	kg-cm ²
		mm (in)	Nm (lb-in)	Nm (Ib-in)	400 Vac	480 Vac	kg (lb)	(Ib-in-s ² x10 ⁻³)
CH041A	AKD-X00307	108 (4.25)	4.56 (40.4)	11.3 (100)	2500	2500	4.08 (9.00)	5.86 (5.19)
CH042A	AKD-X00607	108 (4.25)	8.26 (73.1)	19.0 (168)	2500	2500	5.67 (12.5)	8.87 (7.85)
CH043A	AKD-X00607	108 (4.25)	11.1 (98.2)	25.3 (224)	2250	2500	7.26 (16.0)	11.9 (10.5)
CH044A	AKD-X00607	108 (4.25)	13.9 (123)	31.6 (280)	1850	2250	8.84 (19.5)	14.9 (13.2)
CH051A	AKD-X00607	138 (5.43)	11.7 (104)	28.0 (248)	2100	2500	8.39 (18.5)	27.4 (24.2)
CH052C	AKD-X00607	138 (5.43)	16.9 (150)	43.1 (381)	1750	2100	10.7 (23.5)	35.9 (31.8)
CH053A	AKD-X01207	138 (5.43)	21.0 (186)	54.1 (479)	2350	2500	13.2 (29.0)	44.3 (39.2)
CH054A	AKD-X01207	138 (5.43)	24.9 (220)	63.8 (565)	2100	2500	15.4 (34.0)	52.8 (46.7)
CH061A	AKD-X01207	188 (7.40)	33.8 (299)	86.8 (768)	1600	1900	18.6 (41.0)	94.1 (83.2)
CH062C	AKD-X01207	188 (7.40)	48.4 (428)	117 (1040)	1250	1550	23.6 (52.0)	126 (112)
CH063C	AKD-X01207	188 (7.40)	61.8 (547)	157 (1380)	950	1150	29.0 (63.0)	157 (139)
CH063B	AKD-X02407	188 (7.40)	59.0 (522)	136 (1200)	1850	2200	29.0 (63.0)	157 (139)
CH091A	AKD-X02407	246 (9.68)	50.2 (444)	120 (1060)	1200	1500	27.7 (61.0)	280 (248)
CH092C	AKD-X02407	246 (9.68)	102 (900)	231 (2050)	800	1000	41.3 (91.0)	470 (416)
CH093C	AKD-X02407	246 (9.68)	139 (1230)	317 (2800)	700	800	54.4 (120)	660 (584)
CH131C	AKD-X02407	350 (13.8)	189 (1670)	395 (3500)	500	600	63.5 (140)	1240 (1100)
CH131B	AKD-X04807	350 (13.8)	190 (1680)	396 (3500)	800	1000	63.5 (140)	1240 (1100)
CH132C	AKD-X02407	350 (13.8)	362 (3200)	818 (7240)	250	300	101 (223)	2250 (1990)
CH132B	AKD-X04807	350 (13.8)	361 (3190)	759 (6720)	400	500	101 (223)	2250 (1990)
CH133C	AKD-X02407	350 (13.8)	499 (4410)	1070 (9480)	200	250	132 (292)	3020 (2670)
CH133B	AKD-X04807	350 (13.8)	510 (4510)	1016 (9042)	350	400	132 (292)	3020 (2670)

Note 1: For complete AKD and CDDR model nomenclature, refer to pages 178 and 183 respectively.

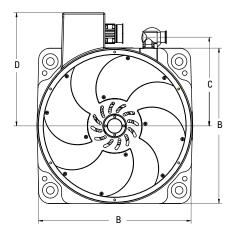


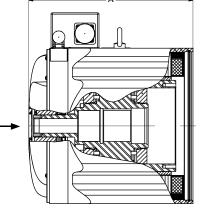

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Cartridge DDR C04, C05 and C06 Dimensions

Cartridge DDR Motor	A mm (in)	B mm (in)	C mm (in)	D mm (in)
C(H)041	171 (6.73)	108 (4.25)	59 (2.31)	93 (3.67)
C(H)042	202 (7.95)	108 (4.25)	59 (2.31)	93 (3.67)
C(H)043	233 (9.17)	108 (4.25)	59 (2.31)	93 (3.67)
C(H)044	264 (10.4)	108 (4.25)	59 (2.31)	93 (3.67)
C(H)051	195 (7.68)	138 (5.43)	76 (3.00)	108 (4.25)
C(H)052	220 (8.66)	138 (5.43)	76 (3.00)	108 (4.25)
C(H)053	245 (9.65)	138 (5.43)	76 (3.00)	108 (4.25)
C(H)054	270 (10.6)	138 (5.43)	76 (3.00)	108 (4.25)
C(H)061	226 (8.90)	188 (7.40)	99 (3.88)	133 (5.25)
C(H)062	260 (10.2)	188 (7.40)	99 (3.88)	133 (5.25)
C(H)063	294 (11.6)	188 (7.40)	99 (3.88)	133 (5.25)

O-ring provided





Cartridge DDR C09 and C13 Dimensions

Cartridge DDR Motor	A mm (in)	B mm (in)	C mm (in)	D mm (in)
C(H)091	204 (8.03)	246 (9.68)	149 (5.88)	182 (7.18)
C(H)092	253 (9.96)	246 (9.68)	149 (5.88)	182 (7.18)
C(H)093	302 (11.9)	246 (9.68)	149 (5.88)	182 (7.18)
C(H)131	231 (9.09)	350 (13.8)	200 (7.87)	256 (10.1)
C(H)132	301 (11.9)	350 (13.8)	200 (7.87)	256 (10.1)
C(H)133	370 (14.6)	350 (13.8)	200 (7.87)	256 (10.1)

Optional through bore

Housed Direct Drive Rotary (DDR) N

Housed DDR Features

- 4 frame sizes
- Robust cross-roller bearing
- Dual bearing option
- IP67 option
- Continuous torque range: 5.8 Nm (4.3 lb-ft) to 339 Nm (250 lb-ft)
- Optimized torque output with high-pole count efficient electromagnetic design
- Integrated high-resolution sine-encoder
- 134,217,728 counts per rev resolution, 27 bits
- Feedback accuracy: +/- 26 arc-sec
- Repeatability better than 1 arc second

Housed DDR Motor Advantage

Consider how a Housed DDR motor improved a medical manufacturing machine.

Product is located at the steel pins on the outside of the machine's turret as shown. The 115 kg load wheel has an inertia of 20 kg-m². There are 96 steel pins for an index angle of 3.5 degrees to move.

The move is accomplished in less than 100 ms.

Housed DDR Benefits

- Transmission elements such as couplings, toothed belts, spindles, and other fitted components can be eliminated
- · Mechanical design is made much simpler
- Power transmission without backlash
- · More compact machinery assemblies
- · Increased performance for the entire system

Housed DDR motors are multi-pole (16 to 32) hollow shaft motors with their own bearings and high-resolution encoder system. They are coupled directly to the load and enable very precise and repeatable systems. Housed DDR motors are maintenance free and run more quietly and with better dynamics than systems that use gears, belts, cams or other mechanical transmission components.

Realized Housed DDR Motor Benefits

The Direct Drive Advantage

The following improvements were observed compared to the previous design that used a mechanical indexer:

Sold & Serviced By:

SERVO GO.com

sales@servo2go.com www.servo2go.com

877-378-0240

Improved Repeatability

The Housed DDR motor demonstrated a repeatability better than 1 arcsecond which was substantially better than the mechanical indexer.

No Degradation

Direct drive system performance, accuracy and repeatability do not degrade over time as they do with a mechanical indexer. With a mechanical indexer, as parts wear over time, the accuracy and repeatability degrade.

Immediate Stop

The direct drive system can immediately stop if there is a process error. The mechanical indexer required several cycles to stop which could cause tooling and machine damage.

Greatly Reduced Audible Noise

With the mechanical indexer, the noise was at a level such that two people would have to yell to hear each other. By contrast, if you turned your back to the Housed DDR motor, you could barely detect that it was running.

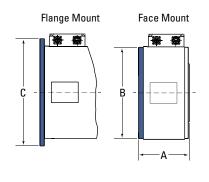
Easy Profile Change

Motion parameters such as index angle, speed, acceleration, and dwell are very simple to change with the Housed DDR motor. The mechanical indexer does not support flexible motion profiles.

Better Value

The Housed DDR motor is attractively priced compared to the mechanical indexer it replaced. When the other advantages listed above are also considered, the Housed DDR motor was the obvious choice.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com


Housed DDR Performance Data and Dimensions


240 Vac Performance Data

Housed DDR Motor	AKD Servo Drive	Frame Size mm [in]	Continuous Torque Nm [lb-in]	Peak Torque Nm [lb-in]	Maximum Speed [RPM]	Weight kg [lb]	Inertia (Jm) cm² [Ib-in-s² x10-³]
D061	AKD-X00606	175 [6.90]	5.3 [46.9]	16.9 [150]	500	9.4 [20.7]	61 [54.0]
D062	AKD-X00606	175 [6.90]	9.8 [86.7]	33.5 [296]	500	11.3 [24.9]	71 [62.8]
D063	AKD-X00606	175 [6.90]	17.7 [157]	64.4 [570]	500	13.8 [30.4]	86 [76.1]
D081	AKD-X00606	217 [8.55]	15.9 [141]	45.0 [398]	500	17.9 [39.4]	144 [127]
D082	AKD-X00606	217 [8.55]	25.9 [229]	92.2 [816]	300	21.5 [47.3]	194 [172]
D083	AKD-X00606	217 [8.55]	50.4 [446]	160 [1420]	250	28.8 [63.4]	301 [266]
D101	AKD-X00606	280 [11.0]	34.6 [306]	129 [1140]	300	31.5 [69.3]	693 [613]
D102	AKD-X00606	280 [11.0]	63.4 [561]	227 [2010]	200	43.8 [96.4]	992 [878]
D103	AKD-X01206	280 [11.0]	115 [1020]	501 [4430]	120	60.8 [134]	1750 [1550]
D141	AKD-X01206	362 [14.2]	108 [956]	367 [3250]	200	59.4 [131]	1630 [1440]
D142	AKD-X01206	362 [14.2]	183 [1620]	519 [4590]	120	86.6 [191]	2740 [2430]
D143	AKD-X02406	362 [14.2]	339 [3000]	1340 [11,900]	60	146 [321]	5420 [4800]

400/480 Vac Performance Data

Housed DDR Motor	AKD Servo Drive	Frame Size mm [in]	Continuous Torque Nm [Ib-in]	Peak Torque Nm [lb-in]	Maximum Speed RPM	Weight kg [lb]	Inertia (Jm) cm² [lb-in-s² x10-³]
DH061	AKD-X00607	175 [6.90]	5.3 [46.9]	16.9 [150]	800	9.4 [20.7]	61 [54.0]
DH062	AKD-X00607	175 [6.90]	9.8 [86.7]	33.5 [296]	800	11.3 [24.9]	71 [62.8]
DH063	AKD-X00607	175 [6.90]	17.7 [157]	64.4 [570]	800	13.8 [30.4]	86 [76.1]
DH081	AKD-X00607	217 [8.55]	15.9 [141]	45.0 [398]	500	17.9 [39.4]	144 [127]
DH082	AKD-X00607	217 [8.55]	25.9 [229]	92.2 [816]	500	21.5 [47.3]	194 [172]
DH083	AKD-X00607	217 [8.55]	50.4 [446]	160 [1420]	500	28.8 [63.4]	301 [266]
DH101	AKD-X00607	280 [11.0]	34.6 [306]	129 [1140]	300	31.5 [69.3]	693 [613]
DH102	AKD-X00607	280 [11.0]	63.4 [561]	227 [2010]	300	43.8 [96.4]	992 [878]
DH103	AKD-X01207	280 [11.0]	115 [1020]	501 [4430]	250	60.8 [134]	1750 [1550]
DH141	AKD-X01207	362 [14.2]	108 [956]	367 [3250]	300	59.4 [131]	1630 [1440]
DH142	AKD-X01207	362 [14.2]	183 [1620]	519 [4590]	300	86.6 [191]	2740 [2430]
DH143	AKD-X02407	362 [14.2]	339 [3000]	1340 [11,900]	120	146.0 [321]	5420 [4800]

DDR	A mm [in]	B mm [in]	C mm [in]	D mm [in]
D[H]061	130 [5.12]	175 [6.90]	220 [8.66]	126 [4.95]
D[H]062	140 [5.55]	175 [6.90]	220 [8.66]	126 [4.95]
D[H]063	164 [6.46]	175 [6.90]	220 [8.66]	126 [4.95]
D[H]081	145 [5.71]	217 [8.55]	260 [10.2]	147 [5.80]
D[H]082	165 [6.50]	217 [8.55]	260 [10.2]	147 [5.80]
D[H]083	206 [8.11]	217 [8.55]	260 [10.2]	147 [5.80]
D[H]101	153 [6.02]	280 [11.0]	330 [13.0]	181 [7.11]
D[H]102	185 [7.28]	280 [11.0]	330 [13.0]	181 [7.11]
D[H]103	248 [9.76]	280 [11.0]	330 [13.0]	181 [7.11]
D[H]141	153 [6.02]	362 [14.2]	406 [16.0]	218 [8.59]
D[H]142	217 [8.52]	362 [14.2]	406 [16.0]	218 [8.59]
D[H]143	344 [13.50]	362 [14.2]	406 [16.0]	218 [8.59]

Dimensions

Note 1: Refer to page 166 for matching cables. Note 2: For complete AKD and Housed DDR motor model nomenclature, refer to pages 178 and 184 respectively.

KBM Series Frameless Brushless Frameless Brushless

Sold & Serviced By

The KBM frameless motor series direct drive technology

KBM frameless brushless motor models are engineered to provide the high-performance, long life and simple installation that today's design engineers demand. Optional latching digital Hall effect sensors are pre-aligned and factory installed with added axial rotor length to achieve proper triggering. Choice of insulation allows operation over a wide range of line input voltage. Our detailed selection guide provides a variety of pre-engineered options and configurations that are currently available.

Custom Application Solutions

For customized features, contact Kollmorgen to help us understand exactly what you need and how we can further optimize any KBM or engineer a new custom motor solution for the unique requirements of your application. We are experts in providing optimized solutions such as special winding configurations, tailored mounting features, diameter and stack length dimensional adjustments, or material variations.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

The Benefits of KBM Frameless Motors

 Industry-Leading Frameless Motor Performance 	 Advanced electromagnetic designs deliver maximum torque density which minimizes required motor space envelope Extremely smooth rotation with minimal cogging and low total harmonic distortion (THD)
	Broad operating speed range and rapid acceleration
Quality Construction Ensures Reliability and Safe Operation	 Redundant magnet attachment to rotor on high-speed models – adhesive bonding and high-strength banding
	 155°C motor winding temperature rating with integral thermistor allows continuous safe operation for demanding applications
	 Designed with UL-recommended insulation systems to simplify system regulatory approval
	 RoHS compliant material selection
	• Compliant with Harmonized Type C Standards EN60034-1:2004 - Rotating Electrical Machines and where appropriate in accordance to the Low Voltage Directive 2006-95-EC
Highly Configurable Design Minimizes Time to Solution	• 14 frame sizes with multiple stack lengths
	 Standard sensor feedback using Hall effect sensors
	 Standard high and low voltage insulation
	 Multiple standard windings with custom windings available upon request

• Mechanical interface changes easily accommodated

KBM Series Overview

Sold & Serviced By: SERVOZGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Kollmorgen, the global leader in direct drive motor technology, is pleased to offer KBM series frameless brushless motors. With a wide variety of sizes and torque ranges available, KBM models are engineered to provide the high-performance, long life and simple installation that today's design engineers demand.

Quality Construction

- Fully encapsulated stator windings
- 155°C internal winding temperature continuous capability
- PTC thermistor (avalanche-type) overload protection
- High performance magnets
- Fail-safe bands over rotor magnets*
- RoHS compliant

Available Options (No engineering fees apply)

Sensor Feedback (KBMS models)

Latching digital hall effect sensors are pre-aligned and factory installed on the lead end of the stator. Wiring instructions and electrical timing diagrams are included in this selection guide. KBMS models include added axial rotor length to achieve proper sensor triggering.

Choice of Insulation System

S (standard) – acceptable for applications up to 240 Vac drive amplifier supply.

H (high voltage) – required for applications >240 Vac and up to 480 Vac drive amplifier supply.

Allowed Modifications (Engineering fees apply.

Consult Kollmorgen Customer Support for guidance or to obtain a quotation. Unit price increase may apply, depending upon extent of modification.)

Special Windings

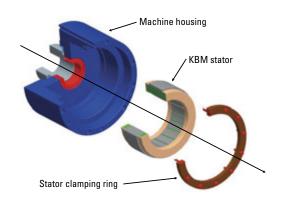
Motor windings may be optimized to provide desired speed and torque performance according to the unique voltage and current requirements of a customer's application. Kollmorgen engineers must confirm electrical feasibility and manufacturability of each special winding arrangement prior to quotation.

Special Rotor Hub Dimensions

Rotor hubs may be provided with special customer-designated hole patterns, mounting features or smaller inner bore diameters. Standard KBM(S) models shown within this selection guide include the largest available inner rotor bore diameter.

* Does not apply to KBM 163 and KBM 260.

Rotor Hub Material


Standard configuration KBM(S) rotor hubs are constructed from nonplated cold rolled steel. If special plating, coating, cleaning or alternate material is desired, Kollmorgen engineers must confirm feasibility and pricing adjustment prior to quotation.

Stator Sleeve Material

Standard configuration KBM(S)-10, 14, 17, 25, 35, 45, 163 and 260 size stators are designed with uncoated aluminum sleeves around the stator lamination stack. If special coating or plating is desired for the aluminum stator sleeve, Kollmorgen engineers must confirm feasibility and pricing adjustment prior to quotation. Stator sleeves are only utilized for the sizes listed above.

Agency UL Information

KBM(S) motors are designed to facilitate UL certification in the customer's higher-level assembly. Stator insulation systems are constructed entirely from agency-approved materials and are designed in full compliance with agency creepage and clearance dimensional guidelines. Dielectric strength between winding circuit and grounded metal stator surface is tested at agency-specified voltage level. Because a frameless motor's compliance with agency requirements is dependent upon correct installation and proper design of the surrounding enclosure by the user, KBM(S) series products are not formally labeled or agency-approved at the frameless motor level.

S

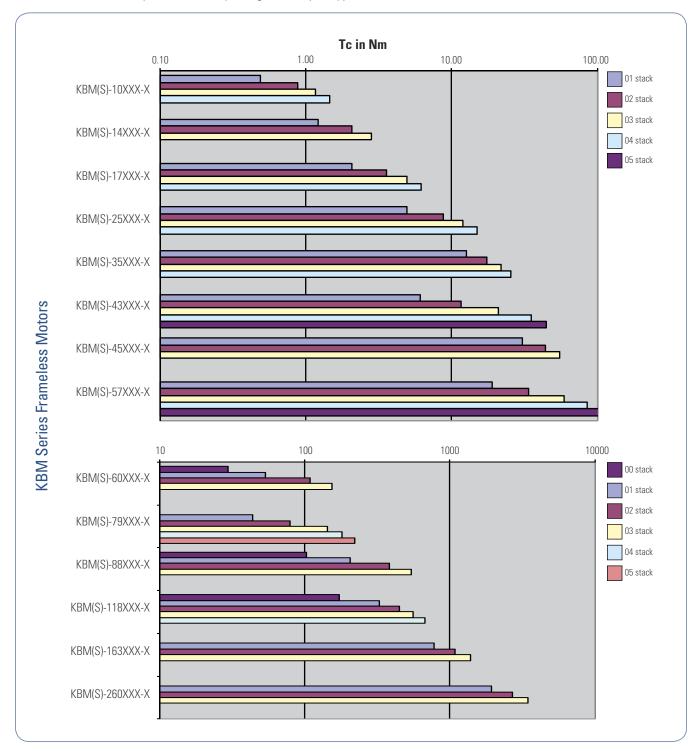
m

₽

<

0

 \leq


0

– О

KBM(S) Continuous Torque Oververozgo.com

Sold & Serviced By:

Select from our wide variety of sizes and torque ranges to suit your application needs.

Ъ

TBM Series Frameless Motors TBM Series Frameless Motors Toll Free Phone: 877-378-0240 Toll Free Phone: 877-378-0240 Toll Free Phone: 877-378-0240 Sales@servo2go.com

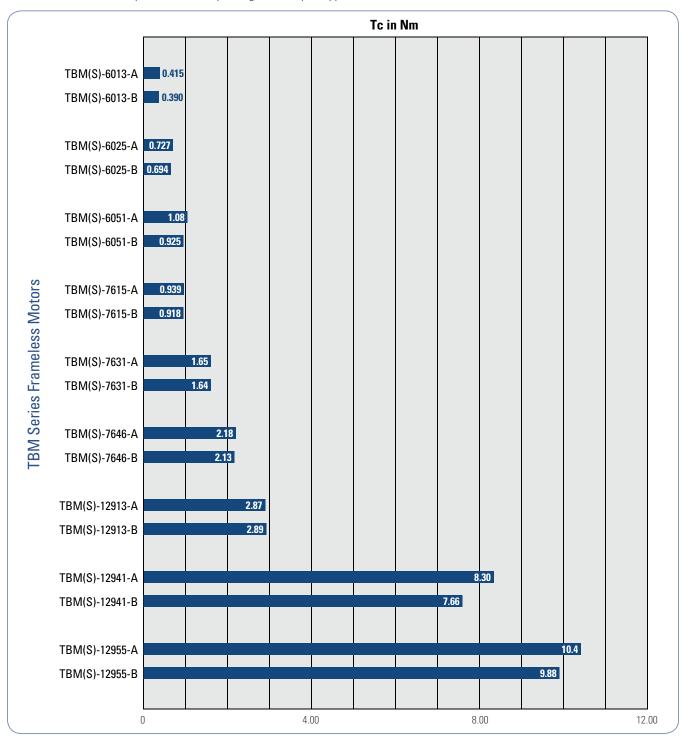
The TBM frameless motor is a series of direct drive torque motors designed for applications that require high power in a small, compact form factor with minimized weight and inertia.

Typical applications include robotic joints, weapon stations, sensor gimbals, sight systems, UAV propulsion and guidance, as well as many others.

TBM(S) Product Features

- 3 frame sizes ranging from 60mm (2.36 inches) up to 129mm (5.08 inches)
- 3 stacks lengths per frame
- 2 standard winding options per frame
- Latching Hall Effects (pre-aligned / factory installed)
- Low Cogging designs
- Stainless Steel Yokes for maximum corrosion protection
- RoHS Compliant
- Banded Rotors
- Laser Marked Armatures

For non-standard requests Kollmorgen provides a variety of standard options and configurations.


If higher levels of customization are required, contact Kollmorgen to help us understand exactly what you need.

KOLLMORGEN

TBM(S) Continuous Torque Oververozgo.com servozgo.com sales@servozgo.com www.servozgo.com

Sold & Serviced By:

Select from our wide variety of sizes and torque ranges to suit your application needs.

Stepper Drives and Motors

Our stepper motors, drives and controllers, which accommodate a wide range of power requirements, provide a high-performance, yet very costeffective solution when you need precise motion control.

Our hybrid stepper motors are some of the highest torque-density motors in the industry. Available in several NEMA frame sizes, these 2 phase stepper motors inherently move in small, precise 0.9 or 1.8 degree increments (400 or 200 steps/revolution). This stepping action is simple to control and does not require complicated, expensive feedback devices. Our stepper motors are excellent alternatives to pneumatic, hydraulic and servo motor systems.

Kollmorgen's stepper drives are designed with versatility, ease-of-use, and cost-effectiveness in mind. Choose from a broad range of advanced drives and controls including full, half, and microstepping models in both modular and packaged designs.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Kollmorgen's stepper drives and motors are designed with versatility, ease–of–use, and cost-effectiveness in mind. The motors provide high torque in a small package and come in a wide range of standard sizes, constructions, windings and options. They are available with custom leads, shafts and connectors are routinely provided to effectively solve your application needs. Several models feature the addition of our innovative SIGMAX[®] technology for higher torque and acceleration rates.

P-Series Stepper Drives

Best-in-Class Components

P-Series Stepper Drives work seamlessly with Kollmorgen stepper and synchronous motors for quality, reliability, and performance. PMX Series Stepper

EH Series Steppe

MX Explosion-Proof Series

KN Series Stepper

"

MH172 Stepper

10-

KS06 Synchronous

X Series Synchronous

SS Series Synchronous

SS Gearbox Synchronous

P-Series Drive Features and Bene Servozgo.com

P5000

Value DC Input Stepper Drive

- Wave matching for Kollmorgen motors to provide optimal performance
- All inputs and outputs are optically isolated
- Step and direction inputs or internal velocity controlled oscillator (VCO) dip switch selectable
- DIP switch selectable micro-stepping resolution settings
- Idle current reduction, DIP switch selectable
- Compensation for mid-range instability
- RoHS & CE certified
- UL pending

Full Featured AC Input Stepper Drive

- No programming required
- Covers full power range of Kollmorgen steppers
- Switch selectable current from 0.2-5.7 Arms, 8.0 A peak
- Switch selectable for many Kollmorgen motor parings
- All inputs and outputs are optically isolated
- Single-ended and differential step and direction
- Enable input
- Switch selectable micro-stepping resolution
- Anti-resonance based on load inertia
- RoHS & CE certified

Sold & Serviced By:

Full Featured AC or DC Input Stepper Drives with Intelligent Indexing Option (-PN)

- AC and DC input versions
- Covers full power range of Kollmorgen steppers
- Drives can be configured by either dip switches or P7000 software
- Intelligent indexing option (-PN) provides ability to link motion tasks.
- All inputs and outputs are optically isolated
- Single-ended and differential step and direction
- Enable input
- Switch selectable micro-stepping resolution
- Anti-resonance based on load inertia
- RoHS, CE and UL certified

Budget/Value

Full-Featured

STEPPER DRIVE PRODUCT OVERVIEW

Stepper Drive Model	Modes of Operation*	Input voltage (Vdc)	Input Voltage (Vac)	Output current (Adc) Con- tinuous (Peak)
P5000	S, V	20 - 75	n/a	0.7 - 2.0 (3.5)
P6000	S	n/a	110-240 +/-10%	0.3 - 5.7 (8.0)
P70530	S, M	20 - 75	n/a	0 - 5.0 (7.1)
P70360	S, M	n/a	120/240	0 - 2.5 (3.5)

Modes of Operation: S - Step and Direction; V - Velocity Controlled Oscillator (VCO); M - Motion Node Indexing

ŝ

SERVO P5000 Stepper Drive-Controller Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249

sales@servo2go.com www.servo2qo.com

P5000 Stepper Drive

(Shown Actual Size)

GO.com

Sold & Serviced By

COLLMORGEN

Big Performance, Micro Package.

The P5000 is a compact micro-stepping stepper drive optimized for high system performance with Kollmorgen's industry leading POWERMAX II stepper motors. It is an impressive yet simple addition to the Kollmorgen stepper drive family.

Optimized. Smooth. Compact.

Pairing a stepper system doesn't get any easier! The P5000 and Kollmorgen stepper motors are meant to be together. With Kollmorgen motor windings optimized for the P5000, all you have to do is set the dip switches for the motor you are paired with and you have a smooth operating system that fully utilizes the potential of your Kollmorgen motor and drive combination!

Features

- Current output from 0.7-3.5 Arms peak; DIP switch selectable in 0.2 Amp increments
- Bus Voltage 20-75 Vdc
- Wave matching for Kollmorgen motors to provide optimal performance for the Kollmorgen Stepper Motor Families.
- All Inputs and Outputs are Optically Isolated
- Command Source from External Step and Direction Inputs or Internal Velocity Controlled Oscillator (VCO); DIP switch selectable
- External Single-Ended Step and Direction Command
 - Disable or Fault Reset Input
 - Fault or Enable Output
- Pulse Multiplier smooths micro-stepping*
- Idle Current Reduction; DIP switch selectable
- *Patents Pending

- Compensation for mid-range instability*
- VCO Mode
 - CW Limit Input
 - CCW Limit Input
 - Run/Stop Input
 - Run/Stop Output
 - CW Speed trimpot
 - CCW Speed trimpot
 - Accel/Decel trimpot
- DIP switch selectable micro-stepping-resolution settings
- RoHS & CE certified
- UL pending

ROHS CE

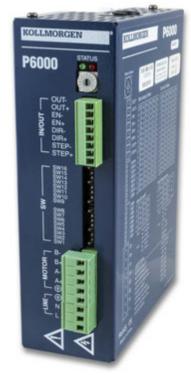
Note: For complete P-Series model nomenclature, refer to page 198.

P6000 Stepper Drive-Controller Toll Free Phone: 877-378-024 Toll Free Fax: 877-378-0249

SERV GO.com sales@servo2go.com www.servo2qo.com

Sold & Serviced By

Powerful, Yet Simple.


The P6000 is an AC input micro-stepping drive optimized for pairing with POWERPAC and POWERMAX stepper motors. With the simplicity of dip switches and the optimized performance from the complete system, this stepper solution brings increased machine performance without the associated complexity.

Powerful. Simple. Optimized.

The P6000 and Kollmorgen POWERPAC and POWERMAX stepper motors are designed to provide the best system solution when paired with one another. The easy dip switch selection matches the P6000 settings with the optimal Kollmorgen stepper motor requirements to provide the best performance and most efficient solution for nearly any application.

Features

- No programming required!
- Covers full power range of Kollmorgen Stepper Motors
- Switch Selectable Current Output from 0.2-5.7 Arms, 8.0 A peak
- 120/240 VAC Input (160/320 Vdc Bus)
- Kollmorgen Stepper Motor Pairing; Switch Selectable
- All Inputs and Outputs are Optically Isolated
- Single-Ended and Differential Step and Direction or CW/CCW Command; Switch Selectable
- Enable Input
- Fault Output (Sinking or Sourcing)
- Status LEDs for easy troubleshooting
- Switch Selectable Micro-Stepping-Resolution Settings
- Step Smoothing Filter; Switch Selectable
- Idle Current Reduction; Switch Selectable
- Anti-Resonance Based On Load Inertia; Switch Selectable
- Self-Test Conducts Spin Test to Confirm Proper Connection; Switch Selectable
- RoHS & CE Certified

P6000 Stepper Drive

ROHS (E

Note: For complete P-Series model nomenclature, refer to page 198.

DITIMORCEN

112

STEPP m R Ρ R 0 \subset C _ S σ S ERIE ഗ RIVE-C 0 NTROLL E R

P7000 Stepper Drive-Controller Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com

P7000 stepper drives offer a unique level of system functionality, smoothness, high-speed performance and innovation unmatched in the industry.

The compact P7000 is designed to power Kollmorgen step motors ranging from NEMA size 17 up to NEMA size 42. Two power configurations are available for operation directly from AC power, or from a DC power supply.

There are two levels of control offered. The basic drive accepts step and direction inputs. P7000 drives are also available with an integrated position controller (-PN option). The drives are configured by either on-board dip switches, or with the P7000 tools software.

Advanced P7000 Features Make it the Best Choice to Meet Your Application Requirements

Multistepping[™]

Also known as auto-smoothing. The P7000 drive accepts full step pulse commands from the indexer and inserts fine micro-steps to smooth coarse low speed motion. This allows you to significantly upgrade machine performance without having to redesign machine control architecture.

Auto-Tuning

Advanced current auto-tuning techniques provide outstanding lowspeed smoothness. The P7000 senses the motor's characteristics and automatically fine tunes itself to meet your high-performance needs. This reduces installation and set-up time.

Mid-Band Anti-Resonance Control

Reduces negative effects of mechanical resonance, allowing you to get more out of a smaller motor and virtually eliminating nuisance stalls and machine downtime.

Idle Current Reduction

If you do not require the motor's full torque to hold a load at rest, you can select the right amount of current (torque) to reduce motor heating and power consumption. This increases the life of the system.

Dynamic Smoothing

Quasi-S-curve algorithm reduces jerk, especially upon acceleration. Increases mechanical life of the machine and reduces energy consumption.

Intelligent Indexing Option (-PN)

Wizard-like P7000 helps you to develop and link motion tasks such as homing and conditional and unconditional indexing. You can be up-and-running quickly.

Modbus RTU Compatible

The intelligent indexing option (-PN) supports Modbus RTU to control motion with an external interface device. External interfaces make controlling motion simple for machine operators.

P7000 Tools

The position node option allows you to configure up to 63 absolute or relative moves. You can specify the moves' distance, acceleration, velocity, and deceleration rates, or simply specify the distance and total time for the move – P7000 will perform the calculations automatically.

Specifications	Units	P70530	P70360
Input voltage range	Volts	20 - 75 Vdc	120 or 240 Vac
Continuous current	Amps rms	5	2.5
Microstep peak current	Amps peak	7.1	3.5

Note: For complete P-Series model nomenclature, refer to page 198.

ጫ (€

Sold & Serviced By

Stepper Motor Overview

Kollmorgen offers a comprehensive range of stepper motor products including continuous torque, high torque and hybrid options to meet a wide range of application requirements. For other Kollmorgen stepper products or information not included in this catalog go to www.kollmorgen.com.

		Product Family	NEMA	Step	Stacks	Holding Torque (oz-in)
		PMX08	08	1.8°	2	
sh	Ô	PMX11	11	1.8°	3	16.8
η, Pu		PMX14	14	1.8°	3	26.4
Economy, Push		PMX17	17	0.9° 1.8°	5	1 07.0
E		PMX23	23	0.9° 1.8°	4	378.0
		PMX34	34	1.8°	4	1739
my	0 9	CTP1	17	1.8°	3	80
Economy	0	CTP2 CTM2	23	1.8°	3	360 470
_					_	
cts	1 Ta	P2 M2	23	1.8°	3	214 253
rodu		T2	23	1.8°	4	380
Flagship Products	YQ	N3 K3	34	1.8°	4	2180 2790
Fla	-	N4 K4	42	1.8°	3	4370 5660
		H2 E2	23	1.8°	3	158 225
Conventional Round Flange	13	H3 E3	34	1.8°	3	916
Conve. Round	2 3	H4 E4	42	1.8°	3	2650 3960
		MH172	66	1.8°	1	6139
Special Purpose		MX9	34	1.8°	3	550
Spe Purp		MX11	42	1.8°	2	1390
						Standard Stepper Motor Construction Step motor utilizing SIGMAX® Technology

æ

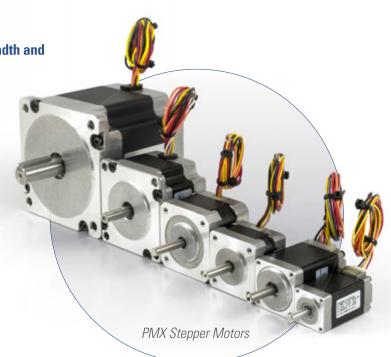
Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

			-Fea	ature	es —	- -	Standard Options v available option						15								
Product Family	NEMA	UL Recognized	CE Mark	RoHS	SIGMAX®	Integral Connectoin	Leadwire	4-Lead Bipolar	6-Lead Unipolar	8-Lead		MS Connector	IP Sealing	Encoders		ron Shat		Rear Shaft	Low Inertia	Family Features	
PMX08	08		•	•			•	•					30		0	•		•			
PMX11	11		•	•			•	•					30		0	•		•		 NEMA Sizes 8, 11, 14, 17, 23, 34 	
PMX14	14		•	•			•	•					30		0	•		•		 CE, RoHS, and REACH Compliant Unipolar or Bipolar windings 	
PMX17	17		•	•		•	•	•	0				30		0	•		•		 Options: shaft flats, rear shaft with encoder mounting holes, IP Sealing 	
PMX23	23		•	•		•	•	•	0				30		0	•		•		 Special Options readily available: spur and planetary gearboxes, encoders, special shafts 	
PMX34	34		•	•			•	•					30		0	•	0	•			
CTP1	17	٠	٠	•			•	•	•				40		•			•		 High torque standard CTP models Enhanced CTM SIGMAX models produce up to 25% 	
CTP2 CTM2	23	•	•	•	•		•	•	•				40		•	0		•		 Enhanced Child Statistical Induces produce up to 25% more torque in same package Large bearings provide high thrust and radial loads 	
P2 M2	23	•	•		•	•	•			•			40 40	•	•	0 0		•	•	High torque standard hybrid stepper motor	
T2	23	•	•				•	•	•		•	•	40	•	•	0		٠		 Enhanced M and K SIGMAX models provide up to 25% more torque in same package 	
K3 N3	34	•	•		•		•	•	•	•		•	65 ¹ 65 ¹	•			•	•		 Low detent torque for smoother microstepping Bipolar and unipolar winding Large array of options 	
K4 N4	42	•	•		•		•	•	•	•		•	65 ¹ 65 ¹	•			•	•			
H2 E2	23	•	•		•		•	•	•	•		•	40 40	•	•	0 0		•	•	• High efficiency, low loss hybrid designs in a conventional	
H3 E3	34	•	•		•		•	•	•	•		•	65 ¹ 65 ¹	•	•	0 0		•		 round frame Enhanced E SIGMAX models provide up to 25% more torque in the same package 	
H4 E4	42	•	•		•		•	•	•	•		•	65² 65²	•			•	•		 Torque produced over a wide speed range Large array of options E2, H2 offer high axial loading 	
MH172	66										•		40	•			•	•			
MX9	34	•											40		•			•		Standard hybrid stepper motor Meets Explosion proof UL Class 1, Division 1 Group D requirements	
MX11	42	•											40			•		•		 requirements Up to 150% rated torque reserve capacity (MX9) and 200% for {MX11} 	

Notes: 1. Requires shaft seal and connection option other than leaded (Meets IP40 otherwise)

2. Requires shaft seal option (Meets IP40 otherwise)

Hybrid PMX Step Motor


SERVOZGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Sold & Serviced By

Kollmorgen's PMX[™] stepper motor line delivers breadth and design flexibility at competitive lead times.

Kollmorgen is excited to continue its winning heritage in hybrid stepper motors with the PMX family. Leveraging the best practices from customer preferred products in the POWERMAX and POWERPAC families, the PMX lines will deliver breadth and design flexibility at a very competitive lead time. Look no further for that hybrid stepper motor family with local support that gives you the flexibility you need to succeed.

PMX Series motors include smaller Nema 08, 11, and 14 frame sizes in addition to the traditional Nema 17, 23, and 34 frame sizes. Each frame size is built with high quality construction in an affordable, market competitive solution. Numerous co-engineering options are also available including: customizing shafts, encoders, and mounted spur and planetary gearboxes.

- Increased Design Flexibility six frame sizes (08, 11, 14, 17, 23, 34) each with several stack length and winding options available
- Minimal Drive Adjustments options for 1.8 and 0.9 degree step angles
- Lower Unit Cost PMX motors are priced competitively in today's current stepper market and are the lowest of all Kollmorgen stepper products
- Quality Construction translates to reliability in the field and a long service life
- Localized Support gives you the delivery terms and immediate technical support you need, meaning quicker time to market and less downtime
- Flexible Manufacturing enables Kollmorgen to immediately evaluate modifications and co-engineered solutions for rapid prototyping
- Easy to Apply Worldwide CE, RoHS, REACH

Many Applications

PMX motors allow Kollmorgen customers to fulfill their automation needs at an affordable cost, enabling higher throughput in a wide variety of equipment. In addition, leveraging Kollmorgen's technical expertise and flexible engineering, the PMX is ready for seamless special and coengineering options, allowing for swifter and easier integration into both new and existing applications.

ж

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

PMX Stepper Motor General Specifications

) Torque Aounted)	Ler	ngth		
		Series	Stacks	Bip oz-in	olar Nm	in	mm	Features	
				02-111	NIII				
0: 00	0	2 Phase, 1.8° S	tep Motors. F	rame size: 0.8	8 inch, 20 mm				
Size 08 PMX Series	12	PMX081	1	2.50	0.018	1.18	30.0	 Front shaft flat option 	
WIN DELLES		PMX082	2	4.00	0.028	1.65	42.0	Rear shaft option	
		2 Phase, 1.8° S	tep Motors. F	rame size: 1. ⁻	1 inch, 28 mm				
Size 11	100	PMX111	1	10.1	0.071	1.26	32.0	- Front shaft flat antian	
MX Series	15-	PMX112	2	16.1	0.114	1.77	45.0	 Front shaft flat option Rear shaft option 	
		PMX113	3	16.8	0.119	2.01	51.0	 Integral connector option 	
	1	2 Phase, 1.8° S	tep M <u>otors. F</u>	rame <u>size: 1.</u>	4 inch <u>, 35 mm</u>				
Size 14	V	PMX141	1	14.7	0.104	1.02	26.0		
MX Series	(Series	PMX142	2	20.1	0.142	1.10	28.0	 Front shaft flat option Rear shaft option 	
		PMX143	3	26.4	0.186	1.42	36.0	Rear encoder mounting holes	
		2 Phase, 0.9° o	r 1.8° Step M	otors. Frame	size: 1.7 inch	n, 42 mm			
	\cap	PMX171 (1.8)	1	28.4	0.201	1.02	26.0		
Size 17	4	PMX172 (1.8)	2	40	0.281	1.32	33.5	Front shaft flat option	
MX Series	1 10	PMX173 (1.8)	3	61	0.427	1.56	39.5	 Rear shaft option Integral connector option 	
		PMX174 (1.8)	4	78	0.551	1.87	47.5	 Bipolar or Unipolar winding available Rear encoder mounting holes 	
		PMX171 (1.8)	5	107	0.756	2.36	60.0	Ŭ	
	A	2 Phase, 0.9° o	r 1.8° Step M	otors. Frame	size: 2.2 inch	n, 57 mm			
Size 23		PMX231 (1.8)	1	102	0.722	1.61	41.0	 Front shaft flat option 	
MX Series		PMX232 (1.8)	2	208	1.47	2.20	56.0	 Bipolar or Unipolar winding available Rear shaft option 	
		PMX233 (1.8)	3	337	2.38	2.99	76.0	 Integral connector option 	
		PMX234 (1.8)	4	378	2.67	3.35	85.0	Rear encoder mounting holes	
	Ø	2 Phase, 1.8° S	tep Motors. I	Frame size: 3	.4 inch, 86 mn	n			
Size 34	-	PMX341	1	490	3.46	2.56	65.0		
MX Series		PMX342	2	704	4.97	3.15	80.0	• Front shaft flat option	
INIA Series	PMX343	3	1285	9.07	4.65	118.0	Rear shaft option		
		PM344	4	1739	12.28	6.14	156.0		

Note: For complete PMX series model nomenclature, refer to page 199.

Hybrid CT and N/K Series Step

CT Series

CT Series motors include the most popular sizes, options and value suitable for most commercial and industrial applications. Enhanced motors provide the maximum performance available. This patented technology boosts torque an additional 25% to 40% across the entire speed range, and allows machines to be designed that are smaller and move faster.

CT Series Benefits

- Smaller drives result in a lower system cost
- More torque allows for smaller, faster machines
- Higher efficiency enables lower operating costs

			° Step Motors. orque Perform			3 mm			
Size 17	Y	Series	Construc	ction	Holding (Motor N	Torque lounted)	Ler	igth	
CT Series	and the second s		Style	Stacks	Bip				
CI Selles					oz-in	Nm	in	mm	 Inch or metric mounting Rear shaft option
	Page 1	CTP10		Short	43	0.30	1.37	34.7	nour onare option
		CTP11	Un-Enhanced	1	62	0.44	1.61	40.9	
				2	80	0.56	1.92	48.8	

	$\mathbf{\hat{n}}$		° Step Motors. nced-Max Torq				e Perform	nance Se	ries)
	¥*	Series	Construc	tion		Torque lounted)	Ler	igth	
Size 22	1		Style	Stacks	Bip	olar	in		
CT Series	and the second second		Style	SLACKS	oz-in	Nm		mm	 Captured heavy duty bearings
01 001103		CTM21	Enhanced	1	260	1.84	2.13	54.1	High voltage insulation system
		CTM22	Ennanceu	2	470	3.32	3.32	84.3	 Rear shaft option
	Post I	CTP20		Short	100	0.71	1.62	41.2	
		CTP21	Un-Enhanced	1	200	1.41	2.13	54.1	
	and the second sec	CTP22		2	360	2.54	3.32	84.3	

Note: For complete CT series model nomenclature, refer to page 199.

STEPPER

PROD

(UL)

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

N/K Series

The N/K Series are larger step motors with the power, rugged construction, and options that make these motors ideal for heavy industrial applications. Options include: IP56, terminal boxes and MS connectors. Enhanced versions provide the maximum performance torque available. This patented technology boosts torque an additional 25% to 40%. Custom motors are available to meet specific application needs including: modified shafts, connectors, lead-screws, and components mounted to the shaft.

N/K Series Benefits

• More torque to drive heavy loads

Size 34 N/K

- Smaller drives result in a lower system cost
- Higher efficiency enables lower operating costs

2 Phase, 1.8° Step Motors. Frame size: 3.4 inch, 87 mm

Series	Construction		Holding (Motor N		Len	gth				
	Style	Stacks	Bipo	olar	in	mm				
	Style	SIGCKS	oz-in	Nm	111	mm				
K31		1	830	5.9	3.7	94	 Captured heavy duty bearings High voltage insulation system 			
K32	Enhanced	2	1530	10.8	5.22	133	Options: Terminal box MS connectors			
K33	Ennancea	3	2200	15.6	6.74	171	Rear shaft			
K34		4	2770	19.6	8.25	210	Encoder Front shaft seal			
N31		1	650	4.6	3.7	94	FIUIL SIIdIL SEdi			
N32	Un-Enhanced	2	1220	8.6	5.22	133				
N33	UII-EIIIIdiiceu	3	1760	12.4	6.74	171				
N34		4	2170	15.3	8.25	210				

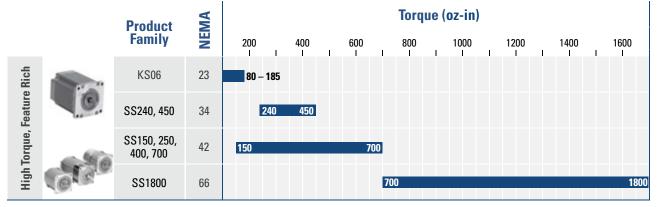
Size 42 N/K

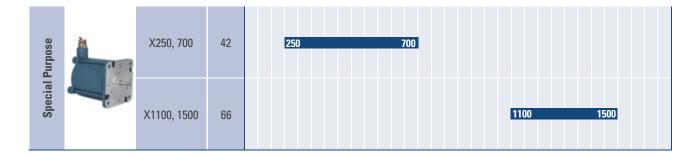
2 Phase, 1.8° Step Motors. Frame size: 3.4 inch, 87 mm

Series	Construc	tion	Holding (Motor N		Lenç	yth				
	Otala	Oto alva	Bipo	olar	:					
	Style	Stacks	oz-in	Nm	in	mm	 Captured heavy duty bearings High voltage insulation system 			
K41		1	2090	14.8	3.89	99	Options: Terminal box			
K42	Enhanced	2	4000	28.2	5.91	150	MS connectors Rear shaft			
K43		3	5650	39.9	7.92	201	Encoder			
N41		1	1630	11.5	3.89	99	Front shaft seal			
N42	Un-Enhanced	2	3140	22.2	5.91	150				
N43		3	4340	30.6	7.92	201				

Note: For complete N/K series model nomenclature, refer to page 201.

(Ų)


AC Synchronous Motor Overview



ï

Kollmorgen offers a comprehensive range of AC synchronous motor products including continous torque, high torque and hybrid options to meet a wide range of application requirements. For products not included in this catalog go to www.kollmorgen.com for information about other Kollmorgen synchronous motor products.

Flagship Products

			1000	I	2000	I	3000	I	4000	i	5000 I	
Gearmotor	SS24x, 45x Gearmotor	34	630								5000	

ī

в

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Product Family	NEMA	Phases	Leaded	Teerminal Box	Rear Shaft	Family Features
KS06	23	1Ø	٠	•	•	 1Ø and 3Ø (SS240, 450 models only) 72 rpm motor speed (with 60 Hz voltage)
SS240, 450	34	3Ø	•	•	•	 60 rpm motor speed (with 50 Hz voltage) 120 volt or 240 volt AC models
SS150, 250,400, 700	42	1Ø	•	•	•	• Torques: 80 – 1800 oz-in (0.56 – 12.7 Nm)
SS1800	66	1Ø	٠	•	•	 Fast starting, stopping, or reversing Can be stalled indefinitely without overheating

X2	50, 700	42	1Ø	•	•	 1Ø models X models meet UL Class 1, Group D requirements X models meet ATEX, Exd IIC T5 Gb rqmt. 60 and 50 Hz models (72 and 60 rpm respectively)
X11	00, 1500	66	1Ø	•	•	 120 volt or 240 volt AC models Torques: 250 – 1500 oz-in (1.77 – 10.6 Nm) Fast starting, stopping, or reversing Can be stalled indefinitely without overheating

SS240, 450 Gearmotor	3Ø	٠	٠	٠	 All the features of the SS240, 450 series Gear reducers with ratios up to 125:1 Torques: 634 - 5000 oz-in (4.48 - 35.3 Nm)
-------------------------	----	---	---	---	--

Micron[®] Quick Selection Guide

SERVOZGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Sold & Serviced By:

Micron® Gearbox [®]	Product Prefix	Maximum Backlash [arc/min] (for the product life) ©	Relative Price	In-line / Right Angle Frame Sizes [mm]	In-line / Right Angle Ratio Availability ③	Maximum input speed [RPM]	Relative Torque Capacity	Expected Noise Level [db]	Modification Costs	Efficiency [%]	Housing Material
UltraTRUE	UT UTR	4/5	1.2 ×	60 - 220 60 - 140	4:1 - 100:1 1:1 - 50:1	6000	2.8×	66	Very Low	95	Stainless and Aluminum
ValueTRUE	VT VTR	4/5	0.7 ×	60 - 220 60 - 140	4:1 - 100:1 1:1 - 50:1	6000	2.6 ×	66	Low	95	Stainless and Aluminum
EverTRUE	ET	4/5	1.5 ×	100 - 180	4:1 - 100:1	6000	2.8 ×	68	Low	95	Stainless and Aluminum
DuraTRUE	DT DTR	8/9	1.0 ×	60 - 140 60 - 140	3:1 - 100:1 1:1 - 500:1	6000	1.0×	68	Very Low	93	Anondized Aluminum
NemaTRUE	NT NTR	13/15	0.5 ×	60 - 15 (23 - 42) 60 - 115 (23 - 42)	3:1 - 100:1 1:1 - 500:1	6000	0.7 ×	68	Very Low	93	Anondized Aluminum
XTRUE	XT XTA	13/15	0.4 ×	40 - 160	3:1 - 100:1	6000	1.1 ×	68	Low	93	Anondized Aluminum
AquaTRUE	ΑΩΤ	13/15	1.5 ×	60 - 160	3:1 - 100:1	6000	1.1 ×	68	Low	93	100 % Stainless

① All products are dimensional drop in replacement. The catalog should be reviewed for length and width details.

 \oslash Backlash is measured at the output shaft, with the input fixed, using 2% of the rated torque in both directions.

③ Other ratios available, contact customer support for more information.

-М(

 \circledast Speeds greater than 6000 RPM need to be reviewed by application engineering.

DR

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

6 Reasons to Choose Micron[®] Gearboxes

● RediMount[™] – Fast and Error Free Motor Mounting

The unique RediMount system will mount any Micron gearhead to any motor in just three simple steps in less than five minutes!

2 Superior Technology

All Micron gears are case hardened to HRC60 for longer life. Our UltraTRUE and ValueTRUE models have a higher helix angle (15 °) than our competitors' helical gearheads resulting in less backlash, smoother and quieter operation and longer life.

3 Lubricated For Life

Micron gearheads require no maintenance and are grease filled. Unlike oil filled units, they can be mounted in any orientation and will never leak.

4 Unmatched Product Breadth

Micron has the largest selection of planetary gearheads in the world with over 3000 size and ratio combinations.

5 Unmatched Quality

All Micron gearheads are tested through our state of the art end of line tester, making our outgoing quality the best in the market.

6 Made in the USA

All Micron Gearheads are manufactured in the USA making us able to respond to emergencies quickly reducing down time for our customers.

	Product Prefix	Lower Backlash Option ©	Double Stage Available ©	True Planetary Gearing	Helical Crowned Gearing	Lubricated for Life	Dual and Hollow Shafts Available	3D CAD Models on Micron Motioneering	One Piece Output Shaft/Carrier	Internal Gear Machined into Housing	ROHS Compliant Ø	Case Hardened Gears (HRC60)	Gearbox Express ®	Low Temperature Grease Available	Food Grade Grease Available	NSF Certified (9)	RediMount Compliant
UltraTRUE	UT UTR		•	•	•	•		•	•	•	•	•	•	•	•		•
ValueTRUE	VT VTR		•	•	•	•		•	•	•	•	•	•	•	•		•
EverTRUE	ET		•	•		•		•	•	•	•	•	•	•	•		•
DuraTRUE	DT DTR		•	•		•	•	•	•		•	•	•	•	•		•
NemaTRUE	NT NTR	•	•	•		•		•	•		•	•	•	•	•		•
XTRUE	XT XTA	•	•	•		•		•	•		•	•		•	•	•	
AquaTRUE	AQT	•	•	•		•		•	•		•	•		•	•	•	

© Lower backlash, high precision available (8/9 arc-min).

© Double stage AquaTRUE now available.

 \oslash ROHS on right angle product is still being confirmed.

(a) Geahead express not available in frame sizes larger than 140 mm or dual and hollow shafts.

The AquaTRUE is certified to NSF/ANSO STD 169.

Micron[®] TRUE Planetary[™] Gearbox[™] Gearbox[™] [™]

Planetary Gearbox Technology

Helical gears are known for their quiet and smooth operation along with their ability to transmit higher loads than spur gears. Both of these features of helical gearing result from the improved contact ratio (effective teeth in mesh) over spur gears.

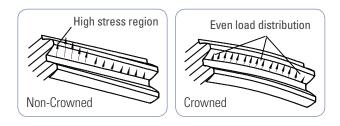
A high torque, whisper quiet helical gearbox has been designed by combining the positive attributes of gear crowning and helical gearing with the planetary construction to create the smoothest operating gearbox on the market.

- Broadest product range of gearboxes in the industry
- Innovative gear technology offers size and performance advantages
- RediMount[™] system provides error-free and reliable installations

Helical Crowned TRUE Planetary[™] Gearing

Features

- High torque capacity
- Low backlash
- Smooth operation
- Greater load sharing
- · Whisper quiet

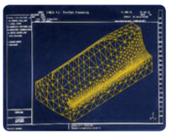

Spur vs. Helical Gearing

Typical contact ratio is 1.5 for spur gearing. Contact ratio for equivalent helical gear is 3.3 more than double the contact ratio.

annual la	por l	
18	<u>O</u>	

Crowned vs. Non-Crowned

Crowning optimizes the gear mesh alignment within a gear train to increase the torque capacity and reduce noise. It also enhances load distribution on the tooth flank to reduce high stress regions.


PowerTRUE[™] Right Angle Gearboxes

- · Lower backlash from single axis mesh adjustment
- A compact design using face gear technology
- Whisper quiet operation due to high contact ratio
- Mesh ratios from 1:1 to 5:1
- Extremely efficient (98%)

PowerTRUE™ gear technology

Computerized mapping of gear tooth profile

All Micron right angle gearboxes use the PowerTRUE technology which increases the mesh ratio to 5:1 compared to a maximum of 3:1 typical in bevel gears.

Multiple teeth in the face gear simultaneously mesh with a standard involute pinion. The continuous tooth engagement yields a high contact ratio between the gear and the pinion, increasing torque and efficiency.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

NEMA TRUE™	True planetary gearbox, flange mount design with anodized aluminum housing employing RediMount [™] system.										
	Inline	Frame			eak (lb-in)	All Sizes	Gear Ratios Available	Efficiency	Backlash		
		English	Metric	1 Stage	2 Stage				(arc-min)		
COD)	Size 17	NEMA 17	42 mm	170	170	1 Stage	3, 4, 5, 7, 10	93%	13 (8)*		
and the second	Size 23 / 60	NEMA 23	60 mm	250	275	i Staye					
	Size 34 / 90	NEMA 34	90 mm	700	850	2 Stage	15, 20, 25, 30, 40, 50, 70, 100	000/	45 (0)*		
	Size 42 / 115	NEMA 42	115 mm	1000	1600	z staye	15, 20, 25, 30, 40, 50, 70, 100	88%	15 (9)*		

		TR	ТП	- 11
IE W			4 🛙 🕯	
	[[]		L.,	

4		0	-
	Ĩ	1	5
1	1		٣
			-
- 12		-	

True planeta	ry gearbox	, flange m	iount desi	gn with a	nodized a	aluminum	housing employing RediM	ount [™] system	
Right	Frame				ak (lb-in) All Size		Gear Ratios Available	Efficiency	Backlash
Angle	English	Metric	1 Stage	2 Stage	3 Stage			· ·	(arc-min)
Size 23 / 60	NEMA 23	60 mm	360	366	366	1 Stage	1, 2, 3, 4, 5P	98%	13
Size 34 / 90	NEMA 34	90 mm	1110	1110	1110	2 Stage	5T, 6, 9, 10, 12, 15, 20, 25, 30, 40, 50	93%	15
Size 42 / 115	NEMA 42	115 mm	2250	2250	2250	3 Stage	60, 75, 90, 100, 120, 125, 150, 200, 250, 300, 400, 500	88%	15

XTRUE™	The XTRUE Series is a new precision gearbox employing RediMount [™] system that compliments our TRUE planetary gearbox line – already the largest selection of planetary gearboxes in the world.									
	Inline	Frame Size	Max T Pe	eak (lb-in)	All Sizes	Gear Ratios Available	Efficiency	Backlash		
	IIIIIIe	Metric	1 Stage	2 Stage	All Sizes	Gedi nalios Avaliable	Eniciency	(arc-min)		
	XT040	40 mm	162	299						
	XT060	60 mm	483	483	1 Stage	3, 4, 5, 7, 8, 10	93%	13		
	XT080	80 mm	1460	1550						
	XT120	120 mm	2640	2640						
	XT160	160 mm	7750	7750						
	XTA050	50 mm	162	299						
	XTA070	70 mm	483	483	2 Stage	15, 20, 25, 30, 40, 50, 70,	88%	15		
	XTA090	90 mm	1460	1552		80, 100	00 %	10		
	XTA120	120 mm	2639	2639						

EverTRUE, employing RediMount[™] system, is specifically designed for 24/7 continuous running applications providing 3 times (30,000 hours) service life. **EverTRUE**[™] Metric ET010 101 mm 4093 4794 1 Stage 4, 5, 7, 10 95% 4 ET014 141 mm 9430 11,250 2 Stage 16, 20, 25, 28, 35, 40, 50, 70, 100 90% 5 ET018 182 mm 21,600 26.280

Note 1: Torque capacity is maximum of frame size stage design, not all ratios have the same rated torque capacity. Note 2: Torque capacity is the maximum allowable momentary torque for emergency stopping or heavy shock loading. Note 3: Ratio 5P is designed using the compact PowerTrue face gearing technology. Note 4: Ratio 5T is designed using a True planetary gear stage for increased torque capacity. Note 5: For complete gearbox model nomenclature, refer to page 196.

 \leq

SERVOZGO.com MicronTM TRUE PlanetaryTM Gearberse Eax: 877-378-0240 Sales@servo2go.com sales@servo2go.com

www.servo2go.com

Sold & Serviced By:

DuraTRUE™	True planetary gearbox, flange mount design with anodized aluminum housing employing RediMount™ system.											
1122	Inline	Frame Size		Max T Peak (Ib-in)		Gear Ratios Available	Efficiency	Backlash				
		Metric	1 Stage	2 Stage			,	(arc-min)				
	DT60	60 mm	460	460	1 Ctore	245710	93%	8				
	DT90	90 mm	1480	1480	1 Stage	3, 4, 5, 7, 10		ö				
	DT115	115 mm	2513	2513	2 Store	15 20 25 20 40 50 70 100	000/	0				
	DT142	142 mm	7380	7380	2 Stage	15, 20, 25, 30, 40, 50, 70, 100	88%	9				

DuraTRUE™	True planeta	True planetary right angle gearbox, flange mount design with anodized aluminum housing employing RediMount™ system.											
	Right	Frame Size		eak (Ib-in)	All Sizes	Gear Ratios Available	Efficiency	Backlash					
	Angle	Metric	1 Stage	2 Stage			,	(arc-min)					
0	DTR60	60 mm	460	460	1 Stage	5, 6, 9, 10, 12, 15, 20, 25, 30,	000/	8					
	DTR90	90 mm	1480	1480	i Stage	40, 50	93%	ŏ					
	DTR115	115 mm	2513	2513	2 Channa	60, 75, 90, 100, 120, 125,		0					
	DTR142	142 mm	7380	7380	2 Stage	150, 200, 250, 300, 400, 500	88%	9					

Slimline	Slimline right angle gearbox, flange mount design with anodized aluminum housing employing RediMount [™] system. Face gear technology for compact right angle construction. Dual shaft output version also available.										
	Right Angle	Frame Size Metric		T Peak (l 2 Stage		All Sizes	Gear Ratios Available	Efficiency	Backlash (arc-min)		
	DTR60S	60 mm	400	407	407	1 Stage	1, 2, 3, 4, 5P	98%	8		
	DTR90S	90 mm	1237	1237	1237	2 Stage	5T, 6, 9, 10, 12, 15, 20, 25, 30, 40, 50	93%	9		
	DTR115S	115 mm	2265	2505	2505		60, 75, 90, 100, 120, 125,	000/			
	DTR142S	142 mm	5500	6917	7450	3 Stage	150, 200, 250, 300, 400, 500	88%	9		

Hollow Shaft		Hollow shaft right angle gearbox, flange mount design with anodized aluminum housing employing RediMount™ system. Large diameter/ bolt circle for direct mechanical interface. Face gear technology for compact right angle construction.												
	Right Angle	Frame Size Metric			Peak (Ib-in) Stage 3 Stage All Sizes Gear Ratios Availabl		Gear Ratios Available	Efficiency	Backlash (arc-min)					
0	DTR90H	90 mm	1237	1237	1237	1 Stage	1, 2, 3, 4, 5P	98%	8					
	DTR115H	115 mm	2505	2505	2505	2 Stage	5T, 6, 9, 10, 12, 15, 20, 25, 30, 40, 50	93%	9					
	DTR142H	142 mm	7660	7660	7660	3 Stage	60, 75, 90, 100, 120, 125, 150, 200, 250, 300, 400, 500	88%	9					

Note 1: Torque Capacity is maximum of frame size stage design, not all ratios have the same rated torque capacity. Note 2: Torque Capacity is the maximum allowable momentary torque for emergency stopping or heavy shock loading.

Note 3: Ratio 5P is designed using the compact PowerTrue face gearing technology.

.MOR

Note 4: Ratio 5T is designed using a True planetary gear stage for increased torque capacity.

Note 5: For complete gearbox model nomenclature, refer to page 196.

Toll Free Phone: 877-378-0240 49

	10		
1		L	
4	1	0	I,
1	1		L
	T		
.88	11		

ValueTRUE™

							377-378-02
Helical True	planetary gearbox, f	lange mount d	lesign with st	ainless stee	I housing employing RediMou		~ ~
Inline	Frame Size	Max T Pe	ak (Ib-in)	All Sizes	Gear Ratios Available	Efficiency	Backlash
mine	Metric	1 Stage	2 Stage	All 01263		LINCIENCY	(arc-min)
VT006	61 mm	800	910				
VT075	75 mm	1423	1632	1 Ctore	4 5 7 10	95%	4
VT090	90 mm	1423	1632	1 Stage	4, 5, 7, 10	90%	4
VT010	101 mm	4093	4794				
VT115	115 mm	4093	4794				
VT014	141 mm	9430	11,250	2 Stage	10 20 25 20 25 40 50 70 100	90%	5
VT018	182 mm	21,609	26,287	z stage	16, 20, 25, 28, 35, 40, 50, 70, 100	90%	D
VT022	220 mm	36,986	44,000				

ValueTRUE™

Helical Irue	planetary gearbox, f	lange mount design with st	ainless stee	el housing employing RediMol	nt‴ system.	
Right Angle	Frame Size Metric	Max T Peak (Ib-in) 1 Stage	- All Sizes*	Gear Ratios Available	Efficiency	Backlash (arc-min)
VTR006	61 mm	876				
VTR075	75 mm	1570				
VTR090	90 mm	1570				
VTR010	101 mm	4580	1 Stage	4, 5, 8, 10, 12, 14, 15, 16, 20, 25, 28, 30, 35, 40, 50	93%	5
VTR115	115 mm	4580		20, 30, 33, 40, 30		
VTR014	141 mm	10,673				
VTR018	182 mm	24,780				
* 4 and 5:1 ratio	s not available with VTRO	06-VTR090.				

UltraTRUE™

	m
	-
2	
1	-

- unu 0.1 1utio		00 111030.					
	planetary inline gea el housing, gear-pa				d aluminum housing employir	ng RediMount	[™] system.
Inline	Frame Size	Max T Pe	ak (Ib-in)	All Sizes	Gear Ratios Available	Efficiency	Backlash
Metric 1 Stage		1 Stage	2 Stage	All Sizes	Geal Natios Available	LINCIENCY	(arc-min)
UT006	61 mm	890	1010				
UT075	75 mm	1580	1813	1 Stage	4. 5. 7. 10	95%	4
UT090	90 mm	1580	1813	i staye	4, 5, 7, 10	90 %	4
UT010	101 mm	4548	5327				
UT115	115 mm	4548	5327				
UT014	141 mm	10,480	12,500	2 Stage	16 20 2E 20 2E 40 E0 70 100	000/	5
UT018	182 mm	24,010	29,200	z staye	16, 20, 25, 28, 35, 40, 50, 70, 100	90%	5
UT022	220 mm	41,096	48,890				

UltraTRUE™		planetary right angle nless steel housing,				odized aluminum housing em ousing.	ploying RediN	lount™
	Right	Frame Size	Max T Pe	ak (Ib-in)	All Sizes	Gear Ratios Available	Efficiency	Backlash
	Angle	Metric	1 Stage	2 Stage	All Sizes		LINCIENCY	(arc-min)
	UTR006	61 mm	456	975				
	UTR075	75 mm	1410	1740	1 Stage	1, 2, 3, 4, 5	98%	4
	UTR090	90 mm	1410	1740				
	UTR010	101 mm	2856	5085				
	UTR115	115 mm	2856	5085	2 Stage	8, 10, 12, 14, 15, 16,	93%	5
	UTR014	141 mm	6270	11,860	Z Stage	20, 25, 28, 30, 35, 40, 50	93%	D
	UTR018	182 mm	16,914	27,530				

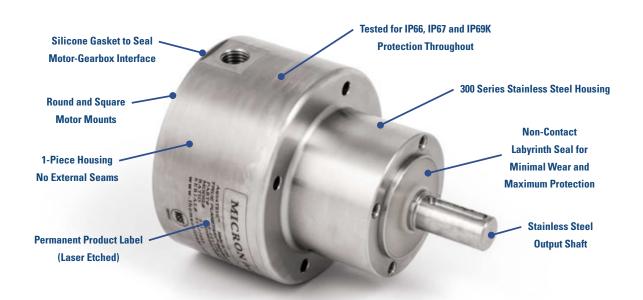
Note 1: Torque capacity is maximum of frame size stage design, not all ratios have the same rated torque capacity. Note 2: Torque capacity is the maximum allowable momentary torque for emergency stopping or heavy shock loading. Note 3: Ratio 5P is designed using the compact PowerTrue face gearing technology. Note 4: Ratio 5T is designed using a True planetary gear stage for increased torque capacity. Note 5: For complete gearbox model nomenclature, refer to page 196.

SERV GO.com AquaTRUE[™] Hygienic IP69K Gearbox 77sales@servo2go.com www.servo2qo.com

The perfect gearhead to mate to the AKMH Series...

Micron's new AquaTRUE gearhead combines the high performance and torque capacity of Micron's True Planetary gearheads with features specifically designed to meet the strict requirements of applications such as food and beverage handling, packaging and dispensing. The AquaTRUE's IP66/IP67 and IP69K protection is able to handle caustic cleaning chemicals as well as high pressure washdown. Until now, manufacturers have been unable to use gearheads in many applications involving harsh environments because there was not a product available that met those needs. The AquaTRUE is engineered to be placed anywhere in the application's design, regardless of environmental factors. This eliminates the cost of additional components such as enclosers, shielding or mechanical transmissions. The gearhead's 304 stainless steel housing eliminates the concern for rust or any type of corrosion. The AquaTRUE has a laser etched permanent product label and a smooth, round external housing that is designed without any external seams or corners for bacteria to collect. This makes the AquaTRUE very easy to clean and a perfect fit in any washdown environment.

- Frame Sizes: 60 mm, 80 mm, 120 mm, 160 mm
- Precision: 13 arc-min max
- Torque Capacity: up to 876 Nm
- Ratio Availability: 3:1 to 10:1 (single stage)


Features and Benefits

- Round Housing
- No External Seams
- 300 Series Stainless Steel
- IP66/IP67 and IP69K Protection on both the input and output
- NSF/ANSI 169 Certification

No corners or areas for bacteria to collect

Sold & Serviced By

- No areas of ingress
- Corrosion Resistance
- · Can handle high pressure washdown

)I.I.MOR(128

SERVOZGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Sold & Serviced By

The AKMH can be ordered with the AquaTRUE gearhead mounted at our factory for a perfectly integrated hygienic gearmotor solution. If you need more power than the AKMH can provide, the addition of an AquaTRUE gearhead will add the power you need while maintaining a hygienic solution. The AKMH/AquaTRUE combination also maintains the IP69K rating. The hygienic stainless steel and food-grade materials make it a perfect fit for all your food and beverage applications.

Example P/N: "AKMH31C-CNSNCA01 + AQT060-003-S-MMR-725"

Linear Actuation & Positioning

Kollmorgen offers a comprehensive range of linear actuator products including electric cylinders, rodless actuators, and precision tables to meet a wide range of application requirements. For actuator products not included in this catalog go to www.kollmorgen.com for information about other Kollmorgen linear positioning products.

Model	Product Family	General Information
Electric Cylinders ¹	EC1 EC2 EC3 EC4 EC5 N2	 Highest Force (Thrust) Clean, Hydraulic Replacement Compact Cross Section Extends into Work Area
Rodless Actuators (screw drive)	R2A R3 R4	 High Force (Thrust) High Repeatability Long Travel Load Carrying Capability
Rodless Actuators (belt drive)	R2A R3 R4	 Very High Speed Quiet Operation Long Travel Load Carrying Capability
Precision Tables	DS4 DS6	High Accuracy & RepeatabilityLow Maintenance, Long LifeHigh Moment Loads

Electric Cylinders (EC)

Primarily designed to apply a force through an extendable rod, electric cylinders are a clean and efficient replacement for hydraulic actuators and pneumatic cylinders, and an alternative to many types of linear transmissions. A wide variety of mounting and coupling alternatives significantly increases their problem solving potential.

Rodless Actuators

Long travel, quiet operation, and high moment loading differentiates rodless actuators from other mechanical transmissions.

Precision Tables

Positioning tables are used when accurate and repeatable motion is critical (1 part per 10,000 or better). These tables offer a wide variety of single and multi-axis configurations, open and closed frame tables, ball or lead screw driven, and overhung and constant support for Kollmorgen geometry configurations.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Model	Max Speed ³	Max Thrust ^{2, 3}	Repeatability ^{4, 5}	Max Payload	Max Travel
	In/s (mm/s)	Lb (N)	In (mm)	Lb (kg)	In (mm)
Electric Cylinders ¹	52.5 (1330)	5620 (25,000)	to 0.0005 (0.013)	Note 1	59.1 (1500)
Rodless Actuators	39	700	to 0.0005	300	108
(screw drive)	(1000)	(3110)	(0.013)	(136)	(2743)
Rodless Actuators	118	300	to 0.004	300	108
(belt drive)	(3000)	(1330)	(0.10)	(136)	(2743)
Precision Tables	32.5 (825)	440 (1960)	3 microns (commer- cial grade) / 1.3 microns (precision grade)	794 (360)	79 (2000)

Notes:

1. Electric cylinders are designed primarily for thrust application where loads are supported externally.

Thrust ratings are based on mechanical limits rather than motor limits unless indicated otherwise. 2.

3. Max speed and max thrust ratings are not necessarily available simultaneously

Repeatability is dependent on feedback resolution, load, friction, and drive gain settings.

4. 5. Repeatability is unidirectional unless otherwise specified

Electric Cylinders N2 / EC Series II Free Phone: 877-378-0240 sales@servo2go.com

Electric cylinders are thrust-producing devices that are best suited for applications requiring high axial force with the moment and side loads already properly supported.

Kollmorgen has combined the broad product offering of the N2 and EC Series electric cylinders with the industry-leading AKM servo motors and AKD servo drives. The N2 and EC Series of electric cylinders offer a wide range of available thrusts in standard units from 600 lb (N2) to 5620 lb (EC5) across 5 electric cylinder frame sizes.

- Speeds up to 52 in/sec are available and integrated geared options provide the ability to increase thrust capacity for lower speed applications, leveraging the speed capacity of servo systems.
- Multiple servo motor options are available for the product line ranging from NEMA 23 size to NEMA 42 size servos. The combination with the AKM
 servo motor enables the use of various feedback devices including sine-encoder and the low-cost but high-performance Smart Feedback Device (SFD)
 when used with the AKD servo drive.
- Windings and voltage operation are not differentiated in MOTIONEERING®. All systems are offered at all voltages (240, 400, 480).
- The AKM servo motor comes mounted on the electric cylinder as specified by the electric cylinder part number. This eliminates time to match the motor to the electric cylinder and eliminates potential mechanical incompatibility.

EC Servo Linear Actuators

- Designed for performance
- Highest quality precision rolled ballscrews and lead screws for quiet, long-life operation
- Brushless Servo motor and Stepper motor options available
- Sealed for IP54 protection. IP65 option available.
- Thrust up to 25000 N [5620 lb]
- Speed up to 1.3 m/s [52.5 in/s]
- Metric design (ISO 6431)
- Available in 5 power ranges EC1, 2, 3, 4 & 5

Time-Proven Design

N2 Servo Linear Actuators

- Improved Durability Over Previous Designs
- Thrust up to 2670 N [600 lb]

• Smallest Package Size

- Speed up to 0.76 m/s [30 in/sec]
- English dimensions (to NFPA standards)
- Brushless Servo with encoder, resolver or SFD feedback

Sold & Serviced By

www.servo2qo.com

• Stepper motors also available

Typical Construction (EC2 cut-away shown)

Wiper seal on polished stainless steel Brushless servo motors (not shown) output tube keeps contaminants out and Metric (ISO 6431) and English rod with quick disconnect cabling and a lubricants in. ends available variety of feedback options. Ground stainless steel thrust tube for long wear and corrosion resistance. Front sleeve bearing supports side loads and minimizes runout. Recirculating ballscrews and lead screws provide smooth, high thrust drive. Lead Timing belt and geared drives screws hold load without power. provide long life with a wide Housing is hard-coat anodized variety of drive ratios. and Teflon® coated for long life,

> Angular contact bearings ensure long life with minimal backlash.

Housing is hard-coat anodized and Teflon[®] coated for long life, permanent lubrication, resistant to corrosion, and protection of all internal components.

Kollmorgen offers electric cylinder drive mechanisms designed around either lead screws or ballscrews. Ballscrews,

being the more efficient of the two, utilize ballnuts riding on recirculating ball bearings resulting in higher speeds, loads and cycle rates. However, the more efficient design of ballscrew technology lends it to being backdriven when power is removed if precautions are not taken (e.g., electric brakes or counter loading).

Lead screws are capable of holding the load in position when power is removed, but are less efficient in operation.

Kollmorgen's guide system prevents rotation of the ball / lead nut, thus eliminating any torque loading to machine linkage.

Electric Cylinders Are Preferred When:

- · Positioning an externally guided and supported load.
- Moving a load that pivots.
- There is a high concentration of airborne contaminants (rodless actuators are inherently less well protected).
- Replacing a hydraulic or pneumatic cylinder with an electro-mechanical solution.

Specification Overview

Series	N	2	EC1	EC2		EC3		EC4	EC5
Std. Maximum Stroke Length [in (mm)]	* 22.5	(571.5)	7.87 (200)	29.53 (750)		39.37 (1000)		59.06 (1500)	59.06 (1500)
Type of Screw	Lead	Ball	Ball	Lead Ball		Lead	Ball	Ball	Ball
Lead	0.2 in, 0.5 in	0.2 in, 0.5 in	3 mm	4 mm	4 mm 16, 5 mm		16, 10, 5 mm	25, 10 mm	32, 10 mm
Nom. Lead Screw Diameter	0.625 in	0.625 in	10 mm	16 mm	16 mm	20 mm	20 mm	25 mm	32 mm
Backlash [in (mm)]	0.016 (0.40)	0.015 (0.38)	0.015 (0.38)	0.016 (0.40)	0.010 (0.25)	0.016 (0.40)	0.010 (0.25)	0.12 (0.30)	0.12 (0.30)
Dimension Std.	English N	NFPA Std.			Ν	Aetric ISO6431	Std.		
Bore size			30 mm	50 r	nm	63	nm	80 mm	100 mm
Brushless Servo Motor	AKM23		AKM1x	AKM23		AKM23, AKI	M42, AKM52	AKM42, AKM52	AKM42, AKM52
Stepper Motor	Tź	22	CTP12 T22, T31			T22,	T31	T31, T32, T41	T31,T32,T41
Max. Thrust [lb (N)]	600 (2	2670)	150 (667)	810 (3600)	1620	(7200)	2700 (12,000)	5620 (25,000)
Max. Velocity [in/sec (m/s)]	12 (0.3)	30 (0.76)	13 (0.33)	9.2 (0.23)	50 (1.27)	8.0 (0.20)	50 (1.28)	52.5 (1.33)	52.5 (1.33)
Max. Rated Duty Cycle (load, speed dependent) [%]	50	100	100	50	100	50	100	100	100
Limit Switches									
Std. Operating Temperature Range [C (F)]	0 to 60 (3	32 to 140)			÷	30 to 70 (-22 to	158)		
Moisture/ Contaminants	Humid, but Not Direct Contact IP54 Std. IP65 Opt.								

*Note: Requires dual rod-end bearing option for length over 12"

SERVO GO.com Electric Cylinders N2 / EC Series II Free Phone: 877-378-0240 Sales @servo200 com sales@servo2go.com www.servo2go.com

Sold & Serviced By:

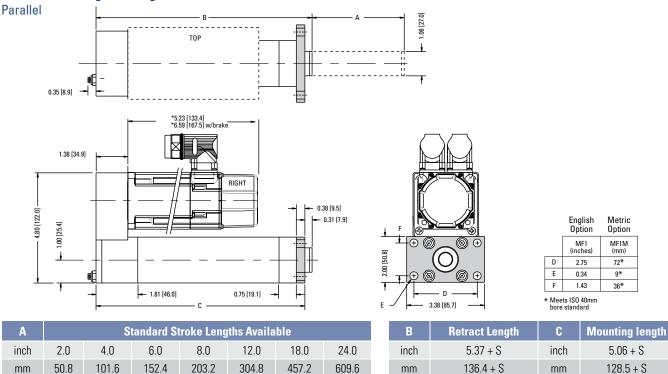
Electric Cylinder EC Series General Outline Drawing

MF1 Fron Parallel	-			G H			Right		 		-		
	ge dimensio			ł	🖛 к —	>	N	Ν	1 _		E	\leftarrow A \rightarrow	
	nce with ISC						0				-Stroke-	≼ — В —	
Type EC1	Bore 30	Size					0		->	<u> </u> R ≺			
EC2		mm				Z P	V	Q					
EC3	63					140				1 📖 -	¥		
EC4	80 (mm									S		
EC5	100	mm					Bottom			╎┝┷┛╌	·····		
	A mm (in)	B mm (in)	C mm (in)	D mm (in)	E mm (in)	F mm (: (in) mi	G n (in)	F mm		l mm (in)	J mm (in)	K mm (in)
EC1	60.0 (2.36)	74.0 (2.91)	28.0 (1.10)	40.0 (1.57)	6.60 (0.26)	48.0 (1	1.89) 82.0	6 (3.25)	19.0 (0.75)	41.8 (1.65)	31.3 (1.23)	-
EC2	90.0 (3.54)	114.3 (4.50)	45.0 (1.77)	63.5 (2.50)	9.0 (0.35)	79.8 (3	3.14) 144	.0 (5.7)	28.4 (1.12)	74.7 (2.94)	41.7 (1.64)	88.6 (3.49)
EC3	100.0 (3.94)	127.0 (5.00)	50.0 (1.97)	69.1 (2.72)	9.0 (0.35)	95.5 (3	3.76) 169	.7 (6.7)	34.8 (1.37)	*87.6/89.7 (*3.45/3.5	(1.94) 49.3	94.2 (3.71)
EC4 (-MF1E)	127.0 (5.00)	152.4 (6.00)	69.9 (2.75)	96.3 (3.79)	13.5 (0.53)	127.0 (5.00) 221	.0 (8.7)	46.1 (1.81)	111.1 (4.37)	71.9 (2.83)	150.9 (5.94)
EC5	150.0 (5.91)	186.9 (7.36)	75.0 (2.95)	114.3 (4.50) 14.2 (0.56)	127.0 (5.00) 221	.0 (8.7)	46.1 (1.81)	111.1 (4.37)	71.9 (2.83)	150.9 (5.94)
	L	M	N Cyl Le		0 Retract leng	lth	P Breathe			0	R	S	
EC1	mm (in)	mm (in)	mm (mm (in)	0)	type	mm	(in)	mm (i		mm (in)	
EC1 EC2	10.2 (0.40)	38.1 (1.50)	113.8 + S (4		124.0 + S (4.88 +		- 1/0 NDT	-	0.44)	-	10.0 (0.39)	22.2 (0.88)	
EC2 EC3	25.0 (0.98)	56.9 (2.24)	218.5 + S (243.4 + S (9.58 +		1/8 NPT	11.1 (34.8 (1.		28.0 (1.10)	
EC3 EC4 (-MF1E)	25.0 (0.98)	69.6 (2.74)	246.3 + S (271.1 + S (10.67 +		1/8 NPT	11.1 (41.1 (1.		35.0 (1.38)	
EC4 (-IVIFTE) EC5	41.4 (1.63)	92.2 (3.63)	365.8 + S (406.9 + S (16.02 +		1/4 NPT	14.0 (52.8 (2.		50.0 (1.97)	
FLD	35.0 (1.38)	92.2 (3.63)	365.8 + S (144 + S1	406.9 + S (16.02 +	- 51	1/4 NPT	14.0 (1 11	52.8 (2.	.08) 19.1 (0.75)	50.0 (1.97)	

240 Vac Performance Data

Sys	#	Electric Cylinder - AKM Servo motor	AKD Servo Drive	Cont. Thrus (Ib @ i		Peak Thrus (lb @ i		Max Thrust (lb)	Max System Speed (in/sec)	**Max Stroke for Max Speed (mm)
	1	EC1-AKM11B-	AKD-X00306	50	13.0	75	13.0	75	13.0	200
	2	EC1-AKM11B-	AKD-X00306	100	6.0	125	6.0	125	6.0	200
EC1	3	EC1-AKM11B-	AKD-X00306	150	3.0	150	3.0	150	3.0	200
	4	EC1-AKM13C-■■-10-03B*	AKD-X00306	75	11.5	75	13.0	75	13.0	200
	5	EC1-AKM13C-	AKD-X00306	125	5.9	125	6.0	126	6.0	200

Note 1: Refer to the Kollmorgen Electric Cylinder Catalog catalog, or contact customer support for matching cables.


Note 2: For complete AKD, EC, and N2 Series model nomenclature, refer to pages 178, 197 and 198, respectively. * In-line type with 1-to-1 gear ratio (-10L) provide 10% additional thrust (not to exceed the max thrust).
** Based on critical speed of screw specification.

Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Electric Cylinder N2 Series General Outline Drawing

S = stroke

MF1 Front Rectangular Flange Mount

* AKM23 with motor mounted connectors.

240 Vac Performance Data

Sys	#	Electric Cylinder - AKM Servo motor	AKD Servo Drive	Cont. Thrus (lb @ i		Peak Thrus (Ib @ i		Max Thrust (lb)	Max System Speed (in/sec)	**Max Stroke for Max Speed (mm)
	1	N2-AKM23D-	AKD-X00306	190	12.0	600	11.5	600	12.0	18.0
	2	N2-AKM23D-	AKD-X00306	287	8.0	600	8.0	600	8.0	18.0
	3	N2-AKM23D-	AKD-X00306	382	6.0	600	6.0	600	6.0	18.0
	4	N2-AKM23D-	AKD-X00306	370	4.8	600	4.8	600	4.8	18.0
	5	N2-AKM23D-	AKD-X00306	600	1.0	600	1.0	600	1.0	18.0
	6	N2-AKM23D-	AKD-X00306	75	30.0	275	24.5	280	30.0	18.0
	7	N2-AKM23D-	AKD-X00306	115	20.0	412	16.4	421	20.0	18.0
N2	8	N2-AKM23D-	AKD-X00306	152	15.0	545	12.3	545	15.0	18.0
	9	N2-AKM23D-	AKD-X00306	146	12.0	534	9.8	545	12.0	18.0
	10	N2-AKM23D-	AKD-X00306	600	2.5	600	2.5	600	2.5	18.0
	11	N2-AKM23D-	AKD-X00306	86	12.0	305	9.8	312	12.0	18.0
	12	N2-AKM23D-	AKD-X00306	128	8.0	458	6.5	467	8.0	18.0
	13	N2-AKM23D-	AKD-X00306	169	6.0	600	4.9	600	6.0	18.0
	14	N2-AKM23D-	AKD-X00306	165	4.8	593	3.9	600	4.8	18.0
	15	N2-AKM23D-	AKD-X00306	600	1.0	600	1.0	600	1.0	18.0

Note 1: Refer to the Kollmorgen Electric Cylinder Catalog, or contact customer support for matching cables. Note 2: For complete AKD, EC, and N2 Series model nomenclature, refer to pages 178, 197 and 198, respectively. * In-line type with 1-to-1 gear ratio (-10L) provide 10% additional thrust (not to exceed the max thrust).

** Based on critical speed of screw specification.

SERVO GO.com Electric Cylinders N2 / EC Series II Free Phone: 877-378-0240 Sales@servo200.com sales@servo2go.com www.servo2go.com

Sold & Serviced By:

Low Speed Servo Performance

		Cont	Thrust	Poak	Thrust	Max	
System	AKD Cont		peed		peed	Thrust	
System	Amps	lb	in/s	lb	in/s	lb	Continuous Thrust (Ib)
EC1-AKM11B-xxx-10-03M	3 A	50	13.0	75	13.0	75	50
EC1-AKM13C-xxx-10-03M	3 A	75	13.0	75	13.0	75	75
N2-AKM23D-xxx-10-5A	3 A	85	12.0	260	12.0	312	85
EC1-AKM11B-xxx-20-03M	3 A	100	6.0	125	6.0	125	= 85 = 100
EC2-AKM23D-xxx-10-04A	3 A	100	9.2	337	9.2	396	1 09
EC1-AKM13C-xxx-20-03M	3 A	125	6.0	125	6.0	125	■ 125
N2-AKM23D-xxx-15-5A	3 A	123	8.0	392	8.0	467	1 23
EC1-AKM11B-xxx-40-03M	3 A	150	3.0	150	3.0	150	1 50
N2-AKM23D-xxx-20-2B	3 A	154	15.0	468	15.0	561	1 154
EC2-AKM23D-xxx-15-04A	3 A	160	6.2	499	6.2	582	1 60
N2-AKM23D-xxx-20-5A	3 A	170	6.0	517	6.0	600	1 70
N2-AKM23D-xxx-10-5B	3 A	192	12.0	585	12.0	600	1 92
EC3-AKM23D-xxx-10-05B	3 A	198	10.2	708	9.4	712	198
EC2-AKM23D-xxx-20-04A	3 A	217	4.6	455	4.6	790	217
EC3-AKM23D-xxx-50-16B	3 A	253	6.2	885	6.2	909	253
EC2-AKM23D-xxx-15-05B	3 A	270	13.2	809	8.0	809	270
EC3-AKM23D-xxx-15-05B	3 A	283	10.2	1060	6.3	1070	283
EC5-AKM42G-xxx-10-10B	6 A	284	15.2	1503	15.2	1005	284
N2-AKM23D-xxx-15-5B	3 A	288	8.0	600	8.0	600	288
EC3-AKM23D-xxx-20-05B	3 A	365	9.5	1372	5.0	1469	365
EC2-AKM23D-xxx-20-05B	3 A	366	9.7	770	8.0	809	366
N2-AKM23D-xxx-20-5B	3 A	384	6.0	600	6.0	600	384
EC5-AKM42G-xxx-15-10B	6 A	396	15.2	1503	9.4	1508	396
EC5-AKM42G-xxx-50-32B	6 A	451	6.6	1530	6.6	1530	451
EC4-AKM42G-xxx-20-10B	6 A	499	14.0	2005	7.1	2005	499
EC5-AKM42G-xxx-20-10B	6 A	510	13.2	2005	7.1	2010	510
EC2-AKM23D-xxx-50-04A	3 A	522	1.8	809	1.8	809	522
EC3-AKM23D-xxx-70-10B	3 A	563	2.81	1620	2.81	1620	563
EC4-AKM42G-xxx-50-25B	6 A	577	5.1	1959	5.1	1959	577
EC2-AKM23D-xxx-100-16B	3 A	584	3.67	809	3.67	809	584
EC5-AKM52H-xxx-10-10B	6 A	643	14.5	1137	13.0	1974	643
EC4-AKM52H-xxx-10-10B	6 A	666	14.0	1137	13.0	1974	666
EC3-AKM42G-xxx-50-16B	6 A	695	6.25	1620	6.25	1620	695
EC2-AKM23D-xxx-100-04A	3 A	809	0.91	809	0.91	809	809
EC2-AKM23D-xxx-50-05B	3 A	809	2.3	809	2.3	809	809
EC3-AKM23D-xxx-50-05B	3 A	812	1.9	1619	1.9	1619	812
EC5-AKM42G-xxx-100-32B	6 A	884	3.3	2997	3.3	3000	884
EC5-AKM52L-xxx-15-10B	12 A	884	15.0	1891	15.0	2695	884
EC4-AKM52H-xxx-15-10B	6 A	994	9.5	2067	8.0	2698	994
EC5-AKM52H-xxx-15-10B	6 A	994	9.5	2067	8.0	2962	994
EC4-AKM52L-xxx-20-10B	12 A	1003	14.4	1907	13.5	2698	1003
EC5-AKM52L-xxx-20-10B	12 A	1027	14.0	1966	13.0	3501	1027
EC5-AKM52H-xxx-50-32B	6 A	1067	6.5	1851	6.5	1851	
EC4-AKM42G-xxx-100-25B	6 A	1131	2.6	2698	2.6	2698	1131
EC4-AKM52H-xxx-20-10B	6 A	1321	7.2	2187	6.6	2698	1321
EC5-AKM52H-xxx-20-10B EC4-AKM52H-xxx-50-25B	6 A	1321	7.2	2193	6.5 5 1	3501	1321
EC4-AKM52L-xxx-50-25B	6 A 12 A	1365 1392	5.1 5.1	2365 2369	5.1 5.1	2365 2369	1303
EC4-AKM42G-xxx-50-25B	6 A	1446	2.0	2698	5.1 2.0	2698	1332
EC5-AKM42G-xxx-50-10B	6 A	1446	2.0	4898	2.0	4898	1446
EC5-AKM52H-xxx-100-32B	6 A	2091	3.3	3624	3.3	3624	2091
EC4-AKM52H-xxx-100-32B	6 A	2674	3.3 2.6	2698	2.6	2698	2674
EC4-AKM42G-xxx-100-25B	6 A	2698	1.04	2698	1.04	2698	2698
EC5-AKM42G-xxx-100-10B	6 A	2828	1.04	5620	1.04	5620	2828
EC5-AKM52H-xxx-50-10B	6 A	3410	2.05	5620	2.05	5620	3410
EC5-AKM52H-xxx-100-10B	6 A	5620		5620	1.04	5620	5620

Ratings are based on the AKM servo motor and the matching AKD Drive. Specifications are based on 230 Vac, 3 phase voltage supply.

3000 Plotted value is continuous thrust (lb), refer to chart for the associated rated speed value.

4000

6000

5000

1000

2000

0

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

High Speed Servo Performance

Queter	AKD Cont	Cont 1 @ Sp	Thrust	Peak [°] @ S	Thrust	Max Thrust	
System	Amps	ي الله ال	in/s	lb	in/s	lb	Continuous Thrust (Ib)
EC2-AKM23D-xxx-10-16B	3 A	59	50.0	221	30.0	222	59
EC3-AKM23D-xxx-10-16B	3 A	59	50.0	221	30.0	222	59
N2-AKM23D-xxx-10-2B	3 A	77	30.0	233	30.0	280	77
EC2-AKM23D-xxx-15-16B	3 A	84	42.0	293	23.0	327	84
EC3-AKM23D-xxx-15-16B	3 A	86	41.0	332	20.0	334	86
EC5-AKM42G-xxx-10-32B	6 A	87	52.5	313	45.0	313	87
EC4-AKM42G-xxx-10-25B	6 A	108	52.0	400	35.0	402	108
EC2-AKM23D-xxx-20-16B	3 A	115	31.0	223	26.0	445	115
N2-AKM23D-xxx-15-2B	3 A	115	20.0	350	20.0	420	115
EC3-AKM23D-xxx-20-16B	3 A	118	30.0	457	12.5	459	118
EC5-AKM42G-xxx-15-32B	6 A	122	52.5	470	30.0	470	122
EC3-AKM23D-xxx-15-10B	3 A	141	21.0	520	13.0	534	141
EC4-AKM42G-xxx-15-25B	6 A	149	47.0	595	24.0	603	149
EC3-AKM42G-xxx-10-16B	6 A	154	45.2	598	24.0	628	154
EC5-AKM42G-xxx-20-32B	6 A	156	45.0	626	22.5	628	156
EC2-AKM23D-xxx-10-05B	3 A	188	16.0	385	16.0	712	188
EC3-AKM23D-xxx-20-10B	3 A	190	18.0	686	10.0	735	190
EC4-AKM42G-xxx-20-25B	6 A	200	35.0	802	17.5	804	200
EC5-AKM52H-xxx-10-32B	6 A	207	46.0	351	42.0	617	207
EC3-AKM42G-xxx-15-16B	6 A	234	30.0	495	25.0	888	234
EC4-AKM52L-xxx-10-25B	12 A	244	52.5	422	52.5	719	244
EC4-AKM52H-xxx-10-25B	6 A	264	36.0	441	33.0	790	264
EC5-AKM52L-xxx-15-32B	12 A	265	52.0	584	52.0	842	265
EC4-AKM52L-xxx-15-25B	12 A	267	48.5	699	43.0	1078	267
EC3-AKM42G-xxx-10-10B	6 A	269	20.9	958	15.0	1010	269
EC4-AKM42G-xxx-10-10B	6 A	269	21.0	1002	14.2	1005	269
EC5-AKM52H-xxx-15-32B	6 A	312	30.0	626	26.0	925	312
EC5-AKM52L-xxx-20-32B	12 A	314	46.0	614	42.0	1094	314
EC3-AKM42G-xxx-15-10B	6 A	358	18.9	820	15.0	1420	358
EC4-AKM42G-xxx-15-10B	6 A	383	17.5	1501	9.5	1508	383
EC4-AKM52H-xxx-15-25B	6 A	396	24.0	827	20.0	1185	396
EC4-AKM52L-xxx-20-25B	12 A	406	35.5	785	33.0	1400	406
EC5-AKM52H-xxx-20-32B	6 A	413	23.0	684	21.0	1094	413
EC4-AKM52H-xxx-20-25B	6 A	529	18.0	879	16.0	1400	529
EC4-AKM52L-xxx-10-10B	12 A	610	21.0	1055	21.0	1797	610
EC4-AKM52L-xxx-15-10B	12 A	772	18.6	1825	17.0	2695	772
Ratings are based on the AKM servor Specifications are based on 230 Vac.			0	Drive.			0 100 200 300 400 500 600 700 800 90

Specifications are based on 230 Vac, 3 phase voltage supply.

Plotted value is continuous thrust (lb), refer to chart for the associated rated speed value.

Rodless Actuators R-Series

The name rodless actuator comes from this technology's close relationship to electric cylinders, sharing many of the same components. Rather than having a rod, rodless actuators incorporate a carriage supported by linear bearings. Where electric cylinders are designed to extend in and out of the work area delivering force or thrust, rodless actuators are designed to be load carrying mechanisms (up to 300 lb) incorporating ballscrews, leadscrews, or belt drive transmissions with optional integrated gearboxes.

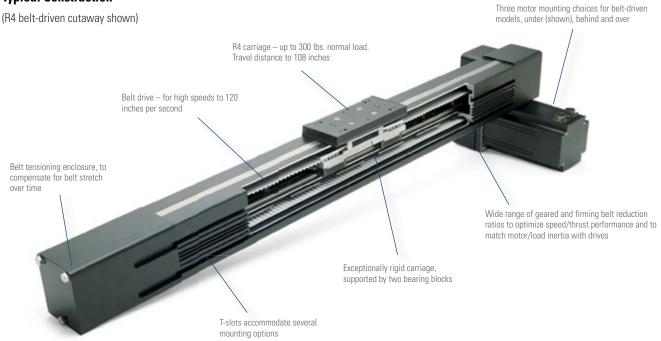
Rodless actuators also share many of the fundamental design characteristics of precision positioning tables. Precision tables are designed to carry larger payloads and deliver superior repeatability and accuracy. Rodless actuators offer longer travels and higher speeds at a lower price. Screw driven rodless actuators are also thrust-producing devices that are best for axial force applications where the space is limited and a payload must also be supported or carried. As individual components, rodless actuators are not well suited for moment loading; however, they can be effectively combined into complete Cartesian systems for some multi-axis applications. For higher speed, lower thrust applications, rodless actuators can be repeatability-driven with a timing belt instead of a screw.

Kollmorgen has combined the broad product offering of the R-Series rodless actuators with the industry-leading AKM servo motors and AKD servo drives. The R-Series of rodless actuators offer a wide range of available thrusts in standard units with three basic frame sizes (R2A, R3, R4).

Rodless actuators offer longer travels (up to 108") and higher speeds (belt drives up to a maximum speed of 120 in/sec). Integrated geared options provide the ability to increase thrust capacity for lower speed applications leveraging the speed capacity of servo systems.

Multiple servo motor options are available for the product line, ranging from NEMA 23 size to NEMA 42 size servos. The combination with the AKM servo motor enables the use of various feedback devices including sine-encoder and the low-cost but high-performance Smart Feedback Device (SFD) when used with the AKD servo drive.

The AKM servo motor comes mounted on the rodless actuators as specified by the rodless actuator part number. This eliminates time to match the motor to the electric cylinder and eliminates potential mechanical incompatibility.

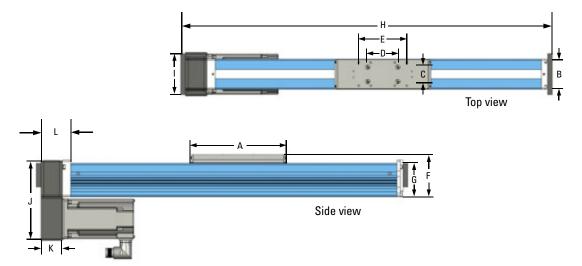

The operation of rodless actuators is similar to the electric cylinders described earlier. However, instead of an extending rod, a rodless unit features a moving carriage supported by linear bearings within an extruded aluminum chassis. This gives the rodless actuator the ability to guide and support a load, as well as position it.

Kollmorgen rodless actuators are designed for outstanding overall performance, value, flexibility and reliability in industrial applications.

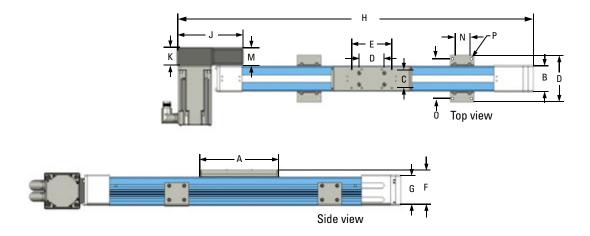
Rodless Actuators Are Preferred When:

- · A low cost system is needed to both position and guide a load
- It is desired to eliminate external guides and ways
- The shortest overall work envelope (extended length equals retracted length) is required
- · Multiple units will be combined into Cartesian systems
- There is a need for a compact cross-sectional linear positioning system

Typical Construction



Rodless Actuators R-Series


R3 Screw Drive

R3 screw drive with AKM42, parallel below motor orientation and flange mounting shown.

R3 Belt Drive

R3 belt drive with AKM42, behind left motor orientation and angle bracket feet shown.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Carriage Mounting Features

	Metric Version (mm)	English Version (inch)
RA2	8 x M5 x 0.8 x 8.0 deep	8 x 10-32 UNF x 0.31 deep
R3	8 x M5 x 0.8 x 9.6 deep	8 x 10-32 UNF x 0.38 deep
R4	4 x M6 x 1 x 12 deep	4 x 1/4-20 x 0.50 deep

Dimension Data

	А	В	C	D	E
	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
RA2	210 (8.25)	50.8 (2.00)	31.8 (1.25)	50.8 (2.00)	101.6 (4.00)
R3	197 (7.76)	63.5 (2.50)	47.6 (1.88)	50.8 (2.00)	101.6 (4.00)
R4	197 (7.76)	92.2 (3.63)	63.5 (2.50)	NA	127.0 (5.00)

	F	G	H (Screw)	H (Belt)
	mm (in)	mm (in)	mm (in)	mm (in)
RA2	71.9 (2.83)	50.8 (2.00)	"S" + 345.3 (13.59)	"S" + 378.3 (14.89)
R3	88.8 (3.50)	71.5 (2.82)	"S" + 326.4 (12.85)	"S" + 522.0 (20.55)
R4	71.9 (2.83)	108.0 (4.25)	"S" + 411.8 (16.21)	"S" + 578.6 (22.78)

S = stroke

	I	J	К	L
	mm (in)	mm (in)	mm (in)	mm (in)
RA2	72.1 (2.84)	123.2 (4.85)	43.0 (1.69)	90.7 (3.57)
R3	91.4 (3.60)	168.9 (6.65)	45.5 (1.79)	88.1 (3.47)
R4	127.0 (5.00)	220.7 (8.69)	71.9 (2.83)	147.8 (5.82)

	М	N	0	Р
	mm (in)	mm (in)	mm (in)	mm (in)
RA2	50.1 (1.97)	NA	88.8 (3.50)	8.7 (0.34) thru
R3	45.5 (1.79)	47.6 (1.88)	101.6 (4.00)	5.5 (0.22) thru
R4	71.9 (2.83)	63.5 (2.50)	127.0 (5.00)	7.0 (0.28) thru

Rodless Actuators R-Series

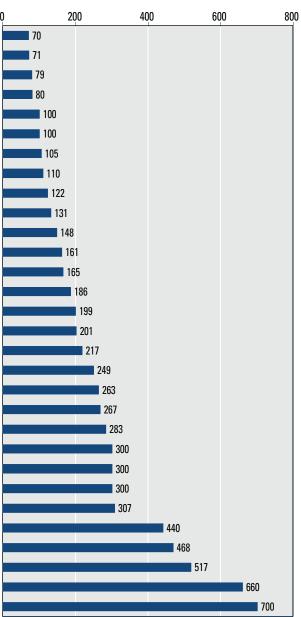
Sold & Serviced By:

General Specifications

Series		R2A			R3		R4		
Std max stroke length (in)		72			108		108		
Cross section (in)		2 x 2			2.5 x 2.8		3.6 x 4.25		
Guide type		Roller Guides			Profile Rail		Profile Rail		
Drive type	Ballscrew	Lead Screw	Belt	Ballscrew	Lead Screw	Belt	Ballscrew	Belt	
Screw leads (in/rev)	0.5, 0.2	0.2, 0.125	n/a	0.5, 0.2	0.2, 0.125	n/a	1, 0.25	n/a	
Nominal screw diameter (in)	0.625	0.625	n/a	0.625	0.625	n/a	1	n/a	
Brushless servo motor		AKM23, NEMA 23			IEMA 23, AKM42	, NEMA 34	n/a		
Max thrust (lb)	1	100		300		200	700	300	
Max velocity (in/sec)	3	30	80	30		120	40	120	
Max carriage load									
Normal (Ib)		50		100			300		
Roll moment (lb-in)		50			300		60	00	
Pitch moment (Ib-in)		100			500		10	00	
Repeatability (in)	+/-0).001	+/-0.010	+/-().001	+/-0.010	+/-0.001	+/-0.010	
Max duty cycle (speed, load dependent)	100%	60%	100%	100%	60%	100%	100%	100%	
Limit sensors					Optional				
Std operating temperature range				-20 deg F to 1	40 deg F (-28 deg	C to 60 deg C)			
Moisture/contamination		IP 44 rated:	Splash-proof, p	rotected against	ingress of solid p	rotected against ingress of solid particles greater than 0.040 [1 mm] diameter.*			

Belt Based Systems

Belt Based System	AKD® Cont.		Thrust peed		Thrust peed				Continuous Thrust (Ib) @ Speed							
	Amps	lb	in/s	lb	in/s	lb	Q	50	100	150	200	250	300			
R3-AKM23D-xxx-15T	3 A	4.4	118	29	118	29	4.4									
R3-AKM23D-xxx-20T	3 A	7.6	118	41	118	41	7.6									
R2A-AKM23D-xxx-15T	3 A	13	80	64	80	64	13									
R2A-AKM23D-xxx-20T	3 A	19	80	78	80	87	19									
R3-AKM23D-xxx-50T	3 A	21	71	76	71	92	21									
R4-AKM42G-xxx-20T	6 A	25	118	100	118	100	2	5								
R3-AKM23D-xxx-70T	3 A	32	51	108	51	131		32								
R3-AKM42G-xxx-20T	6 A	32	118	117	118	126		32								
R4-AKM42G-xxx-30T	6 A	39	100	139	100	153		39								
R4-AKM42G-xxx-50T	6 A	57	59	200	59	219		57								
R3-AKM42G-xxx-50T	6 A	66	72	138	72	200		6	6							
R4-AKM52H-xxx-20T	6 A	66	118	200	90	202		6	6							
R3-AKM42G-xxx-70T	6 A	94	51	197	51	200			94							
R4-AKM52H-xxx-30T	6 A	96	92	300	60	300			96							
R4-AKM42G-xxx-100T	6 A	118	30	300	30	300				118						
R4-AKM52H-xxx-50T	6 A	137	54	300	44	300				137			285			
R4-AKM52H-xxx-100T	6 A	285	27	300	27	300										



Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Screw Based Systems

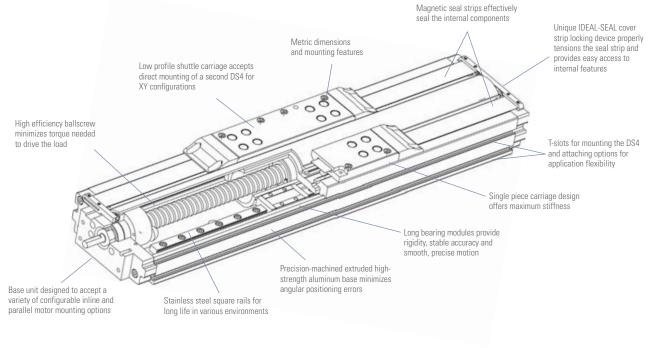
Screw Based System	AKD® Cont.		Thrust peed		Thrust peed	Max Thrust	
	Amps	lb	in/s	lb	in/s	lb	
R2A-AKM23D-xxx-102B-yy-P	3 A	70	30	100	30	100	
R3-AKM23D-xxx-102B-yy-P	3 A	71	30	269	25	275	
R2A-AKM23D-xxx-105A-yy-P	3 A	79	12	100	12	100	
R3-AKM23D-xxx-105A-yy-P	3 A	80	12	255	12	300	
R2A-AKM23D-xxx-152B-yy-P	3 A	100	20	100	20	100	
R2A-AKM23D-xxx-155A-yy-P	3 A	100	8.0	100	8	100	
R4-AKM42G-xxx-101B-yy-P	6 A	105	40	356	40	390	
R3-AKM23D-xxx-152B-yy-P	3 A	110	20	300	20	300	
R3-AKM23D-xxx-155A-yy-P	3 A	122	8.0	300	8.0	300	
R3-AKM23D-xxx-108A-yy-P	3 A	131	7.5	300	7.5	300	
R3-AKM23D-xxx-202B-yy-P	3 A	148	15	300	15	300	
R4-AKM42G-xxx-151B-yy-P	6 A	161	27	540	27	588	
R3-AKM23D-xxx-205A-yy-P	3 A	165	6.0	300	6.0	300	
R3-AKM23D-xxx-105B-yy-P	3 A	186	12	300	12	300	
R3-AKM23D-xxx-158A-yy-P	3 A	199	5.0	300	5.0	300	
R3-AKM42G-xxx-102B-yy-P	6 A	201	30	300	30	300	
R4-AKM42G-xxx-201B-yy-P	6 A	217	20	700	20	700	
R3-AKM42G-xxx-105A-yy-P	6 A	249	12	300	12	300	
R4-AKM52H-xxx-101B-yy-P	6 A	263	37	263	37	700	
R3-AKM23D-xxx-208A-yy-P	3 A	267	3.8	300	3.8	300	
R3-AKM23D-xxx-155B-yy-P	3 A	283	8.0	300	8.0	300	
R3-AKM23D-xxx-505A-yy-P	3 A	300	2.4	300	2.4	300	
R3-AKM42G-xxx-152B-yy-P	6 A	300	20	300	20	300	
R3-AKM42G-xxx-155A-yy-P	6 A	300	8.0	300	8.0	300	
R4-AKM52H-xxx-151B-yy-P	6 A	307	25	307	25	700	
R4-AKM42G-xxx-104B-yy-P	6 A	440	10	700	10	700	
R4-AKM42G-xxx-501B-yy-P	6 A	468	7.8	700	7.8	700	
R4-AKM52H-xxx-201B-yy-P	6 A	517	18	600	18	700	
R4-AKM42G-xxx-154B-yy-P	6 A	660	6.7	700	6.7	700	
R4-AKM52H-xxx-104B-yy-P	6 A	700	9.4	700	9.4	700	

Continuous Thrust (Ib) @ Speed

Precision Tables DS4 / DS6 Serie Content Strate Str

Precision positioning tables are best suited for applications where the accuracy and repeatability requirements are more important than axial thrust of the drive train. Precision positioning tables can also be used in less precise applications where adequate moment load support is necessary, and are ideal building blocks for complete multi-axis positioning systems.

The DS4 and DS6 are Kollmorgen's most versatile and modular line of positioning tables.


Combined with the AKD[®] Servo Drive and AKM[®] Servo Motors, DS4 and DS6 Systems Offer


- An optimized electromechanical solution suitable for demanding high precision positioning
- Performance and versatility in a compact package
- Outstanding industrial durability
- Tremendous configuration flexibility
- Industry-leading price vs. performance value

DS Series Design Features

Following are several features that make the DS Series the positioning table of choice for the most demanding applications:

- Travel lengths from 50 mm to 2 m cover a wide range of applications.
- Precision ballscrew drive, with 5 mm, 10 mm and 25 mm leads, offers high speed and efficiency, excellent repeatability and accuracy, and mechanical advantage.
- Proven magnetic stainless steel seal strip technology effectively seals the internal components of the DS Series, protecting the ballscrew and ways from contaminants. This feature also contains ballscrew and way lubrication within the DS Series.
- Easily configurable modular design and option set, including a variety of motor mounting orientations, motor sizes and type, ballscrew leads, coupling types and sizes, encoder feedback options, limit/home sensor types, and shaft brakes allow the DS Series to be customized to meet your specific requirements.

Sold & Serviced By:

www.servo2go.com

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

DS Series precision tables can be ordered in a variety of multi-axis configurations including XY, XZ, and XYZ or cartesian arrangements. Consult Kollmorgen applications engineering for standard and custom configurations.

A second option is to order standard multi-axis brackets and assemble the axes yourself.

Unique IDEAL-SEAL Magnetic Cover Strip Locking Device

- Entire length of lead screw and linear bearing system are protected, providing both operator safety and protection from contaminants.
- Seal strips are always properly tensioned, drastically decreasing wear that requires regular field repair.
- Allows easy access to interior of DS4 for mounting and maintenance.
- No small hardware or springs to lose, and no exposure to the sharp ends of the strips, which are problems for similar seal end-cap designs.

Configurable Options

DS Series	
Servo motor options	AKM23D, AKM42G
Grades	Precision* (up to 600 mm), commercial
Motor orientations	In-line, parallel right/left/under
Couplings options** (inline configurations)	Bellows
Transmission ratio (parallel configurations)	1:1
Limit sensors	PNP (sinking) inductive proximity sensors, 5-30 Vdc
Home sensor	PNP (sinking) inductive proximity sensors, 5-30 Vdc
Shaft brake	Electromagnetic power of holding brake, 24 Vdc
Linear encoder options	1.0, 0.5 and 0.1 motion resolution, modular incremental type

* Additional lead time applies to precision grade. Contact customer support for details. ** Additional couplings available. Contact customer support for details.

Accessories

DS Series	
Toe clamps	Provide convenient external mounting to a base plate or to riser blocks
Narrow riser blocks	Raise unit for clearance of larger motor options, utilizing internal base mounting features on the side
Wide riser blocks	Allow rising of the unit, independent of base mounting features
Brackets and mounting plates	Facilitate multi-axis configurations
Cable sets	For connection to AKD and other drives

All DS4 and DS6 tables will bolt directly together in a standard XY without modification.

Seal Strips

Limit Sensor

Linear Encoder

Toe Clamp

Precision Tables DS4 / DS6 Serie Re Phone: 877-378-0240 Seles Servo 200.com SERVO GO.com

www.servo2go.com

Sold & Serviced By:

DS4 General Specifications

Travel (mm)	50	100	150	200	250	300	350	400	450	500	550	600
Overall height, less motor (mm)						4	7					
Width (mm)						9	5					
System length, Inline less motor (mm)	317	367	417	467	517	567	617	667	717	767	817	867
System length, parallel motor mounts (mm)	300	350	400	450	500	550	600	650	700	750	800	850
Positional accuracy (microns)												
Commercial grade	12	12	14	20	22	24	26	26	28	34	36	40
Precision grade	8	8	10	12	12	14	14	16	19	21	23	25
Straightness & flatness (microns)	6	6	9	12	12	14	18	21	23	23	25	25
Bi-directional repeatability, open loop												
Commercial grade (microns)						+/	- 3					
Precision grade (microns)						+/-	1.3					
Load capacity, normal (kg) (max)	170											
Axial load capacity (kg)						9	0					
Acceleration (max) (m/sec ²)						2	0					
Moving mass (kg)						0.	75					
Total mass (kg)	2.7	3	3.3	3.6	3.9	4.1	4.4	4.7	5	5.3	5.6	5.9
Ballscrew diameter (mm)						1	6					
Duty cycle (%)						1(00					
Ballscrew efficiency						9	0					
Max. breakaway torque (oz-in)	18											
Max. running torque (oz-in)						1	6					
Ballscrew lead available (mm)						5,	10					
Input inertia (10 ⁻⁵ kg-m²)	1.17	1.24	1.67	1.93	2.18	2.43	2.68	2.93	3.19	3.44	3.69	3.94
Max. ballscrew speed (rev/sec)			8	0			6	0	55		50	

DS6 General Specifications

I																
Travel (mm)	100	200	300	400	500	600	700	800	900	1000	1250	1500	1750	2000		
Overall height (mm)							7	0								
Width (mm)							15	50								
System length, inline less motor (mm)	465	565	665	765	865	965	1065	1165	1265	1365	1615	1865	2115	2365		
System length, parallel motor mounts (mm)	470	570	670	770	870	970	1070	1170	1270	1370	1620	1870	2120	2370		
Positional accuracy (microns)																
Commercial grade	14	22	28	39	45	48	92	94	103	105	118	134	154	159		
Precision grade	12	14	15	20	25	50	-	-	-	-	-	-	-	-		
Straightness & flatness (microns)	10	14	17	23	30	33	40	46	50	55	76	95	115	135		
Bi-directional repeatability, open loop																
Commercial grade (microns)			+/-	- 3						+/	-5					
Precision grade (microns)		+/- 1.3						N/A								
Load capacity, normal (kg) (max)							63	30								
Axial load capacity (kg)																
Commercial grade			9	0						20	00					
Precision grade			9	0			N/A									
Acceleration (max) (m/sec ²)							20									
Moving mass (kg)							2.	8								
Total mass (kg)	8.9	10.2	11.5	12.8	14.0	15.4	19.4	20.9	22.4	23.9	27.8	31.6	35.4	40.1		
Ballscrew diameter (mm)			1	6						2	5					
Duty cycle (%)							10	00								
Ballscrew efficiency			9	0						8	0					
Max. breakaway torque (oz-in)	18									5	5					
Max. running torque (oz-in)	16									4	8					
Ballscrew lead available (mm)	5, 10									5, 10), 25					
Input inertia (10 ⁻⁵ kg-m²)	3.8	4.4	5	5.5	6.1	6.7	37	40.4	43.9	47.3	56	64.5	73.2	81.9		
Max. ballscrew speed (rev/sec)		80		60	5	0	60	50	40	35	24	16	13	11		

*All performance specifications are based upon proper mounting procedures, with the DS table fully supported on a flat surface (flat within 0.008 mm/300 mm). Positional accuracy and repeatability specifications are for inline motor mount models only. Contact customer support for specifications of parallel mount configurations. Above specifications are measured 37.5 mm directly above the center of the carriage. Specifications are based upon operation at 20° C.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

120 Vac Performance Data

	Sys #	Precision Table - AKM Servo Motor	AKD Servo Drive	Stroke Length Type	Sp	'hrust @ eed in/sec)	Peak Th Spe (Ib @ i		Max Thrust (Ib)	Max System Speed (in/sec)	Max Stroke for Max Speed (mm)
DS4	1	DS4-XXX-10G-AKM23D-	AKD-X00306	≤ 600 mm	104	17.6	210	10.8	210	17.6	600
ä	2	DS4-XXX- 5G-AKM23D-	AKD-X00306	≤ 600 mm	195	8.8	210	8.4	210	8.8	600
	3	DS6-XXX-25G-AKM23D-	AKD-X00306	≤ 600 mm	37	44.0	138	8.2	138	44.0	600
DSG	4	DS6-XXX-10G-AKM23D-	AKD-X00306	≤ 600 mm	104	17.6	210	12.4	210	17.6	600
	5	DS6-XXX- 5G-AKM23D-	AKD-X00306	≤ 600 mm	195	8.8	210	8.6	210	8.8	600
	6	DS6-XXX-25G-AKM23D-	AKD-X00306	≥ 700 mm	41	44.0	138	8.2	154	44.0	800
DS6	7	DS6-XXX-10G-AKM23D-	AKD-X00306	≥ 700 mm	91	17.6	331	3.1	376	17.6	800
	8	DS6-XXX- 5G-AKM23D-	AKD-X00306	≥ 700 mm	143	8.8	440	5.0	440	8.8	800

240 Vac Performance Data

	Sys #	Precision Table - AKM Servo Motor	AKD Servo Drive	Stroke Length Type	Cont. Thrust @ Speed (Ib @ in/sec)		Peak Th Spe (Ib @ i		Max Thrust (Ib)	Max System Speed (in/sec)	Max Stroke for Max Speed (mm)
DS4	1	DS4-XXX-10G-AKM23D-	AKD-X00306	≤ 600 mm	98	31.5	210	31.5	210	31.5	300
ä	2	DS4-XXX- 5G-AKM23D-	AKD-X00306	≤ 600 mm	184	15.7	210	15.7	210	15.7	300
	3	DS6-XXX-10G-AKM23D-	AKD-X00306	≤ 600 mm	98	31.5	210	31.5	210	31.5	300
	4	DS6-XXX- 5G-AKM23D-	AKD-X00306	≤ 600 mm	184	15.7	210	15.7	210	15.7	300
	5	DS6-XXX-25G-AKM23D-	AKD-X00306	≥ 700 mm	40	59	154	47	154	59	700
	6	DS6-XXX-10G-AKM23D-	AKD-X00306	≥ 700 mm	88	23.6	374	18	374	23.6	700
DSG	7	DS6-XXX- 5G-AKM23D-	AKD-X00306	≥ 700 mm	138	11.8	440	11.8	440	11.8	700
ä	8	DS6-XXX-10G-AKM42G-	AKD-X00306	≤ 600 mm	210	28.4	210	28.4	210	28.4	300
	9	DS6-XXX- 5G-AKM42G-	AKD-X00306	≤ 600 mm	210	14.5	210	14.5	210	14.5	300
	10	DS6-XXX-25G-AKM42G-	AKD-X00306	≥ 700 mm	114	59	438	35.8	438	59	700
	11	DS6-XXX-10G-AKM42G-	AKD-X00306	≥ 700 mm	272	23.6	440	23.6	440	23.6	700
	12	DS6-XXX- 5G-AKM42G-	AKD-X00306	≥ 700 mm	440	11.8	440	11.8	440	11.8	700

Note 1: Performance based on in-line motor configuration.

Note 2: Contact customer support for matching cables.

Note 3: For complete AKD and DS4 / DS6 Series model nomenclature, refer to pages 178 and 200 respectively.

PMDC Permanent Magnet DC Motors

Why have design engineers depended on Kollmorgen permanent magnet DC motors for nearly 50 years? Value and Performance. Rugged, quality construction, backed by a 2 year warranty.

Plus, when you need something special, you know we've built thousands of custom-designed motors. Many more than we could ever show with these pages.

And if we don't have just what you need, we'll design a new one, even for a modest volume requirement.

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Standard PMDC Motor Features

Ρ

SR/SRF Series Continuous Duty

General Specifications

SCR Rated NEMA Standards

- NEMA C face with removable base except the 180 V / 1.5 HP has a welded base
- Class H insulation
- UL Recognized (UL 1004, File E61960)
- CSA Certified (CSA Standard C22.2 No. 100, Class 421101, File LR43477)
- CE marked. Conforms to EN60034-1 and EN60034-5
- 1750 RPM

						Parameters —										
	НР	Model Number	Product Code	NEMA	Enclosure	Continuous Current (A)	Continuous Torque (Ib _r -in)	Peak Current (A)	Torque Constant (lb _f -in/A)	Resistance (Ω)	Inertia (Ib _r -in)	Inductance (mH)	Configuration/Dimensions (facing page)	Length (in)	Weight (Ibs)	Brush Replacement (order 2 per motor)
	1/8	SR3616-8290-7-56BC-CU	FGS2430	56C	TENV	1.5	4.5	34.0	4.0	5.3	2.9	19.4	1	8.13	14	YP00565
	1/4	SR3624-8291-7-56BC-CU	FGS2431	56C	TENV	2.7	9.0	54.0	3.9	2.5	4.0	9.6	1	9.13	18	YP00565
>	1/3	SR3632-8292-7-56BC-CU	FGS2432	56C	TENV	3.5	12.0	71.0	3.9	1.8	5.0	6.6	1	10.13	21	YP00565
90 V	1/2	SR3642-4822-7-56BC-CU	FGS2434	56C	TENV	4.7	18.0	74.0	4.2	0.9	6.5	3.8	1	12.10	27	YP00565
	1/2	SRF3632-5227-84-5-56BC-CU	FGS2748	56C	TEFC	5.1	18.0	54.0	4.0	1.3	5.2	5.8	2	10.10	22	YP00565
	3/4	SRF3650-4823-84-5-56BC-CU	FGS2749	56C	TEFC	6.9	27.0	81.0	4.2	0.7	7.8	3.7	2	13.25	30	YP00565
	1.0	SRF3756-4996-84-5-56BC-CU	FGS2751	56C	TEFC	9.5	36.0	81.0	4.4	0.5	12.8	3.4	2	13.25	30	YP00565
	1/4	SR3624-1032-7-56BC-CU	FGS2658	56C	TENV	1.4	9.0	28.0	7.4	9.6	4.0	42.8	1	9.13	18	YP00566
	1/2	SR3642-4982-7-56BC-CU	FGS2438	56C	TENV	2.6	18.0	40.0	7.6	3.3	6.3	16.2	1	12.13	27	YP00566
	1/2	SRF3632-5265-84-5-56BC-CU	FGS2735	56C	TEFC	2.4	18.0	27.0	8.1	5.3	5.2	29.5	2	10.10	21	YP00566
180 V	3/4	SRF3736-4983-84-5-56BC-CU	FGS2750	56C	TEFC	3.2	27.0	26.0	8.8	3.6	8.9	28.8	2	11.25	23	YP00566
18	1.0	SRF3752-4984-84-5-56BC-CU	FGS2752	56C	TEFC	4.6	36.0	41.0	8.2	1.8	12.0	15.6	2	13.25	29	YP00566
	1.5	SRF5348-4485-84-5-45BC-CU	FGS2753	145TC*	TEFC	7.8	54.0	62.0	7.9	1.2	26.2	13.5	3	16.00	64	YP00574
	2.0	SRF5360-4985-84-5-82BC-CU	FGS2754	145TC/182	TEFC	9.5	72.0	78.0	8.2	0.6	35.9	7.0	4	16.50	75	YP00559
	3.0	SRF5570-4986-84-5-82BC-CU	FGS2755	145TC/182	TEFC	14.0	108.0	78.0	9.3	0.6	40.1	7.2	5	19.75	87	YP00585

Ť

* Stamped steel, welded base, not removable

SERVO GO.com

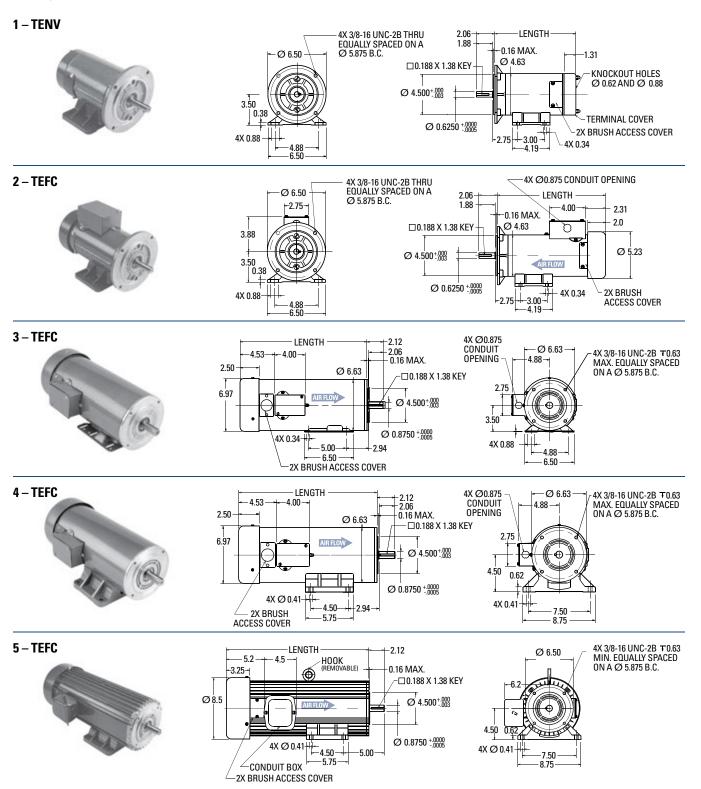
sales@servo2go.com www.servo2go.com

0240

Sold & Serviced By:

T

S


ъ

 \leq

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Configurations and Dimensions (inches)

P ≤

STF Series Washdown Motors

SERVOLGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

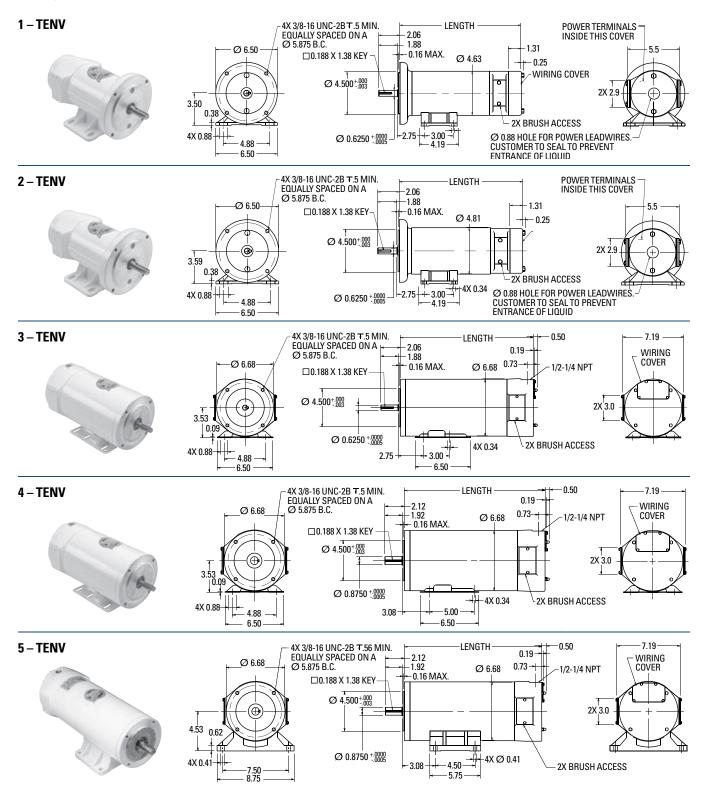
Sold & Serviced By

General Specifications

- NEMA C face with removable base except the 1 and 1.5 HP motors have welded bases
- Class H insulation
- UL Recognized (UL 1004, File E61960)
- Complies with NEMA MG1-1.26.5 Waterproof designation and IP65
- Bakery Industry Sanitation Standards Committee (BISSC) certified per BISSC Standard 29 (Authorization No. 301)
- 1750 RPM

		Para					ramet	ers –								
	НР	Model Number	Product Code	NEMA	Enclosure	Continuous Current (A)	Continuous Torque (lb _f -in)	Peak Current (A)	Torque Constant (Ib _f -in/A)	Resistance (Ω)	lnertia (lb _r -in)	Inductance (mH)	Configuration/Dimensions (facing page)	Length (in)	Weight (Ibs)	Brush Replacement (order 2 per motor)
	1/4	STF3624-4976-61-56BC	FGS2419	56C	TENV	2.9	9.0	54.0	3.89	2.51	4.0	9.61	1	11.20	22	YP00572
90 V	1/2	STF3640-4977-61-56BC	FGS2420	56C	TENV	5.1	18.0	67.0	4.05	0.95	6.3	4.38	1	12.20	26	YP00572
	3/4	STF3758-5150-61-56BC	FGS2757	56C	TENV	7.3	27.0	126.0	4.05	0.72	8.7	3.50	2	15.20	41	YP00572
	1/2	STF3648-5268-61-56BC	FGS2738	56C	TENV	2.4	18.0	37.0	8.30	3.59	6.4	19.60	1	11.80	27	YP00571
180 V	1.0	STF5332-3748-61-56BC-CU	FGS2389	56C*	TENV	4.6	36.0	36.0	8.00	2.40	22.4	32.00	3	13.30	41	YP00574
18(1.5	STF5356-3749-61-45BC-CU	FGS2390	145TC*	TENV	7.1	54.0	70.0	7.90	1.11	29.8	11.20	4	16.30	65	YP00574
	2.0	STF5372-3750-61-82BC-CU	FGS2342	145TC/182	TENV	9.3	72.0	93.0	7.90	0.77	39.3	6.80	5	18.30	84	YP00574

* Stamped steel, welded base, not removable


152

ъ

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

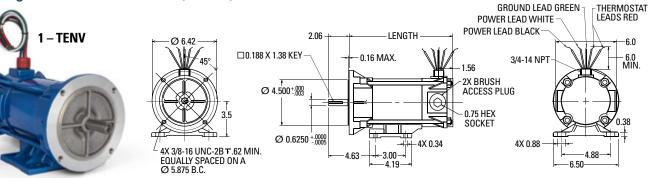
Configurations and Dimensions (inches)

Р

EP Series Explosion Proof Motor Free Phone: 877-378-0240 Free Fax: 877-378-0249

Sold & Serviced By:

General Specifications



SCR Rated NEMA Standards – Explosion Proof

- NEMA C face with removable base
- Class H insulation
- UL Recognized (UL 674, File E56538), meets Division 1 & 2, Class 1 (Groups C & D), Class II (Groups F & G) and Class III
- CSA Listed Components per CSA Standard C22.2 No. 145, Class 428801 (File 213464).
- 1750 RPM

					Parameters											
	НР	Model Number	Product Code	NEMA	Enclosure	Continuous Current (A)	Continuous Torque (lb _f -in)	Peak Current (A)	Torque Constant (Ib _f -in/A)	Resistance (Ω)	Inertia (Ib _r -in)	Inductance (mH)	Configuration/Dimensions (facing page)	Length (in)	Weight (lbs)	Brush Replacement (order 2 per motor)
	1/4	EP3624-1434-7-56BC-CU	FGE0212	56C	TENV	2.6	9.0	52.0	4.07	2.63	4.0	10.5	1	10.38	23	YP00565
90 V	1/3	EP3632-1435-7-56BC-CU	FGE0242	56C	TENV	3.5	12.0	71.0	3.94	1.76	5.0	6.6	1	11.38	27	YP00565
6	1/2	EP3640-1436-7-56BC-CU	FGE0213	56C	TENV	4.7	18.0	87.0	4.24	1.03	6.4	5.1	1	12.38	30	YP00565
	3/4	EP3758-5151-7-56BC-CU	FGE0248	56C	TENV	7.0	27.0	113.0	4.15	0.74	8.0	3.8	1	14.0	36	YP00565
			_				_									
>	1/4	EP3624-5269-7-56BC-CU	FGE0261	56C	TENV	1.3	9.0	26.0	8.10	10.50	4.0	51.80	1	10.38	23	YP00566
180	1/2	EP3644-5214-7-56BC-CU	FGE0262	56C	TENV	2.3	18.0	34.0	8.10	4.00	6.7	24.20	1	12.38	30	YP00566
	3/4	EP3752-5215-7-56BC-CU	FGE0263	56C	TENV	3.3	27.0	38.0	8.10	3.10	11.4	17.40	1	14.38	34	YP00566
12 V	1/3	EP3620-1954-7-56BC-CU	FGE0243	56C	TENV	28.0	12.0	n/a	0.52	0.04	3.5	0.18	1	10.38	19	YP00583
	1/3	EP3624-2757-7-56BC-CU	FGE0245	56C	TENV	13.4	12.0	n/o	1.02	0.16	4.0	0.66	1	10.38	24	VDODE02
24 V	3/4	EP3648-4952-7-56BC-CU	FGE0245	56C	TENV	13.4 28.2	12.0 27.0	n/a n/a	1.02	0.16	4.0	0.66	1	10.38	24 33	YP00593 YP00593
	3/4	LI 3040-4352-7-50DC-CU	rueuz44	000	TEINV	20.Z	27.0	II/d	1.02	0.00	7.1	0.22		13.30	33	1100093

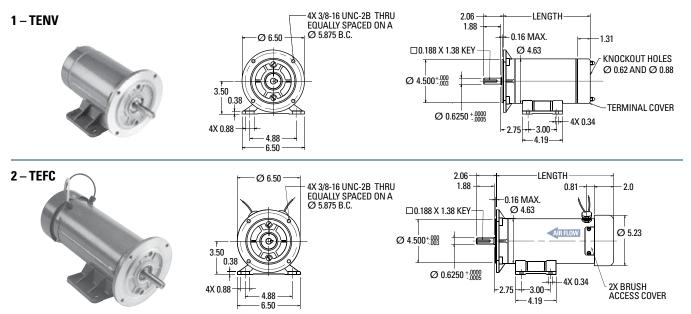
Configuration and Dimensions (inches)

ъ

GO.com SERVO BA/BAF Series Low Voltage Motors ar: 877-378-0240

sales@servo2go.com www.servo2qo.com

Sold & Serviced By:


General Specifications

Low Voltage Rated NEMA Standards

- NEMA C face with removable base
- Class H insulation
- UL Recognized (UL1004, File E61960)
- Designed for use with low voltage supplies (batteries).
- Highly efficient
- For constant speed, motors are operated directly from a battery with no motor control interface.
- For adjustable speeds, low voltage motor controls are readily available
- **Configuration/Dimensions** Continuous Torque (lb_f-in) Torque Constant (lb,-in/A) Continuous Current (A) Brush Replacement (order 2 per motor) Inductance (mH) Peak Current (A) Resistance (Ω) • 1750 RPM **Product Code** Inertia (Ib,-in) facing page) **Veight (Ibs)** Length (in) Enclosure NEMA HP Model Number BA3614-4648-9-56BC FGB2010 56C 15 1/4 TENV 21.1 9.0 n/a 0.51 0.07 2.9 0.27 8.13 YP00593 > 1/3 BA3624-7005-9-56BC FGB2002 56C TENV 27.0 12.0 0.51 0.04 4.0 0.14 9.13 19 YP00602 n/a 12 1/2 BA3638-4588-9-56BC FGB2005 56C TENV 39.8 18.0 n/a 0.49 0.02 5.5 0.07 11.13 25 YP00592 FGB1592 56C YP00593 1/4 BA3618-7009-9-56BC TENV 10.3 0.57 9.13 9.0 n/a 1.04 0.14 3.2 18 1/3 FGB2285 TENV BA3624-7024-9-56BC 56C 13.4 12.0 n/a 1.02 0.16 4.0 0.66 9.13 19 YP00593 24 V 1/2 BA3628-7012-9-56BC FGB1441 56C TENV 19.5 18.0 n/a 1.01 0.10 4.4 0.38 10.13 21 YP00593 3/4 FGB2006 56C 29 YP00592 BA3648-4650-9-56BC TENV 28.2 27.0 n/a 1.02 0.06 7.1 0.22 12.10 1 1.0 BAF3644-5081-56BC FGB2335 56C TEFC 38.4 36.0 n/a 1.00 0.05 6.6 0.21 2 12.25 28 YP00583

Parameters

Configuration and Dimensions (inches)

Optimized Solutions

Applying Our Knowledge to Meet Your Motion Needs

Optimize the Package, Performance and Features

- We provide solutions that meet your needs, including the ability to get optimum performance for the smallest package size.
- Our products deliver superior quality, through-put, efficiency, and performance.

DLLMOR

Reduce Waste and Costs

- We have thousands of proven designs upon which to build new solutions. Our application experience expedites the design cycle, which enables you to be fully operational sooner.
- Great value is delivered in the final product.

Meet the Most Challenging Requirements

- Designs are developed for manufacturability.
- Designing and manufacturing unique products are our core competency.
- We have the broadest capabilities in the industry.

Compete and Win

Kollmorgen can translate your needs, from design to installation, into a custom motion solution that makes your end product more competitive – driving market share and profitability for your company.

For flexible production runs, from high volume to one piece, Kollmorgen provides on optimized solution that fits your needs – perfectly.

Optimized Solutions

Whether it's modifying a product from our standard catalog or a white sheet design for a custom solution, you can rely on decades of Kollmorgen expertise to solve your motion challenges and help your machine stand out from the crowd.

Modified Standard

Because our application expertise runs deep and our product portfolio is so broad, we can take any standard product and modify it a lot or a little to suit many needs – in a very rapid time frame. This approach ensures quality, performance and reliability by leveraging our proven track record.

Kollmorgen application engineers have a great deal of experience helping OEM engineers achieve their objectives: Typical motor modifications include shaft, housing, winding and through-bore alterations; feedback type; mounting and connectors; ruggedization (high-shock-and-vibration), vacuum-duty, radiation-hardened, explosionproof. Typical drive modifications include housing, mounting and heatsinking; connector type; I/O type- and count; field buses and motion buses; special cabling; ruggedization (high-shock-and-vibration).

Custom Products

With motion as our core capability, we bring a significant history of innovation to today's engineering challenges. We leverage our design and engineering excellence and technical knowledge to deliver creative new solutions for virtually any need. Our vast experience also helps us deliver a custom product in a surprisingly short time. If you can conceive it, we can make it happen.

Project Management

We follow a structured development process from initial concept to volume production. This enables us to provide a complete solution from design to implementation.

Our skilled engineering team is assigned to each project and ensures a high quality product, designed and delivered on time, successfully taking the prototype to full production.

- Dedicated Resources & Equipment
- Real Time Customer Collaboration
- Validation of Performance, Cost & Manufacturability Before Volume Production

Customer Visibility Throughout the Entire Process

A communicative and proactive approach keeps you updated and aware of what is required throughout, what it will cost, and what to expect for design testing

This not only puts you in charge of approving any modifications before installation, but ensures the product is up and running quickly, with minimal development time and maximum value.

Engineering Excellence

What really sets us apart is our engineering expertise. With over 50 years of successfully designing custom motors, we are able to quickly assess, design and implement a solution that meets your needs.

Our engineers have an average tenure of 20 years, which means they have designed solutions for almost every unique and challenging situation. Their insightfulness and expertise will guide you through the development and implementation of an optimized motor solution.

We rely on the most advanced simulation tools to deliver the best products, designed to withstand the most unique and challenging environments:

- 3-D Modeling ProE
- Finite Element Analysis
 - -Electromagnetics
 - -Structural (stress, vibration, fatigue)
- -Thermal
- Speed
- Infolytica
- Ansys
- Magneto

Why You Should Partner with Kollmorgen

- Experienced application engineers help define a customer's needs and identify the optimal Kollmorgen products and technologies
- · Products optimized or developed by cross-functional teams to meet customer needs
- · Rapid prototyping
- · Smooth transition from prototype designs to sustainable and cost effective manufacturing
- Industry-proven quality, performance, and delivery
- Proven technology building blocks mitigate risks of customization

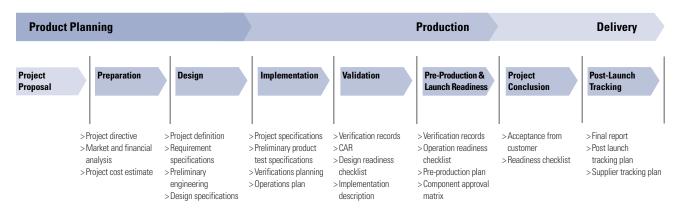
Capabilities to Meet Your Need Stree Fax: 877-378-0240 Sales@servo2go.com

Sold & Serviced By:

www.servo2qo.com

Kollmorgen offers 5-day lead-time on nearly 1,000,000 commercial off-the-shelf (COTS) products, all with best-in-class performance and quality.

When COTS is not quite the best way to realize a totally optimized system, Kollmorgen can offer co-engineered solutions to meet your most difficult challenges and advance your competitive position. Drawing on a wealth of knowledge and expertise, our engineering support team will work alongside you to build a solution that differentiates your machine and improves your bottom line.


Here are just few examples of how Kollmorgen delivers real value to companies likes yours:

What You Need	Why Motion Matters	Kollmorgen Co-Engineering Results
30% Increase in Throughput	 Low inertia servo motors High bandwidth servo loops Simple, accurate, graphical programming tools 	Using the Kollmorgen Automation Suite [™] graphical camming design tool, Pipe Network [™] and low-inertia AKM [®] servo motors, a major supplier of diabetic test labs increased throughput by more than 30% while improving accuracy and reducing scrap.
50% Increase in Accuracy and Quality	Using our AKD [®] servo drive, a next-generation CT scanning manufacturer achieved more than 50% improvement in velocity ripple to produce the most accurate and detailed medical images possible while overcoming an extremely high moment of inertia.	
25% Increase in Reliability (Overall Equipment Effectiveness)	 Innovative Cartridge Direct Drive Rotary[®] DDR motor Eliminating parts on the machine No additional wearing components 	Using Kollmorgen's award-winning Cartridge DDR [®] servo motor technology, we eliminated more than 60 parts in a die-cutting machine and increased the OEE by 25% and throughput by 20%.
50% Reduction in Waste	 Superior motor/drive system bandwidth DDR technology: eliminates gearbox 20X more accurate than geared solution 	We helped a manufacturer of pharmaceutical packaging machines incorporate Housed DDR motors to increase the throughput by 35% and reduce scrap by more than 50% through more accurate alignment of the capsules.

Optimized Solutions Process

-MOR(

Comprehensive design, manufacture and test capabilities ensure the end product meets the customer performance specifications and quality requirements. Our skilled engineering team works directly with each customer throughout the process, quickly taking the prototype to full production.

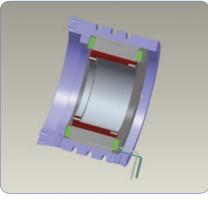
158

Proven Design Capabilities

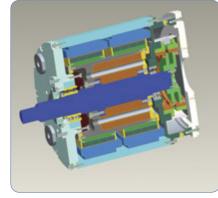
SERVOZGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

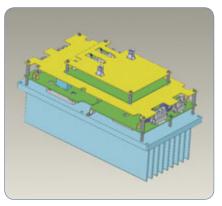
Sold & Serviced By:

Motor Solutions

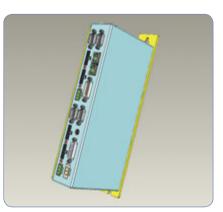

- Brushed, brushless and stepper motor building blocks used in frameless or housed configurations
- Designed for agency compliance (UL, CE, RoHS)
- Voltage ratings from 48 Vdc 600 Vdc, with capabilities in 800 Vdc and up
- Continuous torques from 0.5 Nm 29,000 Nm
- Proven performance and reliability in a customizable package

Drive Solutions


- Board-level or packaged solutions supporting single to multi-axis configurations
- Brushed or brushless servo drives, stepper, AC induction control
- Integrated controller and communications options
- Designed for agency approvals (UL 508C, EN 50178, EN 61000-6-6, EN 61800-3, CISPR 14-1, and others available)
- Proprietary technology and software can be embedded into the drive


Medical diagnostics drive optimized for form-factor, I/O and EMC

Frameless direct drive rotary motor with water cooling features


Custom submersible motor

2-axis drive for high-power robotics, optimized for form-factor and communications interface

200 kW electric starter/generator

4-axis stepper drive using SynqNet

Motors and Electronics

Optimized for	Application
Reliability, weight	Implantable heart pumps, military, remote equipment
Precision	Pick and place, satellite tracking, film processing
Package size	Medical imaging, ground based telescopes, aircraft instrumentation, collaborative robotics
Smooth operation	Medical respirators, high precision robotics, printing and textile machines
Harsh environments	Deep sea, outer space, high shock and vibration, extreme temperatures

Kollmorgen Motors for Special Dut

Every day Kollmorgen pushes the boundaries of motion to deliver optimized solutions that satisfy even the most demanding application requirements in the harshest of environments.

We've been working with the biggest names in harsh and hazardous environments in Industry, Automation, Aerospace & Defense, Exploration, Nuclear, Medical and Robotics for nearly 60 years.

We are on Mars and the Moon and at the bottom of the oceans: In fact, Kollmorgen motors powered the legendary ROV Jason Jr. at a depth of 3,784 meters (12,415 feet) to explore the interior of Titanic for the first time since it sank in 1912.

Kollmorgen continues to collaborate with leading innovators with the same enthusiasm and acumen: Kollmorgen knows that motion matters and represents endless possibilities for innovation. Our engineering expertise and engineering capabilities enable us to deliver superior performing solutions for these demanding environments.

Goldline® S Series Submersible Servo Motors

These brushless servo motors incorporate pressure compensation technology to allow underwater operation up to 20,000 ft while withstanding extreme environments. They feature stainless steel and aluminum nickel bronze housings or an anodized aluminum housing for lighter overall weight. All shafts are stainless steel and sealed with an externally serviceable 0-ring seal. The S Series is fully tooled for cost-effective volume production.

- Choice of stainless steel and aluminum nickel bronze housings or an anodized aluminum housing for lighter overall weight
- · Stainless steel shaft with externally serviceable seal
- SEACON connectors
- Pressure compensated: 10,000 psi
- · Designed to withstand severe shock and extreme environments

EKM Series Brushless AC Servo Motors

These enhanced, high-performance motors are Mil-Spec 810E rated and IP67 sealed, and comes standard with a stainless steel and chemical-agent-resistant paint, for duty in harsh environmental conditions.

- 0.43 to 53 Nm continuous stall torque (3.8 to 467 lb-in)
- Speeds up to 8000 RPM meet high speed requirements
- Custom windings, shaft variations, and fail-safe brakes available
- 480 Vac high voltage insulation
- · Rugged resolver feedback for extreme environments
- Operating temperature range of -51 $^\circ$ C to 54 $^\circ$ C

GO.com

Free Phone: 877-378-024 Vree Fax: 877-378-0249 ales@servo2go.com www.servo2go.com

- Shock and vibration tested per MIL-STD-810E, Methods 516.4 & 514.4, Procedure 1
- · International standard mount available

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

MX Series Hazardous Duty Motors

The explosion-proof MX Series provides hazardous-duty stepper motors suitable for use in Class 1, Division 1, Group D locations. They are available in NEMA 34 and 42 frame sizes (90 and 110 mm), and provide minimum holding torques from 1.27 to 9.82 N-m (180 to 1390 oz-in).

- MX09 models: NEMA 34 (90 mm) motors available in three stack lengths with minimum torque ratings from 1.27 to 3.88 N-m (180 to 550 oz-in
- MX11 models: NEMA 42 (110 mm) motors available in 2 stack lengths with minimum torque ratings from 6.0 to 9.82 N-m (850 to 1390 oz-in)
- Speeds up to 3,000 rpm provide for velocity demands of most high torque applications

Hazardous Duty Synchronous Motors

These synchronous motors are available in UL Listed versions suitable for use in Class I, Division 1, Group D hazardous locations. They provide torque up to 1,500 oz-in (1059 N-cm) and are available in NEMA 42 and 66 frame sizes (110 mm and 170 mm).

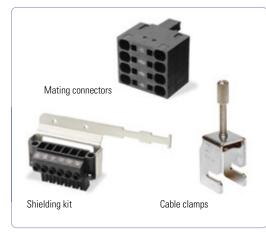
- Motor torque up to 1,500 oz-in (1059 N-cm)
- 72 rpm at 60 Hz, 60 rpm at 50 Hz
- 120 and 240 volt AC versions
- UL Listed versions meet Class I, Division 1, Group D requirements
- Conduit-style connection

EP Series Explosion-Proof Motors

These permanent magnet DC (PMDC) motors are SCR rated and adhere to NEMA standards. They are available in a variety of DC voltages, from 1/4 to 3/4 HP.

- Patented anti-cog magnets for smooth low speed operation
- Polyester-impregnated armature for electrical and mechanical integrity
- High overcurrent capacity and dynamic braking
- Rugged, fused commutator
- TEFC and TENV configurations

- Long life, constant force brush springs with fieldreplaceable brushes
- Gasketed conduit box with large wiring compartment
- Large sealed bearings, standard
- Class H insulation


EB Series High-Performance Explosion-Proof Servo Motors

Based on our 230 VAC B and M Series, the Kollmorgen EB Series provides a high-performance explosion-proof servo motor suitable for applications where flammable vapors or gases create a potentially hazardous environment. These motors have been tested and proven capable of withstanding an internal explosion without bursting or allowing ignition to reach outside the motor frame.

- 230 VAC explosion-proof (Class I, Division 1, Groups C and D)
- Tested and proven capable of withstanding an internal explosion without bursting or allowing ignition to reach outside the motor frame

Mating Connectors and Shielding Kit

Kollmorgen's servo drives are equipped with screwable mating connectors. Alternative connectors for common DC, bus, and main ports are also available. We offer shielding kits for our flexible cables for use in environments with strong interference.

Shielding Solutions

AKD servo drives can be equipped with shielding plates.

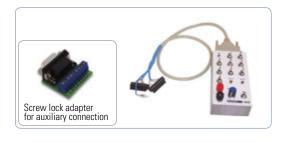
Brake Resistors

We offer a full line of brake resistors up to 6000 watts. Brake resistors are impedance matched with AKD and are available in many sizes and form factors.

Chokes and Filters

Line filters are offered to improve reliability and to protect the life of the machine in less stable environments. Motor chokes reduce radiated emissions and are recommended for applications with cable lengths >25 meters.

DLLMORGEN


162

SERVOL GO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Sold & Serviced By:

Static Energy Storage

Our Static Energy Storage supplies the drive with power in the event of power outages until the machine reaches a defined state. It generates a power outage signal for evaluation by the machine control system. Simple connection to the DC intermediate circuit with two cables; immediately ready for use; no adjustment; no controls. Cascade for nearly unlimited power range

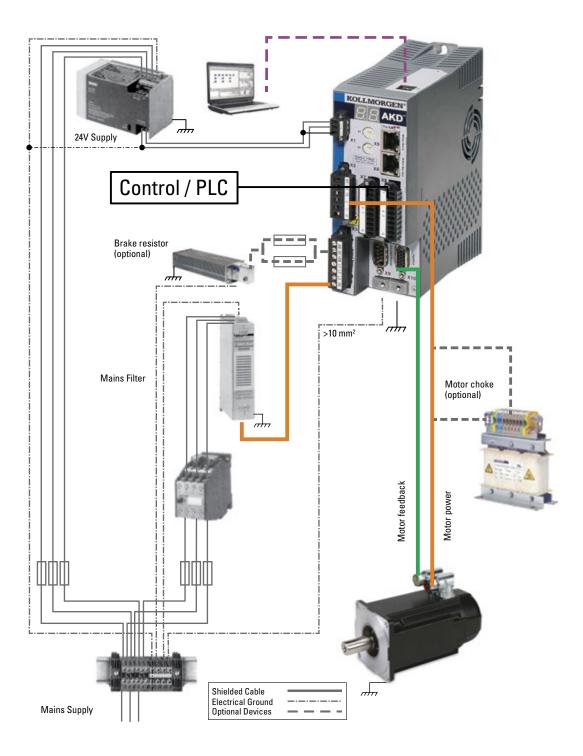
Braking Energy Storage

Our Braking Energy Storage saves Energy through Intelligent Energy Feedback. Substantial saving, especially in applications with short cycle times. Simple connection to DC intermediate circuit. Simple start-up – immediately ready for use; no adjustment; no controls. Nearly unlimited power range with expansion modules

I/O Control Box and Breakout Adapter

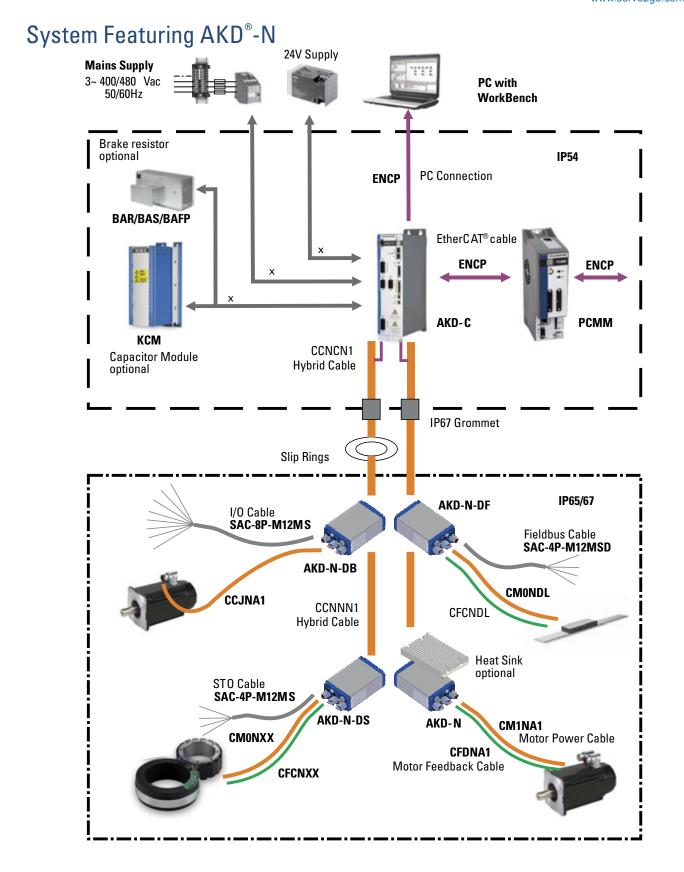
Our I/O Control Box is pre-populated with I/O switches and a power connection for quicker prototyping.

Motion Bus and Service Port Cables


We offer industrial shielded PUR cables with RJ45 connections for demanding industrial environments. These cables outperform office cables in EMC resilience, durability, and life.

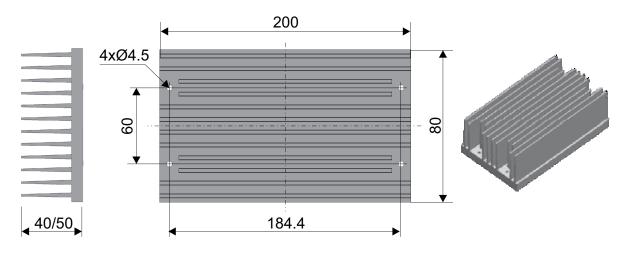
CANopen® Accessories

We offer cables, terminators and adapters for simple integration with CANopen machine networks.



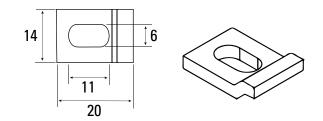
Drive System with AKD-x00306...02406

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com



Mechanical Accessories for Decentralized Drives (AKD°-N, AKD°-C)

Heat Sink for AKD-N


When mounting AKD-N to the machinery, temperature management is important to ensure maximum performance of the drive system. If needed, a heat sink may be mounted to the AKD-N.

Part Number	Description
AKD-N 3,6 HEATSINK KIT 40MM	Heat sink kit 40 mm with heat conducting film and 4 screws M4x16
AKD-N 3,6 HEATSINK KIT 50MM	Heat sink kit 50 mm with heat conducting film and 4 screws M4x16
849-373001-04	Heat conducting film

Mounting clamps for AKD-N

The AKD-N drive is mounted to a machine with special mounting clamps. The delivery package contains 4 clamps.

Part Number	Description			
AKD-N-M/C-Set	AKD-N Mounting Clamps Set, 4 clamps			

166

Sealing plugs for AKD-N connectors

The sealing plugs are attached to unused AKD-N connectors to ensure the IP class for the machine environment.

Part Number	Description
AKD-N-S/P-Set	AKD-N Sealing Plug Set, 4xM12, 2xM23, 2xM17

Shield Clamps

AKD drives feature slots on the front panel for the connection of additional shield clamps.

Part Number	Number Description Tension Ran				
DE-108248	SK14	6–13mm			

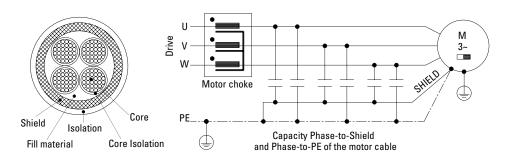
Jump-X5 connector for AKD-N-DS/DF with single line connection

For sufficient voltage supply of the digital feedback systems Hiperface DSL or SFD3 connected to AKD-N-DS/DF connector X4, a dongle must be plugged into X5.

Part Number	Description
AKD-N-JUMP-X5	AKD-N X5 sealed mating connector with jumper 4-5

Connector Kit for AKD-C

Mating connectors X12, X13, X14, X15, and X16 are part of delivery.


Part Number	Description
AKD-C-CONKIT	AKD-N connector kit, included mating connectors X12, X13, 14, X15, and X16

Motor Chokes

General

Shielded motor cables

For reasons of electromagnetic compatibility, the motor must be supplied with power via a shielded cable. The structure of a cable with 100% shielding and the capacity equivalent circuit diagram (to earth) are shown below.

Why use motor chokes?

- To compensate high capacitive charge/discharge currents typical of shielded motor cables approximately 25 m and longer. •
- To reduce current alternation noise in the motor.
- To reduce current ripple in the motor. .

The digital drives high switching frequencies and steep switching edges give rise to the transfer of capacitive currents to the shield by the three phases (U, V, W). These currents flow from the shield to earth. Depending on the cable length and cable capacity (determined by design), this can lead to the generation of shield currents with peak values of up to 20 A.

These shield currents place a load on the drives and motor. On large systems, this can lead to shifts in potential which can damage other components.

This effect is evident on systems with multiple drives operating in parallel on the same mains filter.

The motor chokes slow down the rate of rise of the motor current (reduce edge steepness), thereby reducing the current transferred to the shield.

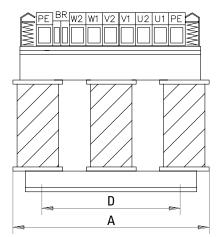
Why is the cross-section of the motor cable important?

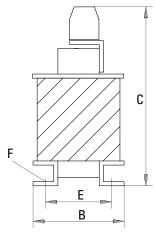
Motor cables longer than 50 m with a small cross-section (e.g. 4 x 1.0 mm²) and therefore a higher equivalent resistance are able to reduce the oscillation tendency of the LCR oscillating circuit (drive/choke/cable/motor). This cross-section can also be advantageous for cable lengths shorter than 50 m if the cable capacity and motor inductance are very high. However, the current loading of the cable must always be within the limits specified by industry standards.

Drive*	Motor choke	Description
AKD-x003 to AKD-x006	3YLN-06	Motor cable $\ge 25m$
AKD-x012	3YLN-14	Motor cable $\ge 25m$
AKD-x024	3YLN 24	Motor cable $\ge 25m$

*= x means variants -B, -P, -T or -

Part Number	Nominal Current	Approvals	Description
DE-107929	6 A	CE, UL	Motor choke 3YLN-06
DE-107931	14 A	CE, UL	Motor choke 3YLN-14
DE-201447	24 A	CE, UL	Motor choke 3YLN-24




DLLMOR(168

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Rated Data	Sym	DIM	3YLN-06	3YLN-14	3YLN-24		
Rated current	lOrms	А	6	24			
Rated voltage	Unom	V	480				
Rated frequency	fnom	Hz		0 to 150			
Max. frequency	fmax	kHz		8			
Inductivity	L	μH	900	900	450		
Power loss	Р	W	12	19.4	23.2		
Protection class	-	-	IP00				
Temperature class	-	-	F				
Operation class	-	-	S1				
Weight	G	kg	4.5 10 10				
Cable diameter (Shield clamp)	-	mm	4 to 13.5				
Wiring cross section max. (Terminals)	-	mm ²	10	16	16		
Width	А	mm	155	190	190		
Depth	В	mm	90	125	125		
Height	С	mm	195	230	230		
Mounting hole distance	D	mm	130	170	170		
Mounting hole distance	E	mm	56.5	78	78		
Mounting screws	F	-	4xM6	4xM6	4xM6		

Mains Chokes

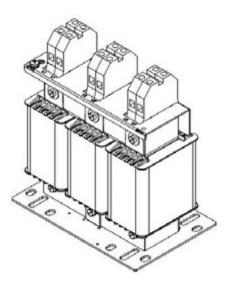
General

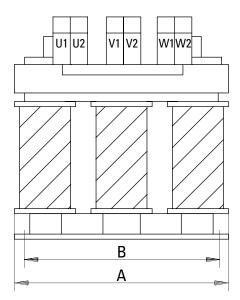
In special cases, if mains voltage is more than 3% asymmetrical, then the AKD-48A must be used with a mains choke.

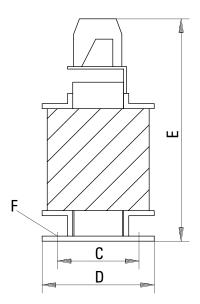
Purpose of mains choke:

- Prevents impermissible loading of semiconductors in the event of rapid current rise during commutation.
- Prevents voltage dips in the mains voltage caused by commutation.
- Reduces current ripple in the DC link, thereby increasing the service life of the DC link capacitors.

Drive	Mains Choke
AKD-x04807 (with asymmetrical mains >3% only)	2% uk
AKD other types	not required


Part Number	Description					
DE-201476	Mains choke 3L0,24-50-2 (0.24mH, 50A)					
DE-201477	Mains choke 3L0,2-75-2 (0.20mH, 75A)					




Mains choke 3L

A number of drives can be connected to the same mains choke; the rated current of the mains choke must be greater than or at least equal to the total current of the connected drives.

Туре	Inductivity [mH]	Nominal Current [A]	uk	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	Terminals [mm2]	Weight [kg]
3L 0,24-50-2	0.24	50	2%	152.5	114.3	88.9	114.3	163	6.5	10	5.9
3L 0,2-75-2	0.2	75	2%	185	170	77	122	220	8x12	35	9.9

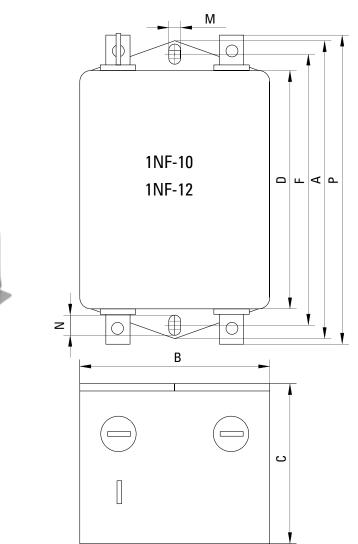
Mains filters

General

AKD-x00306 to AKD-x02406 drives require an external mains filter.

Drive	Mains Filter
AKD-x0030704807 (240 to 480V)	not required
AKD-B/P/T/M 0030602406 (120 to 240V)	1NF, 3NF

Part Number	Description
DE-201565	Mains filter 1NF-10 (230 VAC, 10A)
DE-201566	Mains filter 1NF-12 (230 VAC, 12A)
DE-201865	Mains filter 1NF-20B (125V/230 VAC, 20A)
DE-201568	Mains filter 1NF-25 (230 VAC, 25A)
DE-201569	Mains filter 3NF-07 (480 VAC, 07A)
DE-201570	Mains filter 3NF-16 (480 VAC, 16A)
DE-201571	Mains filter 3NF-30 (480 VAC, 30A)

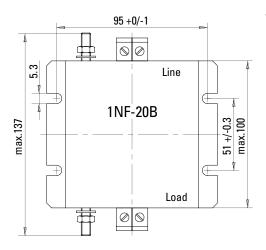


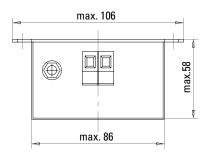
Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

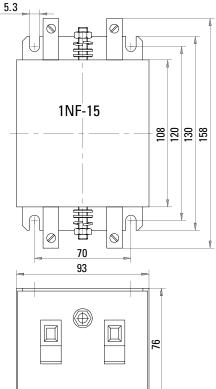
Mains filters 1NF-10...12

Туре	Nominal Current Voltage [A]*	Nominal Voltage [V]	A [mm]	B [mm]	C [mm]	D [mm]	F [mm]	M [mm]	N [mm]	P [mm]	Weight [kg]	Connection
1NF-10	10	230	85	49	40.3	54	75	5.3	6.3	87	0.29	Fast-on
1NF-12	12	230	156	57.5	45.4	130.5	143	5.3	6	156	0.73	Fast-on

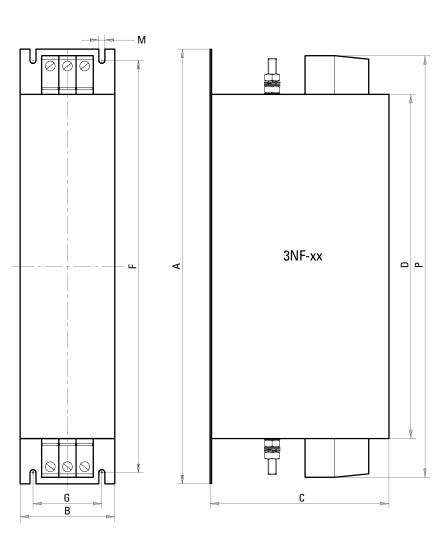
* at 40°C environment temperature




Mains filters 1NF-20B, 1NF-25


Туре	Nominal Current [A]*	Nominal IEC	Voltage UL/ CSA	Weight [kg]	Connection Phase Terminals	Connection PE
1NF-20B	20	230V	125V	0.93	Wires up to 4mm ² Torque 0.6 to 0.8 Nm	Bolt M 6
1NF-25	25	230V	230V	0.7	Wires up to 10 mm ²	Torque 3.5 to 4 Nm

* at 50°C environment temperature



Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Mains filter 3NF-07...30

Туре	Nominal Current [A]*	A [mm]	B [mm]	C [mm]	D [mm]	F [mm]	G [mm]	M [mm]	P [mm]	Weight [kg]	Terminals	PE Bolt
3NF-07	7 A	190	40	70	160	180	20	4.5	180	0.5	4 mm ² ,	
3NF-16	16 A	250	45	70	220	235	25	5.4	240	0.8	0.7-0.8 Nm	M5, 2.2 Nm
3NF-30	30 A	270	50	85	240	255	30	5.4	260	1.2	10 mm², 1.9-2.2 Nm	

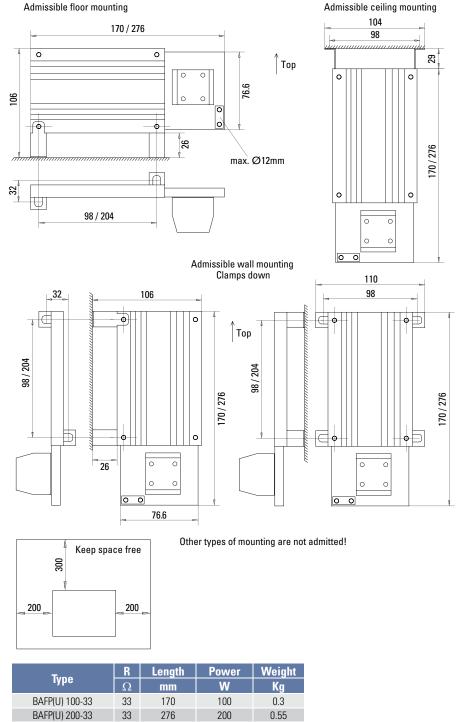
* at 50°C environment temperature

Regen resistors

General

During braking, energy is fed back into the drive. This regenerative energy is dissipated as heat in the regen resistor (also known as the brake resistor). The regen resistor is switched on by the regen circuit. Different resistance values have to be used depending on the drive. All resistors meet the requirements of CE directives and are UL-registered.

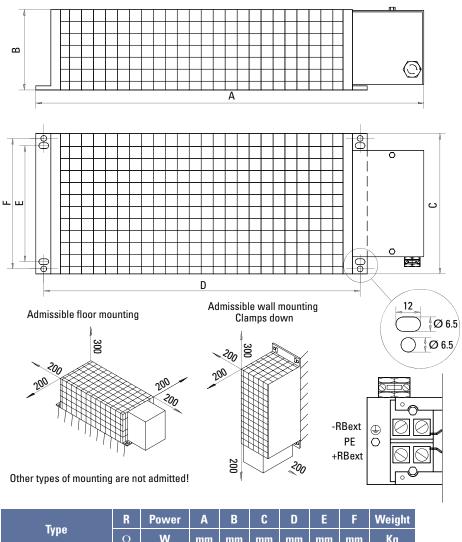
Drive*	Brake resistor	Resistance Ω	Optional/Required	
AKD-x00306	BAFP(U)/BAR(U)/BAS(U)	33	usually required	
AKD-x00606	BAFP(U)/BAR(U)/BAS(U)	33	usually required	
AKD-x01206	BAR(U)/BAS(U)	15	optional	
AKD-x02406	BAR(U)/BAS(U)	15	optional	
AKD-x00307	BAR(U)/BAS(U)	33	optional	
AKD-x00607	BAR(U)/BAS(U)	33	optional	
AKD-x01207	BAR(U)/BAS(U)	33	optional	
AKD-x02407	BAR(U)/BAS(U)	23	optional	
AKD-x04807	BAS(U)	10	usually required	
AKD-C01007	BAR(U)/BAS(U)	33	optional	


Description	Drive*	Resistance Ω	Rated Power [W]	Maximum Power [W]	Part Number
Brake resistor BAS(U) 2000-10		10	2000	3200	DE-103874
Brake resistor BAS(U) 3000-10	AKD-x04807	10	3000	4800	DE-103875
Brake resistor BAS(U) 6000-10		10	6000	9600	DE-103876
Brake resistor BAR(U) 500-15		15	500	800	DE-201439
Brake resistor BAR(U) 1000-15		15	1000	1600	DE-201440
Brake resistor BAS(U) 2000-15	AKD-x01206 & x02406	15	2000	3200	DE-103871
Brake resistor BAS(U) 3000-15		15	3000	4800	DE-103872
Brake resistor BAS(U) 6000-15		15	6000	9600	DE-103873
Brake resistor BAR(U) 600-23		23	600	960	DE-200613
Brake resistor BAR(U) 1000-23		23	1000	1600	DE-200614
Brake resistor BAS(U) 2000-23	AKD-x02407	23	2000	3200	DE-200615
Brake resistor BAS(U) 3000-23		23	3000	4800	DE-200616
Brake resistor BAS(U) 4000-23		23	4000	6400	DE-200617
Brake resistor BAFP(U) 100-33		33	100	160	DE-201437
Brake resistor BAFP(U) 200-33		33	200	320	DE-201438
Brake resistor BAR(U) 250-33	AKD-x00306 to -x00606,	33	250	400	DE-106254
Brake resistor BAR(U) 500-33	AKD-x00307 to -x01207, AKD-C01007	33	500	800	DE-106255
Brake resistor BAR(U) 1500-33		33	1500	2400	DE-106258
Brake resistor BAS(U) 3000-33		33	3000	4800	DE-201407

*= AKD-x means AKD variants -B, -P, -T or -M

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

External Regen Resistor BAFP(U)



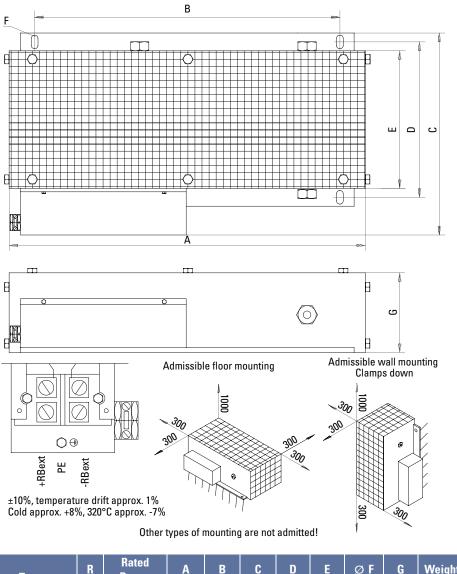
SERVO DRIVE ACCESSORIES

External Regen Resistor BAR(U)

Turne	n	Power	A	D	L.	U	E	r	vvergni
Туре	Ω	w	mm	mm	mm	mm	mm	mm	Kg
BAR(U) 500	15	500	549	120	92	430	64	80	3
BAR(U) 1000	15	1000	749	120	92	630	64	80	4
BAR(U) 600	23	600	549	120	92	430	64	80	3
BAR(U) 1000	23	1000	749	120	92	630	64	80	4
BAR(U) 250	33	250	349	120	92	230	64	80	2
BAR(U) 500	33	500	549	120	92	430	64	80	3
BAR(U) 1500	33	1500	649	120	185	530	-	150	5.8
BAR(U) 300	66	300	349	120	92	226	64	80	1.5
BAR(U) 600	66	600	549	120	92	426	64	80	2.3
BAR(U) 1000	66	1000	749	120	92	626	64	80	3.4
BAR(U) 300	91	300	349	120	92	226	64	80	1.5
BAR(U) 600	91	600	549	120	92	426	64	80	2.3
BAR(U) 1000	91	1000	749	120	92	626	64	80	3.4

 $\pm 10\%$, temperature drift approx. 1% Cold approx. +6% , 320° C approx. -7%

DIHIMORCEI


178

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

External Regen Resistor BAS(U)

Туре	R	Rated Power	A	В	C	D	E	ØF	G	Weight
	Ω	W	mm	mm	mm	mm	mm	mm	mm	Kg
BAS(U)2000-10	10	2000	490	380	255	170	150	10.5	260	7
BAS(U)3000-10	10	3000	490	380	355	270	250	10.5	260	8
BAS(U)6000-10	10	6000	490	380	455	370	350	10.5	260	11
BAS(U)2000-15	15	2000	490	380	255	170	150	10.5	260	7
BAS(U)3000-15	15	3000	490	380	355	270	250	10.5	260	8
BAS(U)6000-15	15	6000	490	380	455	370	350	10.5	260	11
BAS(U)2000-23	23	2000	490	380	255	170	150	10.5	260	7
BAS(U)3000-23	23	3000	490	380	355	270	250	10.5	260	8
BAS(U)4000-23	23	4000	490	380	355	270	250	10.5	260	9
BAS(U)3000-33	33	3000	490	380	355	270	250	10.5	260	8

Capacitor Modules

General

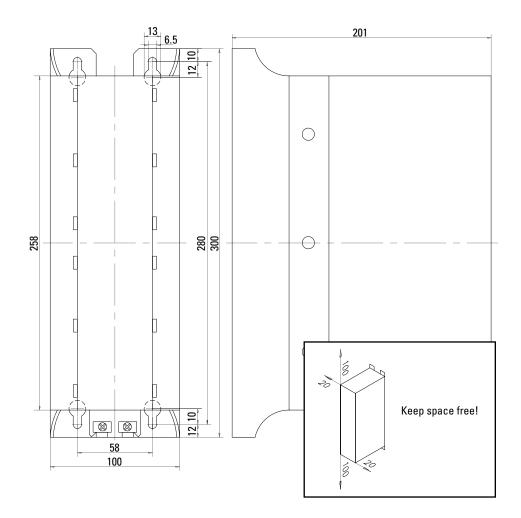
KCM modules (**K**OLLMORGEN **C**apacitor **M**odules) absorb energy generated by the motor when it is operating in generator mode. Normally, this energy is dissipated as waste via regen resistors. KCM modules, however, feed the energy they have stored back into the DC Bus link as and when it is required.

KCM-S	Saves energy: The energy stored in the capacitor module during generative braking is available the next time acceleration happens. The module's inception voltage is calculated automatically during the first load cycles.
KCM-P	Power in spite of power failure: If the power supply fails, the module provides the drive with the stored energy that is required to bring the drive to a standstill in a controlled manner (this only applies to the power supply voltage; battery-back the 24 V supply separately).
KCM-E	Expansion module for both applications. Expansion modules are available in two capacitance classes.

The KCM modules may only be connected to drives with 400/480 V rated voltage.

Drive*	KCM Module	Voltage
AKD-x0030602406	not allowed	240 V
AKD-x0030702407	all modules	480 V
AKD-x04807	contact customer support	480 V
AKD-C01007	all modules	480 V

*= x means variants -B, -P, -T or -M


Part Number	Description
KCM-S200-0000	Energy Saving Module, 1.6 kWs
KCM-P200-0000	Power Module, 2 kWs
KCM-E200-0000	Expansion Module 2 kWs
KCM-E400-0000	Expansion Module 4 kWs

foll Free Phone: 877-378-0240 foll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

KCM Module

Туре	Storage Capacity [Ws]	Rated supply [V=]	Peak supply [V=]	Power [kW]	Protection Class	Inception Voltage [V=]	Weight [kg]
KCM- S200	1600					calculated	6.9
KCM- P200	2000	max 850	max 950VDC (30s in 6min)	18	IP20	470 VDC	6.9
KCM- E200	2000	VDC			IFZU	-	4.1
KCM- E400	4000					-	6.2

Servo Drive Accessories

AKD[®] Performance Cables

Hybrid Cables

Hybrid cables offer a single connection point on the motor for both feedback and power. Feedback options for this connection type are:

- SFD GEN3 (Single-turn absolute, CA option)
- HIPERFACE® DSL (Single-turn absolute, GE option)
- HIPERFACE DSL (Multi-turn option, GF option)

Washdown versions of this cable are also available.

AKD Hybrid Cables by Motor Type

Motor	Hybrid Cable¹ option for 240V drives (AKD-xxxx06xxxx)	Hybrid Cable¹ option for 480V drives (AKD-xxxx07xxxx)
AKM < 12 A	CCJ1A2-015	CCJ2A2-015
$12 \text{ A} \le \text{AKM} < 20 \text{ A}$	CCJ2A2-025	CCJ2A2-025
Washdown AKM < 12 A	WCJ1A1-015	WCJ2A1-015
$12 \text{ A} \leq \text{Washdown AKM} < 20 \text{ A}$	WCJ2A1-025	WCJ2A1-025

 $^{\rm 1}\mbox{Hybrid}$ cables support SFD GEN 3, Single-turn and Multi-turn HiPerFace DSL

Dual Cables

Dual cables are used to separate power and feedback. Options included in this catalog support:

- HIPERFACE (Single-turn absolute, GJ option)
- HIPERFACE (Multi-turn absolute, GK option)
- EnDat (Multi-turn, LB option)
- BiSS (Single-turn absolute, AA option)

• EnDat (Single-turn, LA option)

BiSS (Multi-turn absolute, AB option)

Motor	Power Cable	Power Cable with Brake	SFD	EnDat 2.2, 01& BiSS
AKM < 12 A	CP-507CCAN	CP-507CDAN	CF-DA0374N	CF-SB7374N
$12 \text{ A} \le \text{AKM} < 20 \text{ A}$	CP-507DCAN	CP-507DDAN	CF-DA0374N	CF-SB7374N
$20 \text{ A} \le \text{AKM} < 24 \text{ A}$	CP-508EDBN	CP-508EDBN	CF-DA0374N	CF-SB7374N
CDDR < 12 A	CP-507CCAN	N/A	N/A	CF-SB7374N
$12 \text{ A} \le \text{CDDR} < 20 \text{ A}$	CP-508DCAN	N/A	N/A	CF-SB7374N
$20 \text{ A} \le \text{CDDR} < 48 \text{ A}$	CM-13A4-010	N/A	N/A	CF-SB7374N
DDR < 12 A	CP-507CCAN	N/A	N/A	CF-SB7374N
$12 \text{ A} \le \text{DDR} < 20 \text{ A}$	CP-508DCAN	N/A	N/A	CF-SB7374N

٠

Note: See page 179 for AKD Feedback and Power Cable nomenclature.

DLLMOR(

S

AKD Value Line Cables

Value Line Cables are alternative cable options suitable for most applications. These cables separate power and feedback. Options included in this catalog support Single-turn (GJ) and Multi-turn (GK) for AKD.

Motor	Power Cable	Power Cable with Brake	SFD	EnDat 2.2, 01& BiSS
AKM < 6 A	VP-507BEAN	VP-508CFAN	VF-DA0474N	VF-SB7374N
$6 \text{ A} \le \text{AKM} < 12 \text{ A}$	VP-508CEAN	VP-508CFAN	VF-DA0474N	VF-SB7374N
$12 \text{ A} \le \text{AKM} < 20 \text{ A}$	VP-508DEAN	VP-508DFAN	VF-DA0474N	VF-SB7374N
CDDR < 12 A	VP-507BEAN	N/A	N/A	VF-SB7374N
$12 \text{ A} \le \text{CDDR} < 20 \text{ A}$	VP-508CEAN	N/A	N/A	VF-SB7374N
$20 \text{ A} \le \text{CDDR} < 48 \text{ A}$	VP-508DEAN	N/A	N/A	VF-SB7374N
DDR < 12 A	VP-507BEAN	N/A	N/A	VF-SB7374N
$12 \text{ A} \le \text{DDR} < 20 \text{ A}$	VP-508CEAN	N/A	N/A	VF-SB7374N
$12 \text{ A} \le \text{DDR} < 20 \text{ A}$	VP-508DEAN	N/A	N/A	VF-SB7374N

Note: See page 179 for AKD Feedback and Power Cable nomenclature.

Servo Drive Accessories

AKD[®]-N Performance Cables

Digital I/O cable for AKD-N

All AKD-N drives have one 8 poles M12 connector to connect digital control signals.

Drive	Part Number	Description
AKD-N (all)	SAC-8P-M12MS	5 m, M12 mating connector, unconfigured wires

STO Cable for AKD-N-DS

AKD-N-DS drives (devices with local STO input) have an additional 4 poles M12 connectors to connect the local STO signals.

Drive	Part Number	Description
AKD-N-S	SAC-4P-M12MS	5 m, M12 mating connector, unconfigured wires, A- coded

Fieldbus cable for AKD-N-DF

AKD-N-DF drives (devices with local fieldbus input) have an additional 4 poles M12 connectors to connect the local fieldbus signals.

Drive	Part Number	Description
AKD-N-DF	SAC-4P-M12MSD/5.0	5 m, M12 mating connector, unconfigured wires, D- coded

SERVO

AKD[®] N Performance Cables

Hybrid Cable Connecting AKD-C Power Supply to AKD-N Axis Module

Part Number	Description
CCNCN1-025-xxmyy-00	Hybrid cable connecting AKD-C to AKD-N

Length definition: xx=meters, yy=centimeters

Hybrid Cable Connecting AKD-N Axis Module to AKD-N Axis Module

Part Number	Description
CCNNN1-025-xxmyy-00	Hybrid cable connecting AKD-N to AKD-N

Length definition: xx=meters, yy=centimeters

Hybrid Cable Connecting AKD-N Axis Module to AKM Motor

Part Number	Description
CCJNA3-015-xxmyy-00	Hybrid cable connecting AKD-N to AKM (SFD GEN3, Single-turn/Multi-turn HiPerFace DSL)

Length definition: xx=meters, yy=centimeters

Servo Drive Accessories

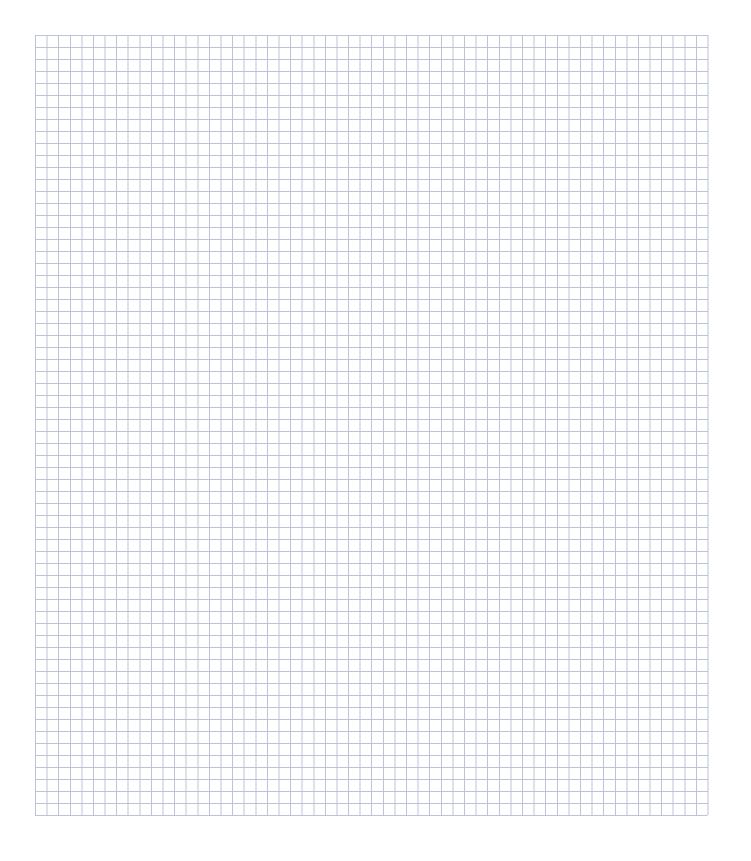
Performance Cables for AKD®-N-DF/DS to AKM® Motor

Motor	Connector	Power Cable	Power Cable with Brake	SFD
	y-tec	CM0NA3	CM1NA3	CFSNA3
AKM < 6 A	Dual Interconnect	CM0NA1	CM1NA1	CFSNA1

CAN bus cable

The CAN Termination connector is required for bus termination of the last AKD connected to the CAN bus. For connecting an AKD to a CAN device with SubD9 connector the CAN RJ12-SubD9 adapter can be used. Configured CAN bus cables for AKD-xyyyzz-xxCN and AKD-xyyyzz-xxCC.

Part Number	Description
CBP000-002-m15-00	CAN bus cable 0.15 m
CBP000-002-m30-00	CAN bus cable 0.30 m
CBP000-002-001-00	CAN bus cable 1.00 m
CBP000-002-003-00	CAN bus cable 3.00 m


Part Number	Description
AKD-CAN-Termination	CAN Termination connector
AKD-CAN-RJ12-SubD9	CAN RJ12->SubD9 adapter

Sold & Serviced By:

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

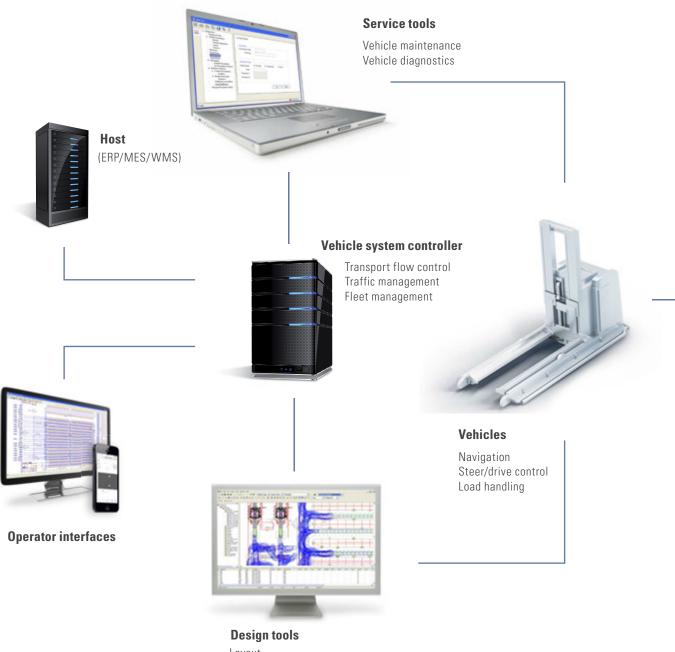
Warehouse (NDC) Solutions

Kollmorgen is a world-leading provider of vehicle automation kits. We combine a complete range of hardware, software and navigation technologies with vast knowledge and experience. We have a long and successful history in this field and can provide you with everything you need for excellent vehicle control independent of application. The result is lower total costs – for you and your customers.

Turn to us when you want to create vehicle solutions that give you a competitive advantage in the marketplace.

Sold & Serviced By:

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com


Benefits	Features
 Lowest total cost for partners 	No need to develop your own controls
	• More time to focus on end-user application
	Proven and flexible concept
	Works for all applications in all segments
	• Support in the sales process
	Access to value-adding services
 Lowest total cost for end-users 	Customized application
	Easy to integrate with other systems
	Easy to operate, maintain and update
	 High availability – 24/7 opration

AGV Control Systems

Powerful Software Solutions for Efficient Design and Service

NDC Solutions gives you access to a set of efficient design and service tools. The design tools help you outline a wide variety of layouts as well as system and vehicle applications. Service tools include vehicle maintenance (e.g. fault-tracing, statistics and software downloads) and automatic surveying of the environment.

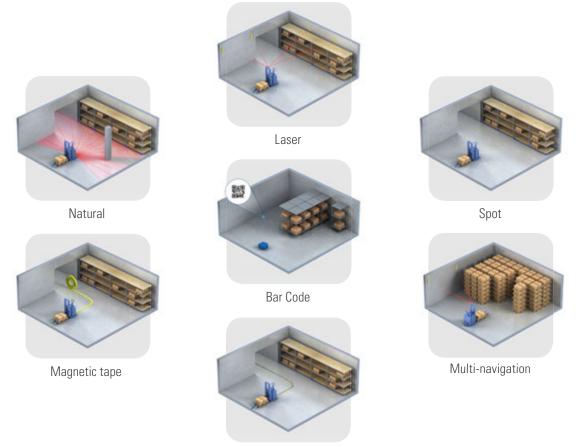
Layout Applications

Robust and Reliable Vehicle Hardware

The different platforms in NDC Solutions use the same vehicle hardware. The hardware consists of powerful and reliable components in a number of areas. All components are designed for tough environments where vibrations, dust, moisture and temperature variations are all part of daily life.

Drives

Encoders


Manual control device

AGV Control Systems

Navigation Technologies

NDC Solutions works with all established navigation technologies. What's more, there is also support for a combination of technologies, such as multi-navigation. Multi-navigation allows you to serve a storage space using one type of navigation and a production area using another.

Inductive wire

Kollmorgen - A Partner You Can Trust

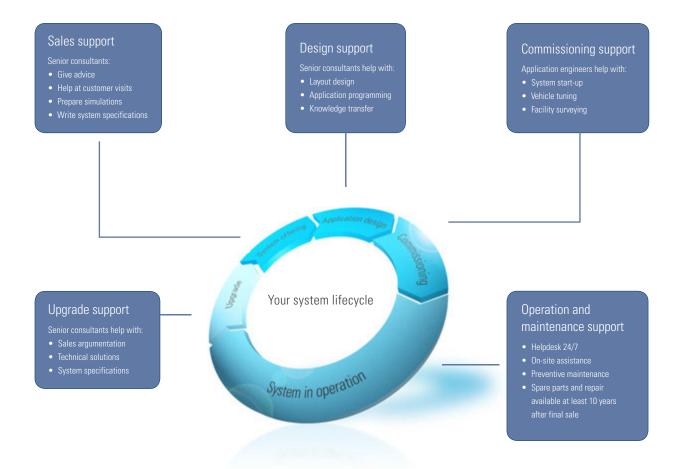
With an installed base of 20,000 vehicles, Kollmorgen is the number one provider of vehicle automation kits.

World's first automobile production plant with driverless vehicles Volvo, Sweden, 1972

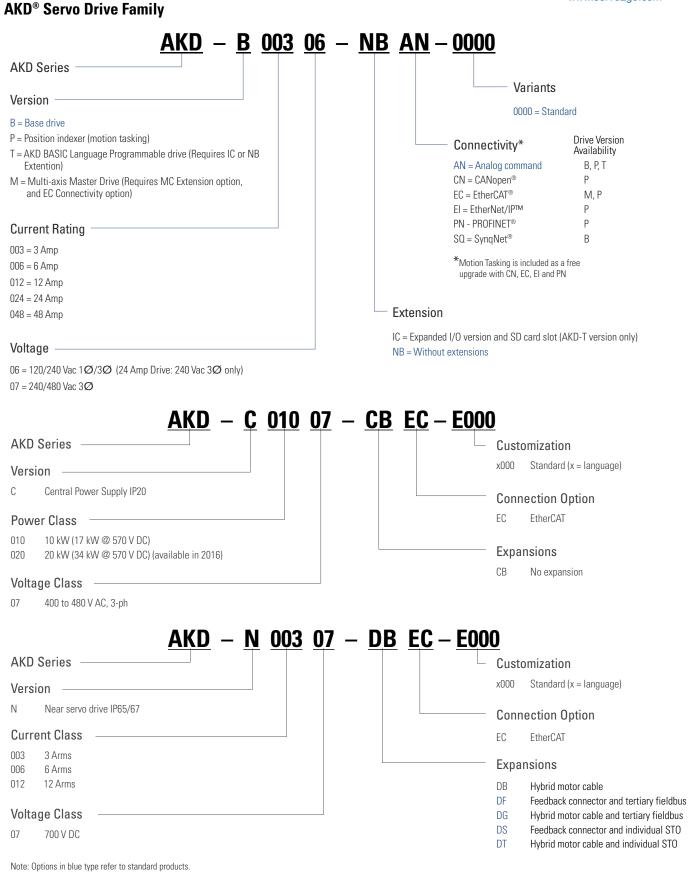
World's first laser-guided vehicle Tetra Pak, Singapore, 1990

World's first Pick-n-Go system Marktkauf, Germany, 2007

World's first driverless vehicle with 16 controlled wheels, Posco Steel, South Korea, 2009

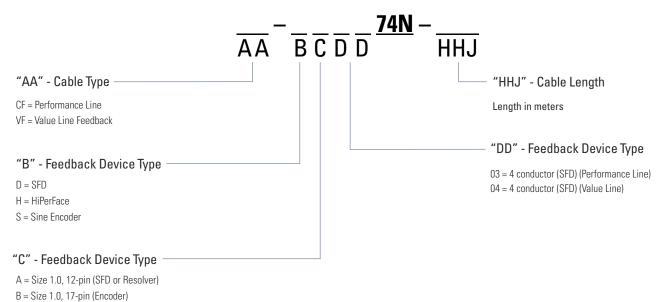

Services that Last a Lifetime

The end-users require high uptime, efficient daily operations and applications that are easy to change. We help you meet these demands with both technology and services.

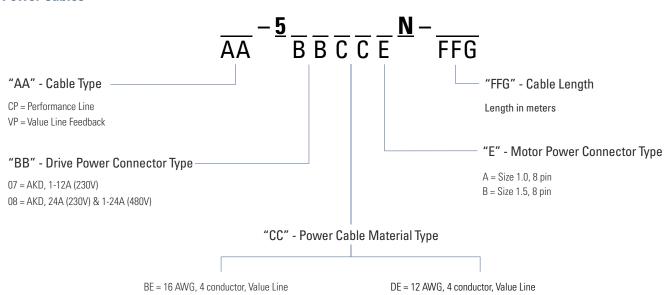

Our services portfolio consists of:

- Training services that quickly make you an NDC Solutions expert. We offer basic, advanced and tailor-made courses, either at our training facilities or at your site. Internet-based training is also available.
- Support services where we give answers and solutions to your requests.
- Consulting services where our senior consultants help you in the sales and design process.

The illustration shows how we support you throughout the lifecycle of your system.



KOLT.MOI

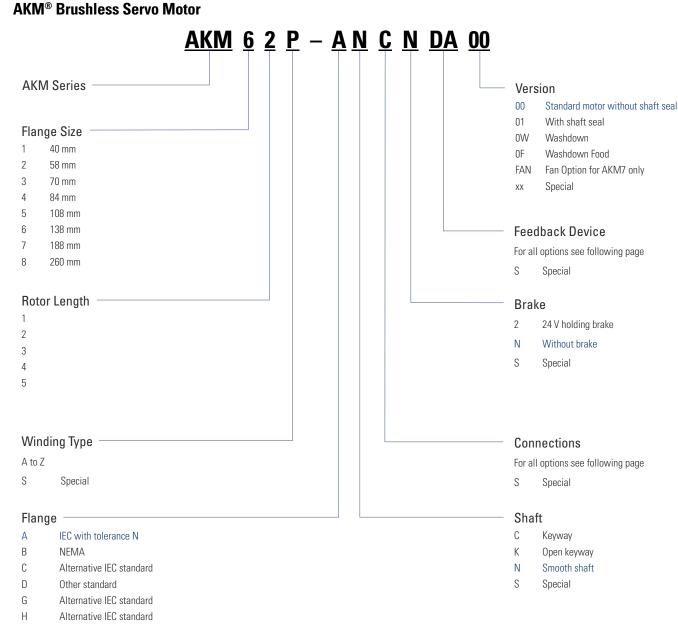


AKD® Servo Drive Cables

Feedback Cables

Power Cables

CD = 14/18 AWG, 6 conductor, brake, Performance DD = 12/18 AWG, 6 conductor, brake, Performance


DF = 12/18 AWG, 6 conductor, brake, Value Line

ED = 10/18 AWG, 6 conductor, brake, Value Line

- CE = 14 AWG, 4 conductor, Value Line
- CF = 14/18 AWG, 6 conductor, brake, Value Line

Because Motion Matters[™] 195

- R IEC with tolerance R
- M, T Reinforced bearing AKM8
- W Flange coating for Washdown, IEC
- S Special

MODEL NOMENCLATU

₽

m

Note: Options in blue type refer to standard products.

Sold & Serviced By:

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Feedback Unit Options

Code	Designation	Model	Can be used with	Connection Option	Comment
1-	Comcorder		AKM1 - AKM8	1, 2, 7, B, C, G, H, T	1024 incr./rev
2-	Comcorder		AKM1 -AKM8	1, 2, 7, B, C, G, H, T	2048 incr./rev
AA	BiSS B encoder	AD36	AKM2 - AKM4	1, 7, B, C, M	Single-turn, optical
AA	BiSS B encoder	AD58	AKM5 - AKM8	1, 2, C, G, H, M, T	Single-turn, optical
AB	BiSS B encoder	AD36	AKM2 - AKM4	1,7,B, C, M	Multi-turn, optical
AB	BiSS B encoder	AD58	AKM5 - AKM8	1, 2, C, G, H, M, T	Multi-turn, optical
C-	Smart Feedback Device SFD	Size 10	AKM1	1, D, Y, M, P	Single-turn 4-wire
C-	Smart Feedback Device SFD	Size 15	AKM2 - AKM4	1, D, Y, M, P	Single-turn 4-wire
C-	Smart Feedback Device SFD	Size 21	AKM5- AKM8	1, D, Y, M, P	Single-turn 4-wire
CA	Smart Feedback Device SFD3		AKM1 - AKM6	D	Single-turn 2-wire
DA	EnDAT 2.1 encoder	ECN 1113	AKM2 - AKM4	1, 7, B, C, M	Single-turn. optical
DA	EnDAT 2.1 encoder	ECN 1313	AKM5 - AKM8	1, 2, C, G, H, M, T	Single-turn, optical
DB	EnDAT 2.1 encoder	EQN 1125	AKM2 - AKM4	1, 7, B, C, M	Multi-turn, optical
DB	EnDAT 2.1 encoder	EQN 1325	AKM5 - AKM8	1, 2, C, G, H, M, T	Multi-turn, optical
LA	EnDAT 2.1 encoder	ECI 1118	AKM2 - AKM3	1, 7, B , C, M	Single-turn, inductive
LA	EnDAT 2.1 encoder	ECI 1319	AKM4 - AKM8	1, 2, C, G, H, M, T	Single-turn, inductive
LB	EnDAT 2.1 encoder	ECI 1130	AKM2 - AKM3	1,7, B, C, M	Multi-turn, inductive
LB	EnDAT 2.1 encoder	ECI 1331	AKM4 - AKM8	1, 2, C, G, H, M, T	Multi-turn, inductive
GJ	HIPERFACE encoder	SKS36	AKM2 - AKM8	1,2,7, B, C, G, H, M, T	Single-turn, optical
GK	HIPERFACE encoder	SKM36	AKM2 - AKM8	1,2,7, B, C, G, H, M, T	Multi-turn, optical
GP	HIPERFACE encoder	SEK34	AKM1	1, Y, M	Single-turn, capacitive
GR	HIPERFACE encoder	SEL34	AKM1	1, Y, M	Multi-turn, capacitive
GE	HIPERFACE DSL encoder	EKS36	AKM2 - AKM8	D	Single-turn, optical
GF	HIPERFACE DSL encoder	EKM36	AKM2 - AKM8	D	Multi-turn, optical
GM	Safety HIPERFACE	SKS36S	AKM2 - AKM8	1, 2, 7, B, C, G, H, M, T	Single-turn, optical
GN	Safety HIPERFACE	SKM36S	AKM2 - AKM8	1, 2, 7, B, C, G, H, M, T	Multi-turn, optical
MA	Drive Cliq	ECN1324S	AKM4 - AKM8		Single-turn, optical
MB	Drive Cliq	EQN1336S	AKM4 - AKM8	tba	Multi-turn, optical
R-	Resolvers	Size 10	AKM1	1,2,7, B, C, G, H, M, T, Y	2-pin, hollow shaft
R-	Resolvers	Size 15	AKM2 - AKM4	1,2,7, B, C, G, H, M, T, Y	2-pin, hollow shaft
R-	Resolvers	Size 21	AKM5 - AKM8	1,2,7, B, C, G, H, M, T, Y	2-pin, hollow shaft

* not available for AKM2 with connection option C (cable with IP65 connector)

Connector Options

Co	ode				
With PTC	With KTY 84-130	Can be used with	Protection class	Connection type	Description
В	1	AKM2	IP65	2 threaded connectors, size 1.0	Angled, rotatable, mounted on motor
С	7	AKM1 - AKM2	IP65	2 threaded connectors, size 1.0	On 0.5 m cable
С	1	AKM3	IP65	2 threaded connectors, size 1.0	Angled, rotatable, mounted on motor
С	1	AKM4 - AKM7	IP65	2 Speed Tec Ready connectors, size 1.0	Angled, rotatable, mounted on motor
-	D	AKM1	IP65	1 hybrid i-tec connector	Mounted on motor
-	D	AKM2 - AKM6	IP65	1 hybrid threaded connector, size 1.0	Angled, rotatable, mounted on motor
G	-	AKM2 - AKM3	IP67	2 threaded connectors, size 1.0	Straight, mounted on motor
G	-	AKM4 - AKM6	IP67	2 Speed Tec Ready connectors, size 1.0	Straight, mounted on motor
Н	1	AKM74Q and AKM82T	IP65	1 feedback threaded connector, size 1.0 1 power threaded connector, size 1.5	Angled, rotatable, mounted on motor
Μ	-	AKM1 - AKM4	IP20	2 Molex connectors, $I_0 < 6 A$	On 0.5 m cable
Р	-	AKM1 - AKM4	IP20	1 Molex connector, I < 6 A	On 0.5 m cable
R	-	AKM4 - AKM7	IP65	1 feedback threaded connector M12 1 power connector SpeedTec-Ready M23	Straight, mounted on motor Angled, mounted on motor
Т	2	AKM8	IP65	1 terminal box IP65 for power 1 Feedback threaded connector, size 1.0	Mounted on motor
Y	1	AKM1	IP65	1 y-tec [®] connector	Mounted on motor

Feedback and Connection Availability

Feedback

Device

C-, CA

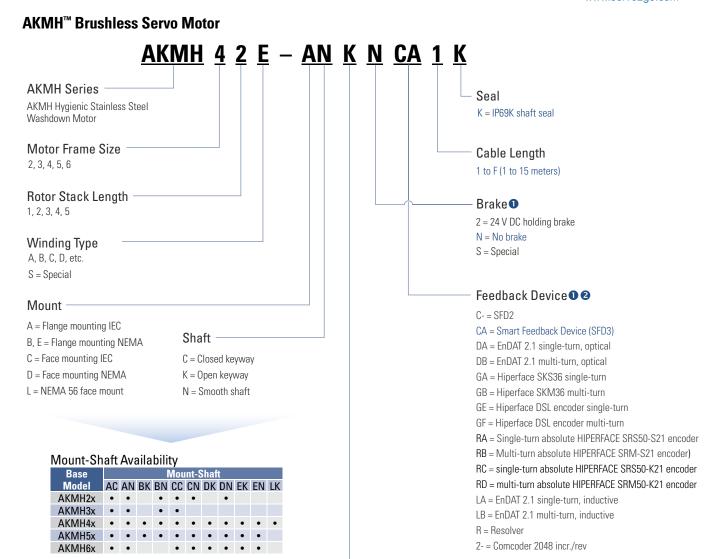
GE, GF

2-, R-DA, DB

GA. GB

LA, LB

RA, RB


RC, RD

Cable Connection

VWL

M R

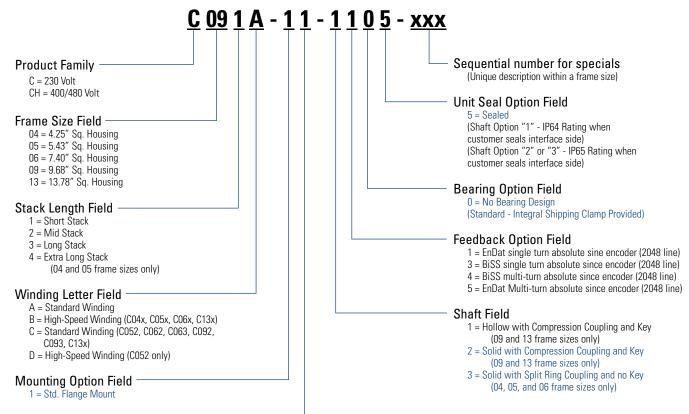
G

Note: LK mount requires 2 weeks additional lead time for the first product order. Note: Ex mounts are only available if Rx feedback devices are selected.

Cable Connection

- B = Cable with IP67 Speedtec connector
- G=Cable with IP67 Speedtec connector in silicone tube
- K = Pre-assembled cable for connection to AKD
- $\mathsf{L}=\mathsf{Dual}\mathsf{-cable}$ version with open cable ends
- M = Dual-cable version with open cable ends in silicone tube
- R = Dual cable with IP67 non-stainless steel, non-hygienic, vented connector with air pressure compensation
- T = Pre-assembled cable in silicone tube for connection to AKD
- V = Cable with IP69 Speedtec connector
- W = Cable with IP69 Speedtec connector in silicone tube
- C- feedback is not available with brake.
- Rx feedback device options are mapped for connection to third-party servo drives

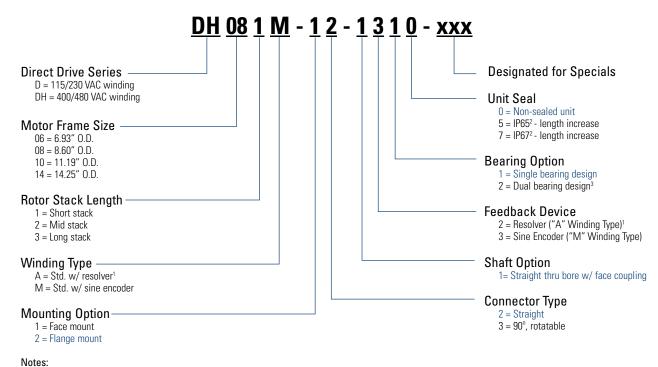
Note: Options in blue type refer to standard products.


m

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Cartridge DDR Motor

Connector Option Field

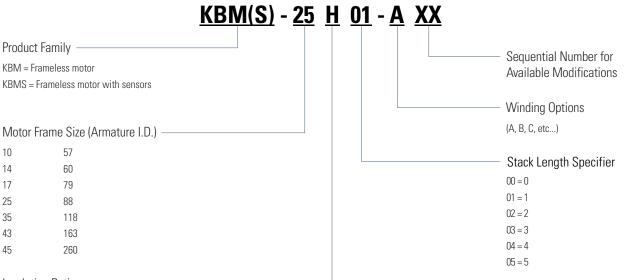

1 = Side Connector Option (09 and 13 frame sizes only)

2 = Rear Connector Option (09 and 13 frame sizes only)

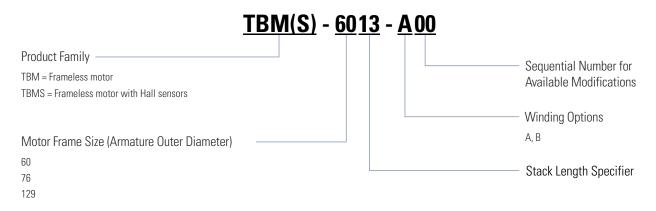
 $3=90^\circ$ Rotatable Connectors (04, 05 and 06 frame sizes only)

Housed DDR Motor

- 1. Not available on D14x & DH14x.
- 2. Encoder sealed motors have increased length. See outline drawing.
- 3. Standard on D143 & DH143 models.
- 4. Options shown in blue text are considered standard.

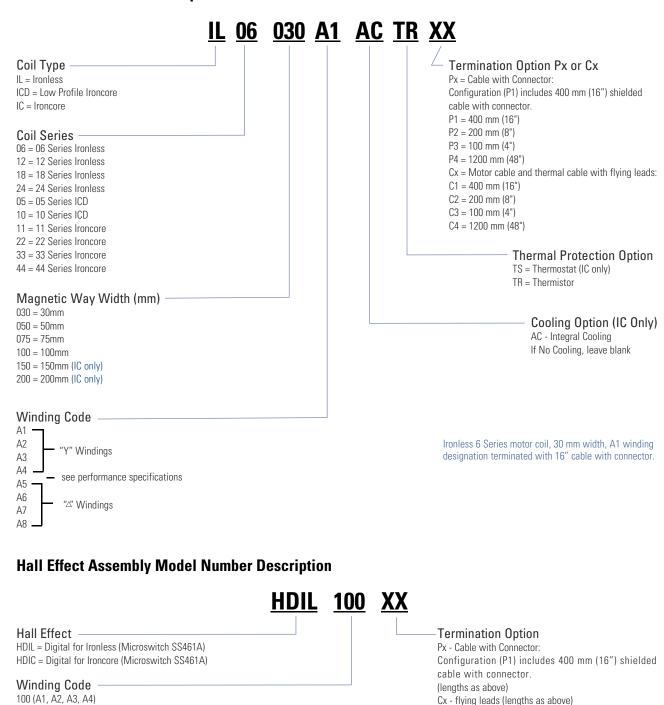

Note: Options in type refer to standard products.

 \leq


KBM Frameless Motor

Insulation Ratings

H = High voltage insulation (>240 Vac), S = Low-Voltage insulation (\leq 240 Vac) Note: H insulation is standard option for frame sizes 10, 14, 17, 25, 35 and 45.


TBM Frameless Motor

m

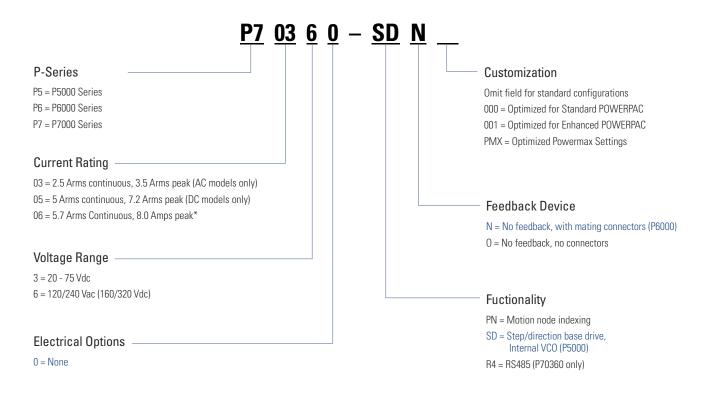
Coil Model Number Description

Cx - flying leads (lengths as above)

200 (A5, A6, A7, A8) Example: HDIL100P1

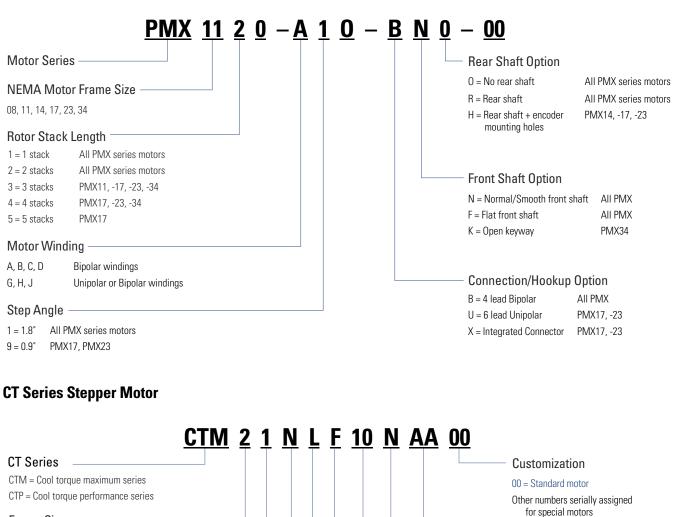
Hall effect assembly with digital outputs for Ironless motor terminated with 16" cable with connector.

DI.I.MORGEN



Magnetic Way Model Number Description

P-Series Stepper Drive


Note: Options in blue type refer to standard products.

)R(

h"

m

PMX[™] Series Stepper Motor

Frame Size

1 = Size 17 / 4.2 cm (CTP only) 2 = Size 23 / 5.7 cm 3 = Size 34 / 8.5 cm

Length ·

- 0 = Short Stack (CTP only)
- 1 = 1 stack
- 2 = 2 stacks
- 3 = 3 stacks

Mounting

N = NEMA through holes (size 23 & 34 only) E = English tapped holes (size 17 only) M = Metric tapped holes (size 17 only)

Construction/Connection Style

L = Leads S = Special

Number of Connections

- F = Four
- S = six

Note: Options in blue type refer to standard products.

LAT

 \subset

R

Sold & Serviced By:

SERV

GO.com

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com

www.servo2qo.com

Rear Options

EE = English rear shaft & encoder

Front Shaft Options

F = Flat (size 23 only)

Winding Current

MA = Metric rear shaft (size 17 only)

N = Round smooth shaft (size 23 only)

For 4 lead motors = Bipolar current x10

For 6 lead motors = Unipolar current x10

K = Straight keyway (size 34 only) M = Metric (size 17 only)

mouting holes (size 23 & 34 only)

AA = None

SS = Special

S = Special

Examples: 05 = 0.5 Amps

 $10 = 1 \, \text{Amp}$

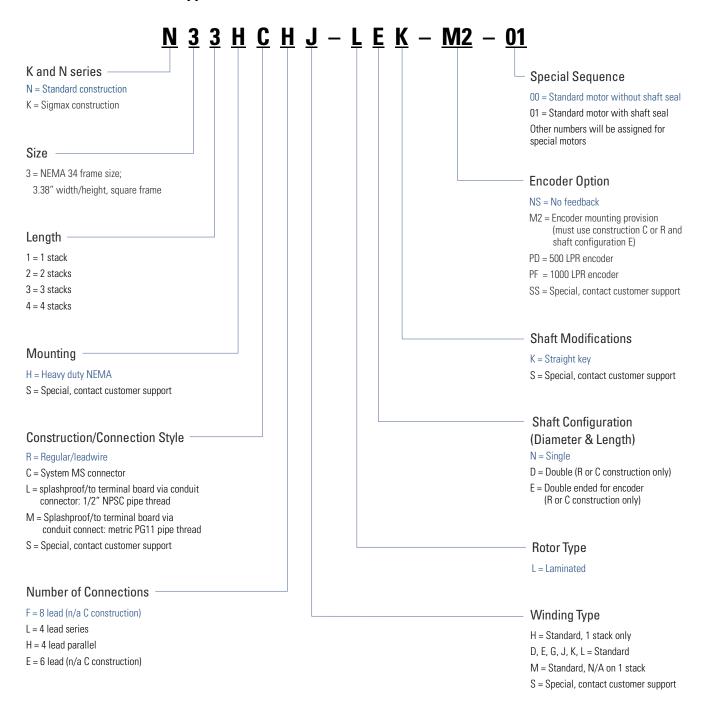
50 = 5 Amps00 = Special

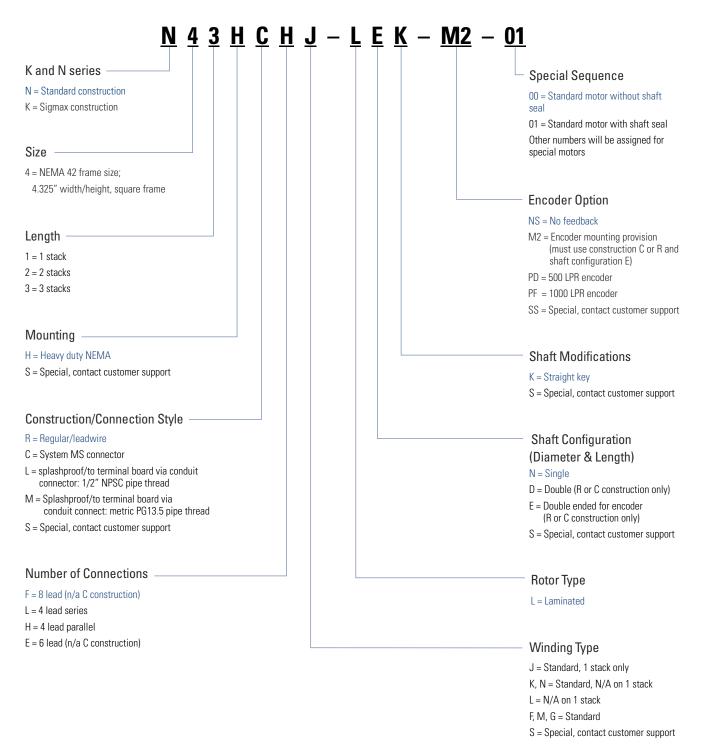
E & H Series Stepper Motor

Basic series	Special Sequence
H = Standard construction	
= SIGMAX construction (n/a half stack)	00 = Standard motor without shaft seal 01 = Standard motor with shaft seal (size 3 and 4 only
Size	Other numbers will be assigned for special motors
2 = NEMA 23	Encoder Option
frame size (2.25" dia,)	NS = No feedback
3 = NEMA 34	All options below require
frame size (3.38"dia.)	construction R or C
4 = NEMA 42 frame size (4.28" dia.)	M1 = Encoder mounting provision (size 2 only). Requires shaft configuration E
	HD = 500 LPR encoder (size 2 only)
Number of Rotor Stacks	HJ = 512 LPR encoder (size 2 only)
H = Half stack (H series only)	M2 = HP encoder mounting provision (size 3,4 only). Requires shaft configuration E
2 = 2 stacks	M3 = BEI encoder mounting provision
B = 3 stacks (size 3,4 only)	(size 3,4 only). Requires shaft configuration D
I = 4 stacks (size 3 only)	SS = Special, contact customer support
Mounting	Shaft Modifications
N = NEMA (n/a 4 stacks)	N = Smooth (size 2,3 only)
I = Heavy duty NEMA	(mounting config. N only)
(opt. on 3 stacks, std. on 4 stacks)	F = Flat (size 2,3 only)
S = Special, contact customer support	(mounting config. N only)
	K = Straight key (size 3,4 only)
Construction/Connection Style	(mounting config. H only)
R = Regular/leadwire	W = #303 Woodruff key (size 3 only) (mounting config. N only)
C = System MS connector	S = Special
L = Splashproof/to terminal board via conduit connector: 1/2" NPS pipe thread (size 3,4 only)	
M = Splashproof/to terminal board via conduit connect: metric PG11 pipe thread (size 3,4 only)	Shaft Configuration (Diameter & Length)
S = Special, contact customer support	N = Single
Number of Connections	D = Double (R or C construction only)
Number of Connections	E = Double ended for encoder (R or C construction only, size 3,4 only)
= 8 lead	S = Special, contact customer support
_ = 4 lead series	
H = 4 lead parallel	Rotor Type
. – 0 1000	L = Laminated
Vinding Type	J = Low inertia (size 2 only, n/a with half stack motors)

Note: Options shown in blue text are considered standard.

A, B and C = Additional standards


S = Special, contact customer support



Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

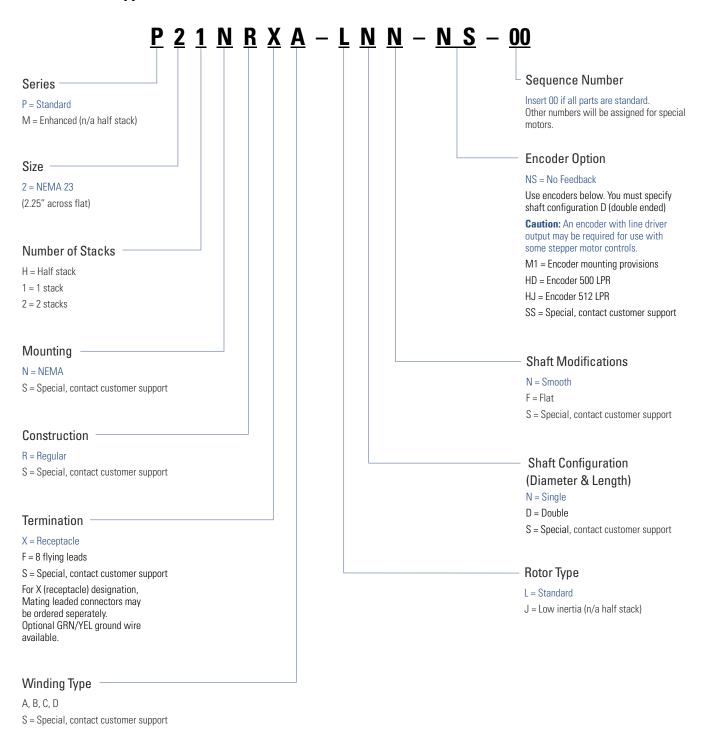
NEMA 34 K & N Series Stepper Motor

NEMA 42 K & N Series Stepper Motor

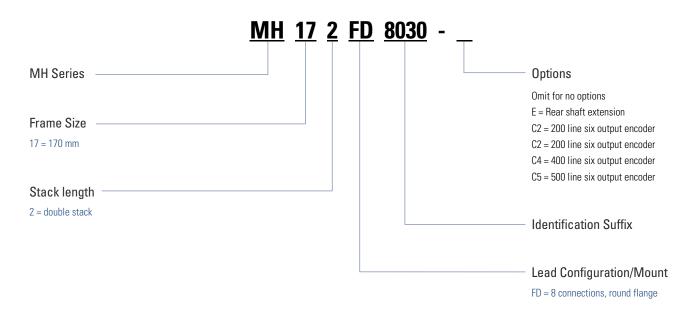
Sold & Serviced By:

SERVO

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com


GO.com

Sold & Serviced By:

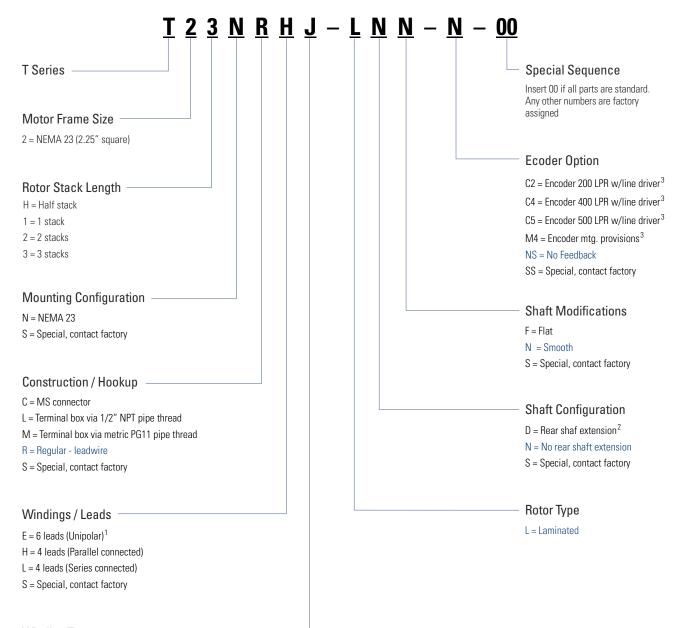

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

M & P Series Stepper Motor

MH172 Stepper Motor

MX Series Hazardous Duty Stepper Motor

Note: Options shown in blue text are considered standard.


.I.MOR(

Sold & Serviced By:

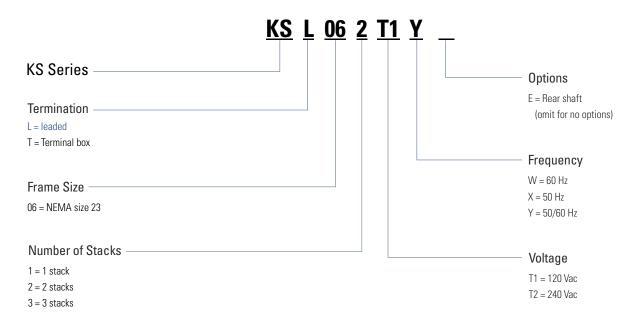
sales@servo2go.com www.servo2go.com

T2 Series Stepper Motor

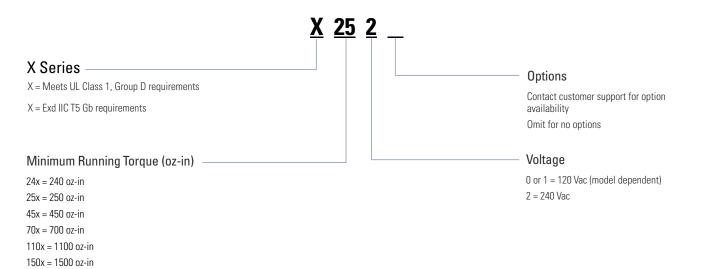
Winding Type

D. E. F. G. H. J. K S = Special, contact factory

Notes:


1. N/A with "C" Construction / Hookup option

2. "R" Construction / Hookup only, required for motors with encoders


3. Requires "R" Construction / Hookup option and "D" Shaft Configuration option

Note: Options in blue type refer to standard products.

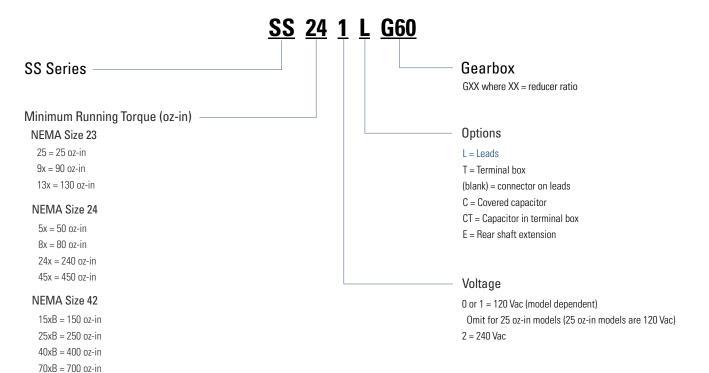
KS Series AC Synchronous Motor

X Series AC Synchronous Motor

Note: Options shown in blue text are considered standard.

.I.MOR(

180x = 1800 oz-in


Sold & Serviced By:

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

SS Series AC Synchronous Motor

NEMA Size 66 180x = 1800 oz-in

")

XTRUE Gearbox Series

<u>XT</u> <u>080</u> - <u>00</u>	<u>15</u> - <u>0</u> - <u>RMA08</u>	<u> 80 - 2</u>	<u>8</u>	
XTRUE Series				
Frame Size 040 = Size 40 060 = Size 60		RediMc	ount™ Opt	tion
080 = Size 80 120 = Size 120		Frame Size	NEMA*	Descrisption
160 = Size 160		060	23	RM060-1 (shaft dia. =0.25" x 0.81") RM060-147
Ratio 003 = 3:1 004 = 4:1		000	24	(shaft dia. = 0.3125" x 0.81" RMA080-28 (shaft dia. = 0.5" x 1.25")
005 = 5:1 007 = 7:1		080	34	RMA080-61 (shaft dia. = 0.625" x 1.25")
008 = 8:1 010 = 10:1 015 = 15:1		120	42	RMA115-72 (shaft dia. = 0.75" x 2.19")
020 = 20:1 025 = 25:1 030 = 30:1				
040 = 40:1 050 = 50:1				
070 = 70:1 080 = 80:1 100 = 100:1				
Custom Options				
	,			

0 = None

S = Special

KOLLMORGEN

* Fits standard NEMA pilot and bolt circle with through holes. Contact customer support for other RediMount options to meet your needs.

www.servo2qo.com

Available

EC2, EC3, EC4, EC5

EC2, EC3, EC4, EC5 EC2, EC3, EC4, EC5

EC2, EC3, EC4, EC5

EC2, EC3, EC4, EC5

EC3, EC4, EC5

EC4, EC5

EC4, EC5

Available

EC4 only EC4 only EC2, EC3, EC5 EC4 only

EC4 only EC2, EC3, EC5

EC4 only EC4 only

EC2, EC3

EC2, EC3, EC4, EC5

EC2, EC3, EC4, EC5

Available

All

ΔII

All

All

EC1, EC2, EC3, EC5

All

ΔII

ΔII

All

EC Series

FC1 EC2 EC3 EC4 EC5

Motor Type

AKM11B = AKM11B-ANCNx-00 brushless servo AKM13C = AKM13C-ANCNx-00 brushless servo AKM23D = AKM23D-EFxxx-00 brushless servo AKM23C = AKM23C-EFxxx-00 brushless servo AKM42G = AKM42G-EKxxx-00 brushless servo AKM42E = AKM42E-EKxxx-00 brushless servo AKM52G = AKM52G-EKxxx-00 brushless servo AKM52H = AKM52H-EKxxx-00 brushless servo AKM52L = AKM52L-EKxxx-00 brushless servo X = Customer-supplied motor

(motor described in Options element of part number)

Motor Options

Bxx = Rotatable IP65 connectors C xx = 0.5 m shielded cables w/ IP65 connectors Cxx = Rotatable IP65 connectors x N x = No brakex2x = 24 Vdc power-off holding brake xxR = Resolverxx2 = 2048 LPR incremental comm. encoder

xxC = Smart Feedback Device (SFD)

Drive Ratio

10 = 1.0:1 drive belt/pulley (EC1 - helical) 10L = 1.0:1 inline coupling (direct 1:1 coupling is the only ratio available for inline models) 15 = 1.5:1 drive belt/pulley 20 = 2.0:1 drive belt/pulley (EC1 – helical) 40 = 4.0:1 helical gears

50 = 5.0:1 helical gears 70 = 7.1:1 helical gears 100 = 10.0:1 helical gears

Screw Lead

03M = 3 mm/rev ballscrew
05B = 5 mm/rev ballscrew
10B = 10 mm/rev ballscrew
16B = 16 mm/rev ballscrew
25B = 25 mm/rev ballscrew
32B = 32 mm/rev ballscrew
04A = 4 mm/rev lead screw

Note: Ontions shown in blue text are considered standard

All All EC2, EC3, EC4, EC5 Not valid for EC3-AKM42

> EC1 only EC2, EC3, EC4, EC5 EC3 only EC2, EC4, EC5

Available

EC1 EC2, EC3 EC3, EC4, EC5 EC2. EC3 EC4 EC5 EC2, EC3

Stroke Length

50 = 50 mm total stroke 100 = 100 mm total stroke 150 = 150 mm total stroke 200 = 200 mm total stroke 250 = 250 mm total stroke 300 = 300 mm total stroke 450 = 450 mm total stroke 600 = 600 mm total stroke 750 = 700 mm total stroke 1000 = 1,000 mm total stroke 1250 = 1.250 mm total stroke 1500 = 1,500 mm total stroke nnn = Custom stroke lengths available in 10 mm increments

Cylinder Mounting

MF1 = Front rectangular flange MF1E = Front rectangular flange (English) MF1M = Front rectangular flange (metric) MF2 = Rear rectangular flange MF2E = Rear rectangular flange (English) MF2M = Rear rectangular flange (metric) MF3 = Front & rear rectangular flange MF3E = Front & rear rectangular flange MF3M = Front & rear rectangular flange MP2 = Rear double clevis without pivot base MP3 = Rear double clevis with pivot base MS1 = Side end angle MS2 = Side lugs MS6M = Side tapped holes (metric) MS6E = Side tapped holes (English) MT4 = Trunnion

Rod Ends

Options

(add multiple in the following sequence, omit if no options)

- BA24 = 24 Vdc brake on actuator (EC1 only, not available with 10L ratio or MS1 mounting option
- BS24 = 24 Vdc brake on ba ble with EC1 or 10L ratio, or with MF2(x), MF3(x), MS1, MP2(x), MP3(x) mounting options)
- BS115 = 115 Vac brake on ballscrew (not available with EC1 or 10L ratio, or with MF2(x), MF3(x), MS1, MP2(x), MP3(x) mounting options) PB = Protective boot*
- L = Linear potentiometer (only valid through 600 mm stroke, standard lengths)* 17X = NEMA 17 mountless motor (EC1 only)

Cable

CO = No cable supplies, motor includes connectors. Default for all AKM Servo Motors; select cable as an accessory. *Contact customer service for EC1

luaror	(EU I	UIIIY,	110
ns)			
allscre	w (no	t ava	ilat
MS1	MP2	(v) N	/P3

Available AKM2

Available

FC1

EC1

EC2, EC3

EC2, EC3

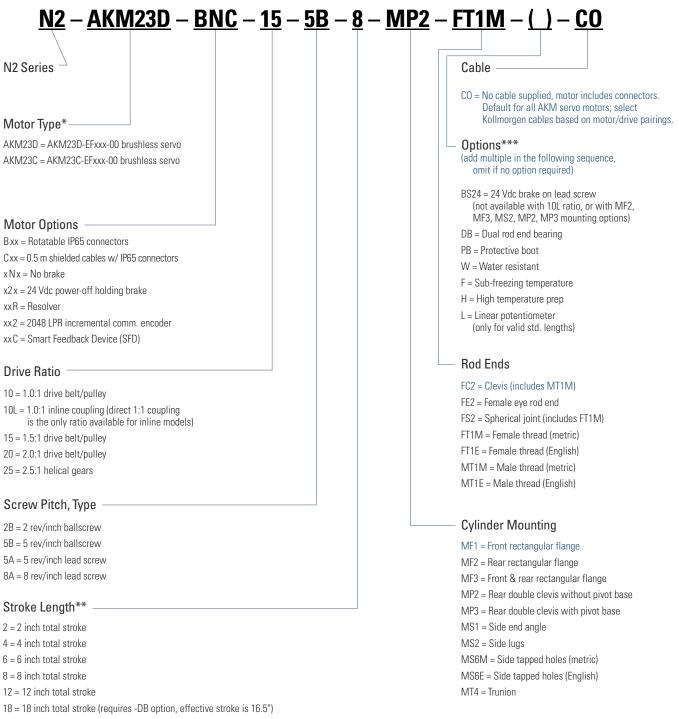
EC4, EC5

EC4, EC5

EC4, EC5

All

EC3, EC4, EC5


EC3, EC4, EC5

AKM1, AKM2 AKM4, AKM5 AKM1, AKM2, AKM4, AKM5 AKM2, AKM4, AKM5 AKM1, AKM2, AKM4, AKM5 AKM1, AKM2, AKM4, AKM5

AKM1, AKM2, AKM4, AKM5

Available

N2 Series Electric Cylinder with AKM Servo Motors

- 24 = 24 inch total stroke (requires -DB option, effective stroke is 22.5")
- nn.n = Custom stroke lengths available in 0.1 inch increments

* Contact customer support for AKM combinations outside of those listed.

** For custom lengths round up to next standard incremental plus add standard cut fee.

*** Contact customer support for non-standard pricing and lead times.

Sold & Serviced By:

Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

Rodless Actuators R-Series with AKM Servo Motors

	Motor Drive	Linear Drive S	troke	Motor	Mounting	English/	Cable
R Series Motor Type*	Options Ratio	Type L	ength	Orientation	Style Carria	ge Metric	Option
<u>R3</u> – <u>AKM42G</u>	<u>CNC</u> – <u>10</u>	<u>5B</u> – <u>´</u>	<u> 2</u> _	- <u>P</u> -	- <u>A</u> 3	<u>E</u> –	<u>CO</u>
R Series \longrightarrow							
R2A, R3, R4				Options*			Available
Motor Type*	Available			(Screw		ad screw with inline mode	R2A, R3, R4 Is,
AKM23C = AKM23C-EFxxx-00 brushless servo AKM23D = AKM23D-EFxxx-00 brushless servo AKM42E = AKM42E-EKxxx-00 brushless servo AKM42G = AKM42G-EKxxx-00 brushless servo AKM52G = AKM52G-EKxxx-00 brushless servo AKM52H = AKM52H-EKxxx-00 brushless servo	R2A, R3 R2A, R3 R3, R4 R3, R4 R4 R4			BS115 = 1 (Screw MF3 or BS230 = 2 (Screw	"C" options) 30 Vdc brake on	with inline mode	R2A, R3, R4
Motor Optiona	Available			WR = Wat	er resistant seal	option right	R2A
Motor Options	AKM2			WL = Wate	er resistant seal		R2A
B = = Rotatable IP65 connectors C = = 0.5 m shielded cables w/ IP65 connectors	A 1/A 40				port, right side port, left side		R3, R4 R3, R4
C ■ ■ = Rotatable IP65 connectors	AKM4, AKM5 AKM2, AKM4, AKM5			DC1 = Idle	r carriage betwe	en driven carria	
 N = = No brake 2 = 24 Vdc power-off holding brake 	AKM2, AKM4, AKM5				n-motor end r carriage betwe	en driven carria	ae R2A
■■R = Resolver	AKM2, AKM4, AKM5			and mo	tor end		5
 2 = 2048 LPR incremental comm. encoder C = Smart Feedback Device (SFD) 	AKM2, AKM4, AKM5 AKM2, AKM4, AKM5					tubing, right sid tubing, left side	
				C0 = No m	otor cable	tabilig, fore orac	R2A, R3, R4
Drive Ratio	Available			S = Stub s	haft		R2A
10 = 1.0:1 drive belt/pulley 15 = 1.5:1 drive belt/pulley	R2A, R3, R4 R2A, R3, R4			English/l (carriage/n			Available
20 = 2.0.1 drive belt/pulley 30 = 3.0.1 drive belt/pulley	R2A, R3, R4 R4			E = English	carriage & mount		R2A, R3, R4
50 = 5:1 helical gear	R3, R4			M = Metri	c carriage & moi	unting dimensior	ns R2A, R3, R4
70 = 7:1 helical gear 100 = 10:1 helical gear	R3 R3			Carriage			Available
					ield for R2A moc	lels)	P2 D4
Linear Drive Type	- Available			S = Single Dxx = Dua			R3, R4 R3, R4
5A = 5 pitch (0.2" lead) lead screw 8A = 8 pitch (0.125" lead) lead screw 1B = 1 pitch (1" lead) ball screw	R2A, R3 R2A, R3					tween dual carria tomer support fo	
2B = 2 pitch (0.5" lead) ball screw	R4 R2A, R3			Mountin	a Style		Available
4B = 4 pitch (0.25" lead) ball screw 5B = 5 pitch (0.2" lead) ball screw	R4 R2A, R3				nt & rear rectang	gular flanges	R2A
T = Tangential drive belt	R2A, R3, R4				e end angles ustable feet		R2A R2A
					e tapped mount	ing holes	R2A
Stroke Length**	Available				ngle brackets	-	R3, R4
6 = 6" of total stroke 12 = 12" of total stroke	R2A, R3, R4 R2A, R3, R4			B = Adjust C = Front 8	able 1-nuts & rear rectangula	ar flanges	R3, R4 R3, R4
18 = 18" of total stroke	R2A, R3, R4				rientation		Available
24 = 24" of total stroke 30 = 30" of total stroke	R2A, R3, R4			Belt option			Available
36 = 36" of total stroke	R2A, R3, R4 R2A, R3, R4				rs or housing rotate	d above/right	R2A, R3, R4
42 = 42" of total stroke	R2A, R3, R4				r housing rotate		R2A, R3, R4
48 = 48" of total stroke 54 = 54" of total stroke	R2A, R3, R4 R2A, R3, R4				r housing rotate r housing rotate		R2A, R3, R4 R2A, R3, R4
$60 = 60^\circ$ of total stroke	R2A, R3, R4 R2A, R3, R4				r housing rotate		R2A, R3, R4
66 = 66" of total stroke	R2A, R3, R4			CL = Moto	r housing rotate	d under/left	R2A, R3, R4
72 = 72" of total stroke 84 = 84" of total stroke	R2A, R3, R4 R3, R4			Screw opt			
96 = 96" of total stroke	R3, R4			l = Motor r	mounted inline		R2A, R3, R4
108 = 108" of total stroke	R3, R4				mounted paralle r mounted paral		R2A, R3, R4 R2A, R3, R4
Custom lengths available in the increment of 1"					r mounted parall		R2A, R3, R4 R2A, R3, R4
* Cantant and a superior of the AKAA and bin the state of	fahara Katal						

* Contact customer support for AKM combinations outside of those listed. ** For custom lengths round up to next standard incremental plus add standard cut fee. *** Contact customer support if C0 is not selected.

Note: Options shown in blue text are considered standard.

 \leq

Omit if motor option is used

* Contact customer support for AKM combinations outside of those listed. ** Extended lead time required.

Note 1: Options shown in blue text are considered standard.

Note 2: Contact customer support for price and lead time on all non-standard features.

DS

Series

DS4

Stroke

Length

250

DS Series

Stroke Length

50 = 50 mm total stroke

100 = 100 mm total stroke

150 = 150 mm total stroke

200 = 200 mm total stroke

250 = 250 mm total stroke

300 = 300 mm total stroke

350 = 350 mm total stroke

400 = 400 mm total stroke

450 = 450 mm total stroke

500 = 500 mm total stroke

550 = 550 mm total stroke

600 = 600 mm total stroke

700 = 700 mm total stroke

800 = 800 mm total stroke

900 = 900 mm total stroke

Grade

C = Commercial grade P = Precision grade**

Ballscrew Lead

5G = 5 mm/rev

10G = 10 mm/rev

Motor Type* -

Motor Options* -

■N■ = No brake

■ R = Resolver

DS4

DS6

Grade

MOTIONEERING® Online

Sold & Serviced By: SERVOZGO.com Toll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

MOTIONEERING[®] Online – Kollmorgen has revamped, modernized and put online one of the most respected applications sizing programs of the last 20 years. You now can access this application sizing and selection tool wherever you have access to the internet. MOTIONEERING Online is just a start of a series of releases that will empower you to optimize solutions for your toughest applications. Sizing frameless motors and drive systems has never been easier. Using a mechanism project concept for collecting and saving multiple axes of load information, MOTIONEERING[®] Online can automatically calculate application results and compare against a catalog of systems - recommending the most optimized set of Kollmorgen system solutions available.

Versatile units-of-measure selection options for mechanism and motion profile data-entry, with the ability to convert data into other available units, makes this a convenient international tool. A user-friendly Help file teaches program functions and algorithms used to provide results.

Mechanism Projects

- Direct drive entry, lead screw, conveyor
- Rack and pinion, nip rolls
- Direct Drive Rotary
- Electric Cylinder
- Direct data entry

Coloury Incar Status					er (6)	
Construction of the second sec				a Baia Nasai		
C Convertining				of the first		
Digener Motor hole				Peeilo	an (a).	
Elines II fearly						
Street Search Surgia In	Advanced Dearch					
Lost Results						
and a second						
		Result Log				
Desired Safety Margins						
Continuous Terque Impigni Anna Turque Margin	10					
Internet family the pr	100			with a capitor		
	-	wheth making	march along to	anguither times as	materi	
		Pare to reach	the product of		- and	
law inchesis	-					_
lyner Bass brytte	Cartonae Torque	fast Torque	Narue See	Apart.	Serie Gra	
lynn Tris Tryffe		fast Torque	Name	free.		
lyner Statsbylfer	Target 1	Nat Trace Test Tr	Narue See	free.	Junio faria	-
AND A AND AND AN A	Terpa Ango No Al	1121 1121 11	Sarur Sari Tryp: N	internet internet	bela las A 19 A 29	See.1
ante (M. anto antoni par le antoni ad antoni par le antoni ad attini admini antoni ad titini addini	Ange No.	A R R R R	Narrat Sept. St Hard Sector	11 3 3 5	heis bes Artif Artif Artif	
AND AN AN ANY ANY ANY A	Tergat Anagan the Alt Alt Alt Alt	A S W R R R R	Sarur Sari Tryp: N	1 - 2 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 -	Junio Seco Juliji Juliji Juliji 4213	Seat Seat
AND THE AND ADDED OF T	Ange-No 20 20 30 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	tea tean tean tean tean tean tean tean t	Narrat Sept. St Hard Sector	N 12 12 12 12 12 12 12 12 12 12 12 12 12	Junio Gris Ja 199 Ja 199 Ja 199 Gris Gris Gris Gris	141
440,01,440,4494,041,0 440,00,40,400,400,41 440,00,40,400,400,41 440,00,40,400,400,41 440,00,40,400,400,41 440,00,40,400,400,40 440,00,40,400,400,40 440,00,40,40,400,40 440,00,40,40,40 440,00,40,40 440,00,40 44	2014 2017 2017 2017 2017 2017 2017 2017 2017	A S W R R R R	Narrat Sept. St Hard Sector	2 K = 2 E E = 4	Jeris lais 1679 1679 1679 1679 1679 1679 1679	1111
and on and unset per to and one and unset per to an operating and unset of an operating and unset of an operating and unset of an operating and and an operating an operating an operating and an operating an operating and an operating an operating an operating and an operating an operating and an operating an operating an operating and an operating an operating an operating and an operating an operating an operating an operating and an operating an operating an operating an operating an operating and an operating an operating an operating an operating an operating and an operating an operating an operating an operating an operating an operating an operating and an operating an operati	Ange-No 20 20 30 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ter terest teres	Factor Seat Report B B B B B B B B B B B B B B B B B B B	B E K T E E E	Jeris lais 1679 1679 1679 1679 1679 169 169 169	111111
AND IN AND JOINT ON IT AND CO. AND COMPANY AND A The Case of Children of the and the Case of Children of the and Case of Children of the	2014 2017 2017 2017 2017 2017 2017 2017 2017	ter terest teres	Factor See		1010 605 1019 1019 1019 1019 1010 100 100 100 10	1111
and on and unset per to and one and unset per to an operating and unset of an operating and unset of an operating and unset of an operating and and an operating an operating an operating and an operating an operating and an operating an operating an operating and an operating an operating and an operating an operating an operating and an operating an operating an operating and an operating an operating an operating an operating and an operating an operating an operating an operating an operating and an operating an operating an operating an operating an operating and an operating an operating an operating an operating an operating an operating an operating and an operating an operati	Angelia Margania Marg	ter terest teres	Terror Sector Terror E E E E E E E E E E E E E E E E E E	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3479 3479 3479 4479 429 429 440 440 4219 4219	
AND IN AND JOINT ON IT AND CO. AND COMPANY AND A The Case of Children of the and the Case of Children of the and Case of Children of the	Trans Responses H H H H H H H H H H H H H H H H H H	ter terest teres			1000 Grav	
AND IN AND JOINT ON IT AND CO. AND COMPANY AND A The Case of Children of the and the Case of Children of the and Case of Children of the	Angelia Margania Marg	ter terest teres	Terror Sector Terror E E E E E E E E E E E E E E E E E E	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3479 3479 3479 4479 429 429 440 440 4219 4219	

Solution Set Search Screen

- · Color-coded indication of system's ability to meet application requirements
- Review system components specifications
- Save, print, or create a pdf application report
- Evaluate system performance curve with application points

MOTIONEERING® Online Features:

- Inertia Calculator lets you build up inertia based on odd shapes by additive or subtractive methods
- Custom Motion Profile easy to add entire segments or copy segments to repeat
- Environmental Factor takes into account your ambient temperature
- · Project by Project Units You can tailor your units on a project by project basis, or use the global units settings

MOTIONEERING Online Supported Browsers

• IE, Chrome, Firefox, Safari

foll Free Phone: 877-378-0240 Toll Free Fax: 877-378-0249 sales@servo2go.com www.servo2go.com

About Kollmorgen

Since its founding in 1916, Kollmorgen's innovative solutions have brought big ideas to life, kept the world safer, and improved peoples' lives. Today, its world-class knowledge of motion systems and components, industry-leading quality, and deep expertise in linking and integrating standard and custom products continually delivers breakthrough motion solutions that are unmatched in performance, reliability, and ease-of-use. This gives machine builders around the world an irrefutable marketplace advantage and provides their customers with ultimate peace-of-mind.

Because Motion Matters™

©2017 Kollmorgen Corporation. All rights reserved. KM_CA_000246_RevE_EN

Specifications are subject to change without notice. It is the responsibility of the product user to determine the suitability of this product for a specific application. All trademarks are the property of their respective owners.