

Mechatronics Cylinder <u>PC Tool Kit</u> <u>TBVST-EN</u>

<u>Operation Manual</u> (TBVST. CTA-1EX, MVST)

Document No.

MTX-00001C-NA Ver. 3. 05

2005/03/03

Table of Contents

1. Summary of PC Programming software (TBVST-EN)	3
1.1. Installation of PC software (TBVST-EN)	3
2. Initial operation using TBVST	4
2.1. Quick Start – Setup of 3 Basic Positions	6
2.2. Quick Start – Setup of a Push Force Move	
3. Detailed Review of TBVST	11
3.1. Serial port selection	
3.2. Main Menu	11
JOG operation:	
Menu bar:	
3.3. Position Data Save Menu	
3.4. Actuator Set Up Menu	17
3.5. File (Upload / Download) Menu	20
3.6. Trace Menu	
4. CTA-1EX (Expert Mode Programming Software)	23
4.1. Serial port selection	23
4.2. Main Menu	23
4.3. System Parameter Data	26
5. MVST ServoMotor Configurator	28
5.1. Procedure for Changing the Axis Number	29
5.2. Mechanism Data Setup	30

Sold & Serviced By:

www.electromate.com

1. Summary of PC Programming software (TBVST-EN)

The Mechatronics Cylinder programming software consists of the following 4 programs:

- (1) TBVST
- (2) CTA-1EX
- (3) MVST
- (4) CTCTOOL

[TBVST] is an easy-to-use operation and teaching tool which allows the Mechatronics Cylinder to be programmed by GUI (Graphical User Interface) operation. TBVST will run only when the actuator is connected (online)

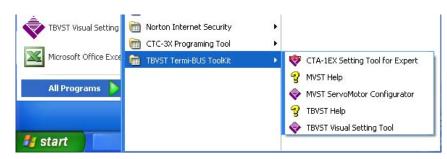
[CTA-1EX] is a spread-sheet type parameter editor which allows access to program files online and offline.

[MVST] is a parameter set up tool for Mechatronics Cylinder Servo Motors (RSA models).

[CTCTOOL] is an easy-to-use PLC programming tool which allows Dyadic sequence devices (from the CTC product line) to be programmed by GUI operation.

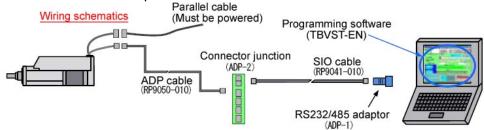
WARNING – PLEASE ENSURE YOUR ACTUATOR HAS 24VDC POWER BEFORE RUNNING PCTOOL. RUNNING PCTOOL WITH AN UNPOWERED AXIS CONNECTED MAY RESULT IN DAMAGE TO YOUR SERIAL PORT.

1.1. Installation of PC software (TBVST-EN)

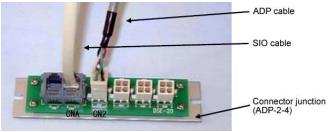

When you insert the CD into the drive, the main menu should automatically appear. If the main menu doesn't appear, please double-click [opdr.exe] in the CD to start.

If you experience any errors during the installation process please call Mirai Inter-Tech at 905-763-9442.

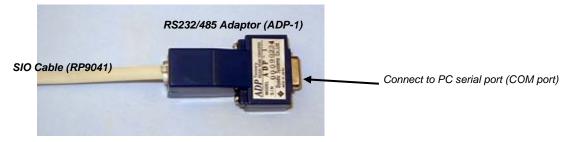
Please click the TBVST button and follow the instructions to install.



After installation is complete, the "TBVST Termi-BUS Toolkit" folder will appear as follows:



2. Initial operation using TBVST


Please connect cables and adaptors as follows:

Please note that the ADP cable from the Mechatronics Cylinder should be connected in CN2 of the connector junction (ADP-2-4) and the SIO cable should be connected in CNA of the connector junction (ADP-2-4) as follows:

Please connect the SIO cable with ADP-1 and connect it to the serial port (COM port) of the PC. If the PC has only USB ports, please install a commercially available USB-Serial converter adaptor. Some USB-Serial converters may not work with Dyadic products. When choosing a converter please look for "High-Speed" or 115kbps capability listed on the package. Keyspan is one manufacturer that seems to make reliable converters.

Notes: The ILK conductor should be wired (to +24VDC for PNP, 0V for NPN). If there are unused conductors, please make sure they don't short.

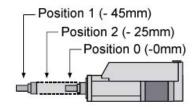
After turning the Actuator power ON and starting TBVST you will see the serial port selection dialog as follows. Please select the serial port number to which the actuator is connected now.

🐃 Set up Communication	X
_ Port —	
Select the Port number that connect with the Termi-BUS.	
1	
Set Stop	

After communication is established, the following main menu will be displayed.

🕏 Termi-BUS Co	mmand Ou	tput Tool (Dyadic Syst	tems Co. ,Ltd.)	×
	etUp(C) Opt	ion(O) Help(H) End(Q)		
Axis No.	Servo ON	Homing	Alarm Clear	Servo OFF
-Position Actua	tor and Jo	g Run ———		
			Position Data Save Wi	ndow
Position Actuato (mouse click)	ır	0 1 2 3 4	5 6 7 8 9 A B C I	DEF
Continuous Posi Actuator (R=rep		123456789ABCI	DEF1E2D3C4B5AR 🚽 📃	Start
Forwa	rd End	-51.000 mm	Reverse End	998 mm
Command monito		Jog Run(mouse click)		
0.000	mm oulse <			> 0 *1
- Response monit		Position monitor		© *100
	pulse 📑	•		-
- Transmitted data		Servo monitor —		
0n000000	000082 ^L	STAT bit 7	5 4 3 2 1 0 Alarm	
-Received data —		ALRM bit 7	5 5 4 3 2 1 0 Normal : 00	
U0n07000	08004E	PO bit 7	543210	

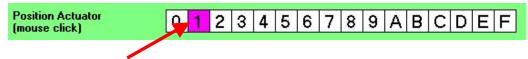
Please click [Homing], so that the Mechatronics Cylinder will home itself.


If the Mechatronics Cylinder doesn't move to home, please check all wiring, with particular attention to the ILK wiring (to +24VDC for PNP model, 0VDC for NPN model).

🕏 Termi-BUS Command Ou	tput Tool (Dyadic Sy	stems Co. ,Ltd.)	×
Trace(T) File(F) SetUp(C) Op	tion(O) Help(H) End(Q	٥ ٧	
Axis No.	Homing	Alarm Clear	Servo OFF
-Position Actuator and J	og Run ———		
		Position Data Save Wind	wob
Position Actuator (mouse click)	0 1 2 3 4	1 5 6 7 8 9 A B C D	EF
Continuous Position Actuator (R=repeat)	123456789AB	CDEF1E2D3C4B5AR 🚽	Start
Forward End	-51.000 mm	Reverse End 0.9	98 mm
- Command monitor	Jog	Run(mouse click)	
0.000 mm 0 pulse <			> C *10 C *10
- Response monitor	Position monitor		
0 pulse			
-Transmitted data	Servo monitor		Net
0n00000000082 ^L	STAT bit	8 5 4 3 2 1 0 Alarm	
- Received data U0n0F0080F0029	PI bit 7	2 5 5 7 3 2 1 0 7 5 5 7 3 2 1 0 7 6 5 4 3 2 1 0	

After homing, the menu screen will appear as above, with the jog function (see red arrow) now available.

2.1. Quick Start – Setup of 3 Basic Positions


	Target stop position	Move speed
Position 0	- 0 mm (Note 1)	400 mm/sec
Position 1	- 45 mm (Note 1)	200 mm/sec
Position 2	- 25 mm (Note 1)	300 mm/sec
N. 1. 1		

Notes: Values will deviate from whole numbers by several hundredths of a mm due to encoder resolution.

If the setup is factory default (home to motor end), the position values are negative. If homing is set to the extended direction, the position values will be positive.

(1) Position 1 programming

Click [1] of the "Position Actuator" bar.

Forward End	-51.000	j mm	Reverse End	0.998 mm
- Command monitor		Jog R	un(mouse click)	(• *1
-47.970 mm -12792 pulse	< <<>>	>>>>>>	····	
- Response monitor		Po	sition monitor	
-12792 pulse	⇒			

Drag the handle of the jog bar and move it to about [-45mm]; the actuator shaft will move. When the actuator shaft is in the desired position, click the "Position Data Save Window" button to go to the [Position Data Edit Menu].

	Select edit mode of position editor
The dialog box at right will pop up. We want to teach the controller the current position of the actuator, so click [Yes].	Do you want to replace the target position of this number as the actual position ? Yes No

The "Position Data Edit" window as follows will pop up next. Note that your position has been entered.

-45.000 4		
mm		Close
0.015 <u>•</u>	•	Save
50.00 mm/sec	<u> </u>	Pusher positioning -
0.300 4 G		Pusher valid
6 1		Forward side Reverse side
	mm 50.00 4 mm/sec 0.300 4 G	mm 50.00 • • • mm/sec 0.300 • • • G

Dyadic Systems – TBVST Manual

Next is the speed data setting. Type the desired value [200] in the "SpeedCommand" data box. Another way to edit speed data is to drag the slide bar shown.

🕏 Termi-BUS Command O	utput Tool (Dyadic System	ns (o.,Ltd.)	<u></u>	
Trace(T) File(F) SetUp(C) Op	otion(O) Help(H) End(Q)			
Axis No. Position	No.—			
0 - 1	-			
-Position data editor —				Click "Save" to
Position(current)	-45.000 💌	X	Close	store in controller
At position width	0.015		Save	
SpeedCommand	200.00 mm/sec		Pusher positioning	
AccelarationCommand	0.300 <	•	Pusher valid	
Max. Accelaration	G			
			Forward side	
			Reverse side	
Servo gain	6	Þ		
Enable forced homing in	advance			
	davance			

Note that if your actuator is made for a lower top speed than the value you have typed your value will not be accepted by the software. Please review published spec sheets for max speed and acceleration of all actuators.

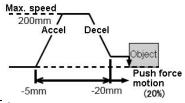
Now position 1 programming is complete, so please click the [Close] button (above the [Save] button) to go back to the main window of TBVST.

Program position 2 by repeating the position 1 programming.

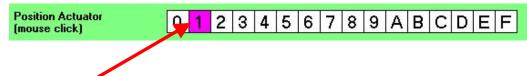
Please type "012R" in the Position Actuator window, then click [start].

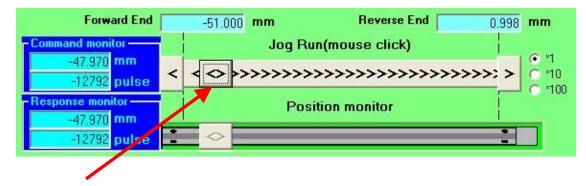
This will repeated motions of [Position 0] \rightarrow [Position 1] \rightarrow [Position 2] \rightarrow [Position 0] \rightarrow [Position 1] \rightarrow [Position 2] \rightarrow [Position 0] \rightarrow continuously.

Please click "Stop" to stop the demo loop. Note that this loop just runs from the PC – it is not stored in the servo controller.


Sold & Serviced By:

2.2. Quick Start – Setup of a Push Force Move


This example will move the Mechatronics Cylinder to the position of -5mm at a speed of 200mm/sec, then transition to a low-speed, force controlled move which seeks to push the target object at 20% of peak force.


	Target stop position	Move speed	Push force
Position 0	- 0 mm	400 mm/sec	
Position 1	- 5 mm (Note 1)	200 mm/sec	32%
(push force)			

Note 1: If the homing parameters are factory default (home to reverse), position values are negative.

(1) Position 1 programming

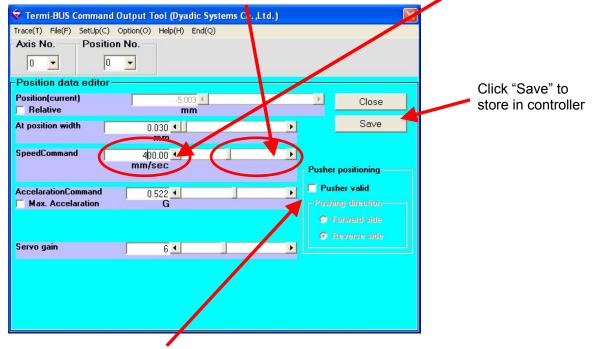
Please click [1] on the "Position Actuator" menu.

Drag the handle of the jog bar and move it to about [-5mm]; the actuator shaft will move. When the actuator shaft is in the desired position, click the "Position Data Save Window" button to go to the [Position Data Edit Menu].

The dialog box at right will pop up. We want to teach the controller the current position of the actuator, so click [Yes].

Select e	dit mode of position editor 🛛 🕅 🕅
(į)	Do you want to replace the target position of this number as the actual position ?
	Yes No

Sold & Serviced By:



The "Position Data Edit" window as follows will pop up next. Note that your position has been entered.

Position data editor		
Position(current) Relative	-5.003 💽	Close
At position width	0.030 •	Save
SpeedCommand	200.00 <u>•</u> mm/sec	Pusher positioning
AccelarationCommand Max. Accelaration	0.522 • G	Pusher valid Pushing direction Forward site G Revene site
Servo gain	6	

Next is the speed data setting. Type the desired value [200] in the "SpeedCommand" data box. Another way to edit speed data is to drag the slide bar shown.

Now we will set up the push direction and the amount of force desired for the force-controlled portion of the move. Click the "Pusher Valid" check box – the "PusherForceCommand" control will be visible. Set the force to a value between 15 and 40% and click the "Reverse Side" radio button to set the direction of force. Click "Save".

PusherForceCommand	32 🖣	Þ
	%	

Now position 1 is set as a force-controlled move. Click the [Close] button (above [Save]) to go back to the main window of TBVST.

(3) Test Operation	-Position Actuator and Jog Run Position Data Save Window
	Position Actuator (mouse click) 0 1 2 3 4 5 6 7 8 9 A B C D E F
	Continuous Position Actuator (R=repeat) 010 Start

Please type "010" in Position Actuator window. Get ready to stop the shaft of the actuator while position 1 is running, then click [Start].

The software will run motions as follows:

 $\label{eq:position 0} [Position 0] \rightarrow [Position 1] \rightarrow (Please stop the shaft) \rightarrow [Position 0] \rightarrow << Click Stop>> \\ You can adjust the "PusherForceCommand" parameter to change the amount of force the actuator \\ \end{tabular}$

applies to your hand.

3. Detailed Review of TBVST

TBVST is the programming software for Dyadic Mechatronics Cylinder products.

3.1. Serial port selection

Please connect the Mechatronics Cylinder as per section 2: Initial Operation...".

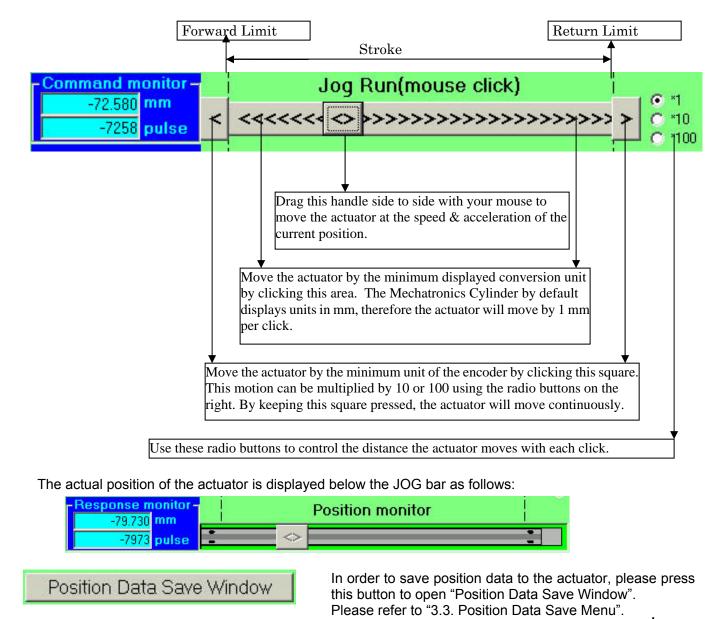
Start the TBVST software. The serial port selection dialog box as follows will appear; please select the number of your COM port.

💐 Set up Communication	×
_ Port —	-1
Select the Port number that connect with the Termi-BUS.	
1 💌	
Set Stop	

3.2. Main Menu

After communication is established, the following main menu will be displayed.

🗢 Termi-BUS Co	mmand Out	tput Tool (Dyadic Sy	/stems Co. ,Ltd.)	
	etUp(C) Opt	ion(O) Help(H) End(Q))	
Axis No.	Servo ON	Homing	Servo OFF	
-Position Actua	tor and Jo	og Run ———		
			Position Data Sa	ve Window
Position Actuate (mouse click))r	0 1 2 3 4	56789AB	CDEF
Continuous Posi Actuator (R=rej		123456789AB	CDEF1E2D3C4B5AR 💽	Start
Forwa	rd End	-51.000 mm	Reverse End	0.998 mm
Command monit		Jog	Run(mouse click)	> ° *1
- Response monit	tor —	P	osition monitor	
?	pulse 📃			
- Transmitted data On000000 - Received data	24	Strvo monitor	6 5 4 3 2 1 0 Alarm 6 5 4 3 2 1 0 Normal : 1	00
U0n0700E	2090038	PO bit	6543210	


Please select the actuator axis number that is connected. When only one axis is connected, it will not be necessary to change this value. The default axis number is 0 and it is written on the EEPROM memory in the controller of the Mechatronics Cylinder. To connect multiple-axes, unique axis numbers must be assigned for each axis. Use MVST or the Axis Number Configuration Program to change your axis numbers as necessary. When changing axis numbers only 1 actuator may be connected to the PC at once.

Before initiating position teaching, please press this button to home the actuator.

JOG operation:

The JOG operation bar can move the actuator to desired position. This feature can be useful for teach-style programming (when the actuator has been jogged to the desired position, click the "Position Data Save Window" Button – more detail in section 3.3).

Dyadic Systems – TBVST Manual

Saved position data can be executed by clicking the position number in the Position Run bar as follows:

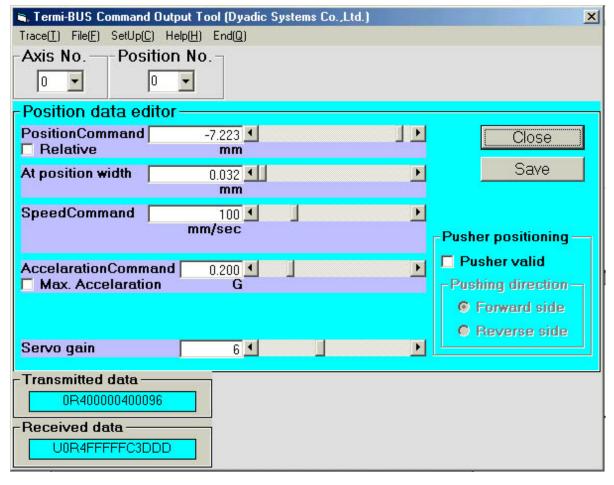
Position Actuator	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
(mouse click)																

Menu bar:

The menu bar has the following functions:

🖷 Termi-BUS Command Output Tool (Dyadic Systems Co.,Ltd.)	×
Trape(I) File(E) SletUp(C) Help(H) End(Q)	
To exit TBVST. Display the Help Menu	
▼ Display mechanical resolution & miscellaneous parameters. Please refer to section 3.4. "Actuator Set Up Menu"	
Open the communication menu to upload/download files between the PC and the Mechatronics Cylinder. Please refer to section 3.5. "Upload/Download menu".	
Open the trace menu to display a graph of actual speed or position. Please refer to section 3.6. "Trace Display Menu".	

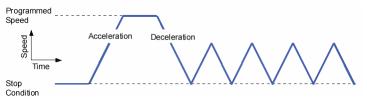
Sold & Serviced By:

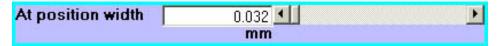

3.3. Position Data Save Menu

When the Position Data Save Window is opened or a new position number is selected, the following question is displayed:

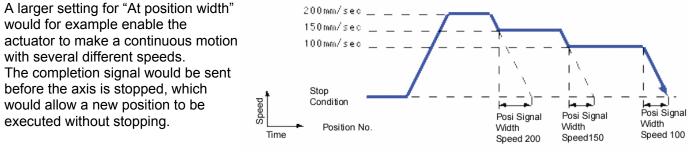
Select e	dit mode of position editor 🔀
٩	Do you want to replace the target position of this number as the actual position ?
	<u>Yes</u> <u>N</u> o

If "Yes" is selected, the actual current position of Mechatronics Cylinder shaft rod/Slider carriage will be saved as the target position (Position Teaching).


If "No" is selected, the target position data can be programmed in this menu by moving the slide bar or typing data. Note that the appearance of this box can be deactivated using the "Options" menu.

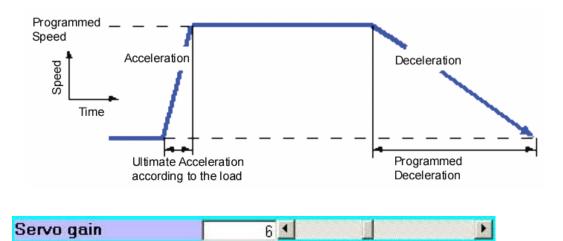

PositionCommand	-7.223 🔳	×
Relative	mm	

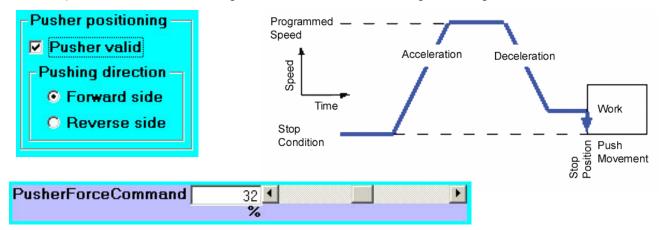
The PositionCommand box displays the current position of the actuator (if "Yes" was answered in the previous dialog box) or the target position data stored in the EEPROM of the amplifier for the current motion (if "No" was answered). If "No" was answered in the previous dialog box the target position data can be edited by moving the slide bar or typing new data.


The "Relative" option under "Position Command" is used to run incremental movements. If this box is checked, the "Position Command" becomes the increment by which the cylinder will move when it receives the start signal for that motion. By using this incremental movement a Mechatronics Cylinder can move to more than

16 positions as long as some of the positions are executed with constant displacement.

The "At position width" parameter allows the user to customize the distance from the target position at which the actuator outputs the "Position Complete" signal. The default data is about 4 motor pulses (converted to mm).




This data entry box allows target speed to be set for a given position.

AccelarationCommand	0.200 💶 📘
Max. Accelaration	G

The acceleration set in this box is by default applied to both the start and finish of motion for a given position. The "Max. Acceleration" selection box tells the axis to move as quickly as possible at the start of motion and use the identified acceleration rate to reduce velocity at the end of motion (see motion graph below)

This control specifies the gain used to drive the servo to the given position. There is no unit of measurement for this. The max. gain is 15, and the default setting is 6. Usually there is no need to change this data, but if fast positioning time is critical, it may be possible to reduce positioning time by changing this value to finely tune the servo control parameters to your load. See section 3.6 (Trace Mode) for further detail on testing the effects of different servo gain settings.

If the "Pusher Valid" check box is marked, Push Force Mode will be used for the given position. This mode consists of a position-controlled movement and a force-controlled movement.

• Approach movement data: Set Position, Speed and Acceleration (same as regular positioning).

The approach position is the position where Push Force movement starts.

- The force controlled movement will start from the approach position if the current position is before the approach position. If the current position is past the approach position already, the axis will immediately commence the push motion when the start signal is given.
- The force direction is set by selecting Reverse Side (push away from motor end) or Forward Side (push towards motor end).
- The force can be set by sliding the select bar or typing force in %.

By clicking "Save", the edited data will be saved. By clicking "Close", the display will go back to the main menu.

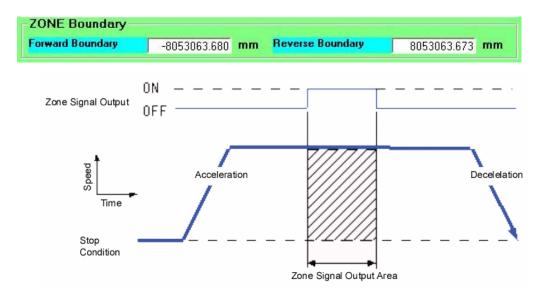
3.4. Actuator Set Up Menu

After communication is established the following menu will be displayed when "SetUp" is clicked. Most settings are typically done for you at the factory so you should not need to use this menu for basic operation.

🕏 Termi-BUS Comman	d Output Tool (Dyadic Systems Co. ,Ltd.)					
) Option(O) Help(H) End(Q)					
Actuator Set Up						
Type of actuater	Motor Resolution	Save				
Linear	800 [pulse] / Motor Revolution					
Disply Resolution	Pitch Unit	Close				
0.001	6 mm / Motor Revolution					
Coordinate Syste	m					
Feedback Type	Incremental Total Stroke	51.998 mm				
Homing Reverse E	nd 💌					
Homing Profile						
Velocity	20.00 mm/sec Current Limitter in Homing	100 %				
Accelaration	0.041 G Turnover Distance	0.480 mm				
ZONE Boundary						
Forward Boundary	-8053063.680 mm Reverse Boundary	8053063.673 mm				
Velocity in pusher pos	itioning 7.50 mm/sec					
*ILK performs the cancellation of positioning PIO Mode *ILK Deceleration Standard						
 Ultimate Deceleration 	tion Programmed Deceleration	ir Mode1 ir Mode2				
E States						

This menu displays values for Encoder resolution and mechanism positioning distance conversion data, and allows customization of Homing behavior and Zone Boundaries.

Type of actuater	Motor Re	solution	
Linear 🗾	8	800 [pulse	e] / Motor Revolution
Disply Resolution	Pitch	Unit	
0.001		6 mm	/ Motor Revolution


Encoder resolution units and axis mechanical data are read from the connected axis, so the area shown above is used for display only.

Coordina Feedback	120	Increment	al	Total Stroke	51.998	mm	This control will set the stroke limit
Homing	Reverse	End		-			for motion.
Homing	Profile						Please do no change this.
Velocity		20.00	mm/se	Current Limitter in Homing	100	%	Je ge i
Accelaratio	on 🗌	0.041	G	Turnover Distance	0.480	mm	

This Coordinate System area sets the home direction. Forward end and backward end positions are available. Changing the direction of homing will invert the sign of the coordinate system. This menu can also set the profile of the homing motion as follows:

- Speed
- Acceleration
- Current limit

These settings typically don't need to be changed.

This function energizes the "Zone" signal when the actuator is in the zone defined by these end points. Units are shipped with the forward boundary set to zone signal start position, and reverse boundary set to zone signal end position, such that the Zone output will always be on.

*ILK performs the cancella	ation of positioning
*ILK Deceleration	
Ultimate Deceleration	Programmed Deceleration

The ILK (Motion Interlock) function has 2 options, [Pause] and [Cancel].

[Pause] (default)

If the ILK input is turned OFF during motion, the actuator will stop by maximum or programmed deceleration. This stopped position becomes the temporary target position. The actuator will initiate a move from the stopped position to the original target position when the ILK input comes back ON. An exception to this situation is when a new move is commanded (using the CSTR bit) while the ILK is off.

[Cancel] (Check "ILK Performs Cancellation of Positioning" to select)

If the ILK input is turned OFF during motion, the actuator will stop by maximum or programmed deceleration. This stopped position becomes the temporary target position. The original move is cancelled – no motion will occur when the ILK comes back on.

PIO Mode:

This area sets the function of the 24VDC I/O. In "Standard" mode the I/O operate as BCD selectors, as described in the SCN-SCL manual.

PIO Mode	
Standard	
C Air Mode1	
C Air Mode2	

"Air Mode 1" can directly replace air cylinders which are operated by continuous signals as follows: Inputs Used Completion Signal Actuator position No.

PC1	PFIN	0
PC2	ZFIN	1
PC4	ZONE	2

Notes:

Start signals are PC1, PC2 and PC4 (selects and initiates the motion on the rising edge)

PC1, 2, 4 signals should be continuously high until the position is completed. If the signal drops low the motion will pause at the current location.

PC1, PC2, and PC4 do not operate as BCD inputs; please do not mix these inputs. Please turn one input ON at a time.

The ILK (Interlock), CSTR and PC8 inputs have no function in this mode.

The PM* outputs are not used in this mode

"**Air Mode 2**" can directly replace air cylinders which are operated by **pulse signals** as follows: Inputs Used Completion signal Program position No.

<u>inputs Used</u>	<u>Completion signal</u>	Program pc
PC1	PFIN	0
PC2	ZFIN	1
PC4	ZONE	2
.		

Notes:

Start signals are PC1, PC2 and PC4 (selects and initiates the motion on the rising edge) The PC* signals are intended to be pulse inputs, at least 10ms long.

PC1, PC2, and PC4 do not operate as BCD inputs, however as the PC1 input is dominant it is possible to run 2 positions (motion 0 and motion 1) by leaving PC2 high and cycling PC1.

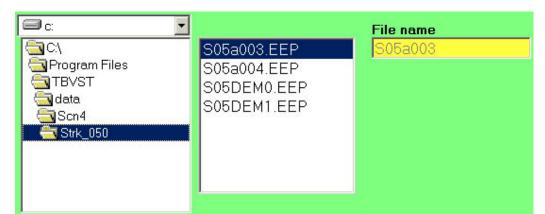
The ILK (Interlock) signal retains traditional function.

The CSTR and PC8 inputs have no function in this mode.

The PM* outputs are not used in this mode

	Close	
(Save	

By clicking "Save", the edited data will be saved. By clicking "Close", the display will go back to the main menu.


3.5. File (Upload / Download) Menu

Click "File" to view this screen. This menu is used to transfer position data files between the EEPROM of the servo controller and the PC.

🖷 Termi-BUS Command Output Tool (Dyad	tic Systems Co.,Ltd.)
Trace(T) File(E) SetUp(C) Help(H) End(Q)	
- Upload/Download	
Upload (Servo AMP to PC)	Upload Start Close
C Download(PC to Servo AMP)	*0123456789ABCDEF
	UT23400709ADCDEF
	File name
C\ Program Files Cata Resa0611 Resa0911 Scll6 Scn4 Scn5 Scn6_020	
Transmitted data	
Received data	

Upload (Servo AMP to PC)
 Download(PC to Servo AMP)
 Upload (Servo AMP to PC)
 Download(PC to Servo AMP)

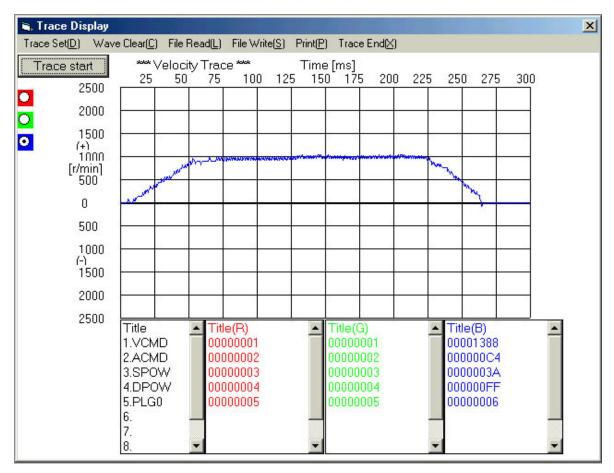
These buttons select Upload operation or Download operation.

The Termi-Bus Tool Kit comes complete with sample files for each Mechatronics Cylinder product. This menu is used to select the file to upload or download. To transfer setup data from the axis to your PC simply type the name of the file you want to save it to (without extension) in the "File Name" box and click "Upload Start".

This operation is useful to back up position data and other parameters as well. Please back up the program so that this program can be simply downloaded to a new actuator if the actuator is replaced.

Upon any concerns about actuator motion, please upload the parameters from the actuator and e-mail the EEP file to Mirai Inter-Tech so that our support group can simulate the problem and identify the cause of the problem easily.

If you have concerns about the way your actuator is operating you can always try to reset the setup data and position data by transferring an appropriate EEP file into your actuator from the Data directory installed with TBVST. This can serve as a reset for the actuator.



These buttons start uploading or downloading.

Upon clicking "Close", the display will go back to the main menu.

3.6. Trace Menu

This function allows the user to display and print the behavior for the last movement sequence of the axis (shown as speed or position vs. time).

Click this button to display a graph of the last axis movement according to Trace start the settings chosen in the "Trace Set" menu. 🐂 Trace Display X Trace Set(D) Wave Clear(C) File Read(L) File Write(S) Print(P) Trace End(X) Return to main menu. Print out the displayed trace curve. Save the displayed trace curve in a file. Read and display a saved trace curve. Clear the displayed trace curve. Edit the trace display set up. After a change, these settings become effective from next trace.

Trace set (D): To select the trace type (velocity or position) and the scales of the X and Y axes of the graph.

-Trace Set(<u>D</u>)			
 (Velocity) (Position) 	fax value 500 [r/min] • 5000 [pulse] •	Set Close	
• (Velocity) 2500	value [r/min] – [pulse] –	To set the maximum	value of the vertical axis of the curve.
Time 300 [m	IS]	To set the maximum curve.	value of the horizontal time axis of the
Set			settings and go back to the Trace menu effective from the next trace execution.
Close Dyadic Systems – TBVST Manual	Cancels		es this display (returns to Trace menu).

4. CTA-1EX (Expert Mode Programming Software)

This software is typically used by people who have gained some familiarity with setup and operation of Dyadic servo actuators. It can be used to edit all actuator data in a spreadsheet-style environment, and also allows the user to access EEP files without connecting to a cylinder (offline mode). The TBVST software is recommended for beginners.

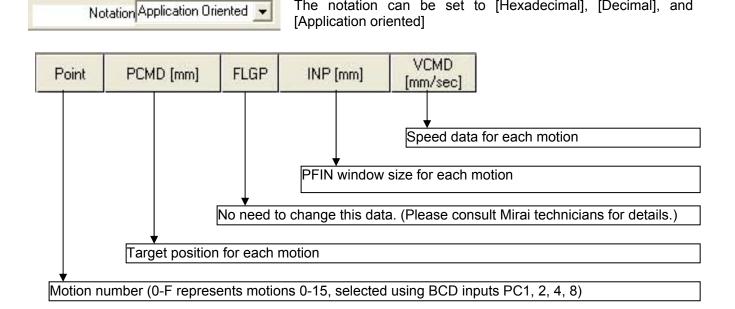
4.1. Serial port selection

When [CTA-1EX] starts the user can select the serial port number that is connected with the actuator or select "Offline" to work without an actuator.

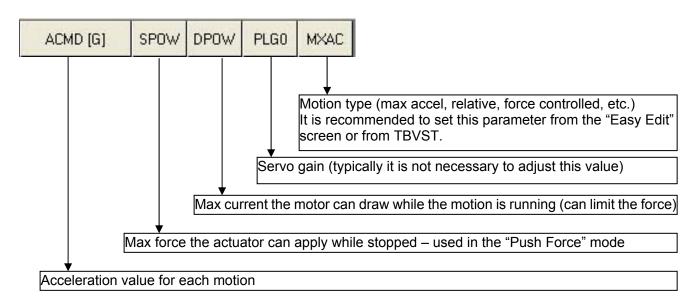
OM Port Selection 🛛 🛛 🛛 🛛	🗢 COM Port Selection
Select the COM Port name that connected to actuators	Select the COM Port name that connected to actuators
Offline 💌	 Offline
OK]	COM2 COM3 COM4 COM5
Moin Mony	

4.2. Main Menu

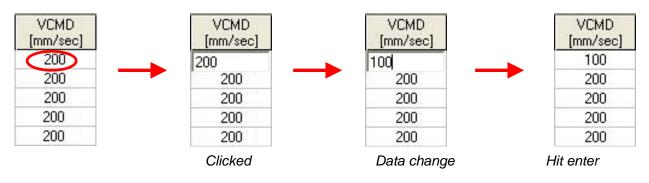
After communication is established the following main menu will be displayed.

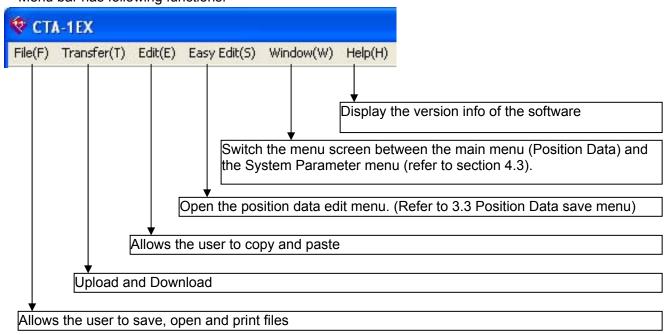

e(F) ⊺r ≩ 🔲	ansfer(T) Edit(E)	Easy Ed	it(S) Window(V	V) Help(H)	Notation	adecimal	•	1	
Point	PCMD [count]	FLGP	INP [count]	VCMD [0.2r/min]	ACMI Hex	adecimal	nted	PLGO	MXAC
0	0	FF	4	2710	200 200	JL	FF	6	0
1	FFFFE673	FF	4	2710	200	3C	FF	6	0
2	FFFFF2F7	FF	4	2710	200	3C	FF	6	0
3	0	FF	4	2710	200	3C	FF	6	0
4	0	FF	4	2710	200	3C	FF	6	0
5	0	FF	4	2710	200	3C	FF	6	0
6	0	FF	4	2710	200	3C	FF	6	0
7	0	FF	4	2710	200	3C	FF	6	0
8	0	FF	4	2710	200	3C	FF	6	0
9	0	FF	4	2710	200	3C	FF	6	0
A	0	FF	4	2710	200	3C	FF	6	0
В	0	FF	4	2710	200	3C	FF	6	0
C	0	FF	4	2710	200	3C	FF	6	0
D	0	FF	4	2710	200	3C	FF	6	0
E	0	FF	4	2710	200	3C	FF	6	0
F	0	FF	4	2710	200	3C	FF	6	0

Please select [Application Orientated] in the "Notation" drop-down list. This will display the data from the file in decimal numbers, converted to engineering units as shown in the top of each column.


e(F) Tra	ansfer(T) Edit(E)	Easy Edi	t(S) Window(V	/) Help(H)					
2 8		B			Notation Applic	ation Orie	nted 💌		
Point		FLGP	INP[mm]	VEMD [mm/sec]	ACMO [G]	SPOW	DPOW	PLGO	MXAC
0	0.000	255	0.030	200.00	0.522	60	255	6	0
1	-49.058	255	0.030	200.00	0.522	60	255	6	0
2	-25.028	255	0.030	200.00	0.522	60	255	6	0
3	0.000	255	0.030	200.00	0.522	60	255	6	0
4	0.000	255	0.030	200.00	0.522	60	255	6	0
5	0.000	255	0.030	200.00	0.522	60	255	6	0
6	0.000	255	0.030	200.00	0.522	60	255	6	0
7	0.000	255	0.030	200.00	0.522	60	255	6	0
8	0.000	255	0.030	200.00	0.522	60	255	6	0
9	0.000	255	0.030	200.00	0.522	60	255	6	0
A	0.000	255	0.030	200.00	0.522	60	255	6	0
В	0.000	255	0.030	200.00	0.522	60	255	6	0
C	0.000	255	0.030	200.00	0.522	60	255	6	0
D	0.000	255	0.030	200.00	0.522	60	255	6	0
E	0.000	255	0.030	200.00	0.522	60	255	6	0
F	0.000	255	0.030	200.00	0.522	60	255	6	0

These are the [Upload/Download] buttons used to transfer files to and from the Mechatronics Cylinder. In "Offline" mode, these buttons are not available.


The notation can be set to [Hexadecimal], [Decimal], and


Dyadic Systems – TBVST Manual

Please double click the data that needs to be changed, change the data, then press enter.

Menu bar has following functions:

4.3. System Parameter Data

The following screen displays global system parameters for your actuator, in various number systems (selected by the "Notation" control).

File(F) Transfer(T) Edit(E)	Easy Edit(S) Window(W) He	lp(H)
	b 💼	Notation Application Oriented
000: CNTM [mm]	8053063.673	
001: CNTL [mm]	-8053063.680	
002: LIMM [mm]	0.060	
003: LIML (mm)	-50.055	
004: ZONM [mm]	8053063.673	
005: ZONL [mm]	-8053063.680	
006: ORG	7	
007: PHSP	0	
008: FPIO	96	
009: BRSL	4	
00A: OVCM [mm/sec]	20.00	
00B: 0ACC [G]	0.041	
00C: RTIM [msec]	255	
00D: INP [mm]	0.030	
00E: VCMD [mm/sec]	200.00	
00F: ACMD [G]	0.522	
010: SPOW	60	
011: DPOW	255	
012: PLG0	6	
013: MXAC	0	
019: 0DPW	224	
01A: OTIM [msec]	8192	
01B: ZRCT	-2147483584	
01C: PVCM [mm/sec]	0.00	

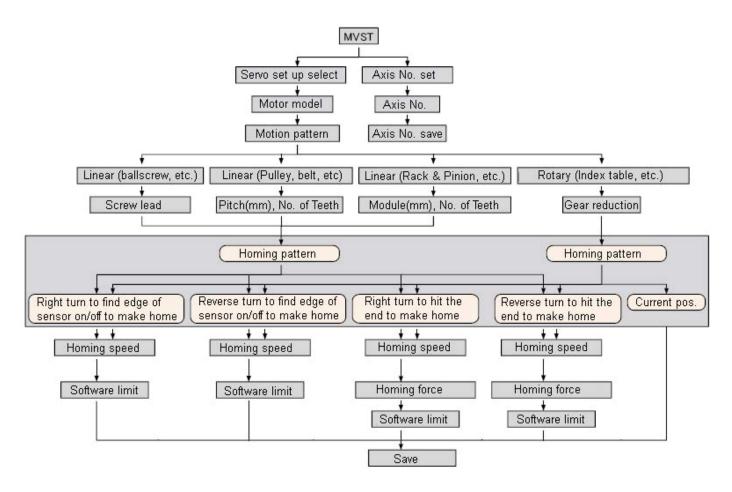
The System Parameter can be easily changed by clicking [Easy Edit (S)]. Please refer to section 3.4. [Actuator Setup Menu] for details.

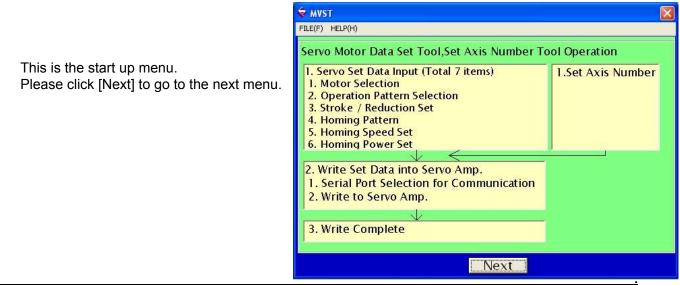
		Motor Besol				
Type of actuat Linear	er	Motor Neson		e] / Motor Revolutio	on	Save
isply Resoluti	on	Pitch	Unit			
0.001	~		6 mm	/ Motor Revolution	on	Close
Coordinate	System					
Feedback Ty	pe Incre	mental	→ Tota	al Stroke	50.1	115 mm
Homing B	everse End		-			
Velocity Accelaration		.00 mm/sec)41 G		ent Limitter in Homir nover Distance	-	100 % 480 mm
ZONE Bou						400
Forward Bour	ndary	-8053063.680	mm F	leverse Boundary	8053063.6	673 mm
elocity in pus	her positioni	ng		7.50 mm/sec	PIO Mode	
*ILK perform		llation of posit	ioning		Standard Air Mode1	

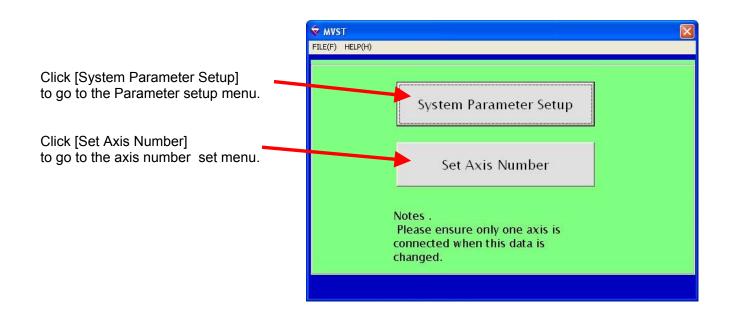
Following is a brief description of each of the items in the System Parameter Date list. [Please take care if changing these values as you may incapacitate the controller.]

000: CNTM [mm] 001: CNTL [mm] 002: LIMM [mm] 003: LIML [mm] 004: ZONM [mm] 005: ZONM [mm] 006: ORG 007: PHSP 008: FPIO 009: BRSL 00A: OVCM [mm/se	Coordinate system range + side max Coordinate system range - side max Software stroke limit + side Software stroke limit - side Zone border value + side Zone border value - side Homing pattern selection code Motor activate phase signal detection motion parameter I/O function mode parameter Serial communication speed selection code ec] Homing motion speed command		
00B: OACC [G]	Homing motion acceleration		
00C:RTIM [msec]	Slave transmitter activation minimum delay time parameter		
00D: INP [mm]	In position width default value		
00E: VCMD [mm/sec] Speed command default value			
00F: ACMD [G]	Acceleration command default value		
010: SPOW	Position stop status electrical current limit default		
011: DPOW	Position moving status electrical current limit default		
012: PLF0	Servo gain number default value		
013: MXAC	Motion Type (max accel, relative, push force, etc.) default value		
019: ODPW	Homing motion electrical current limit value		
01A: OTIM [msec]	Homing time out value		
01B: ZRCT	Homing return stroke (turnover distance)		
01C: PVCM [mm/sec] Push force target speed			

Sold & Serviced By:


sales@electromate.com www.electromate.com

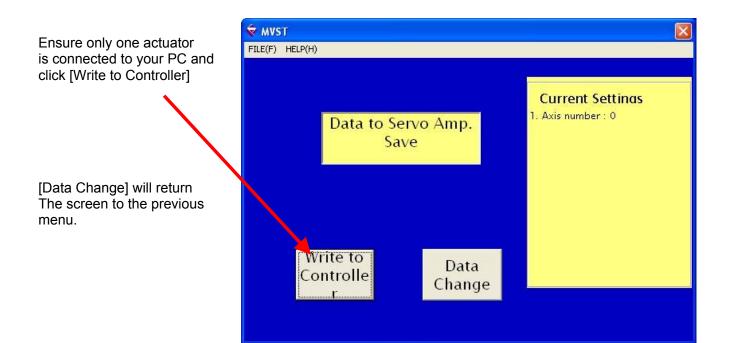



5. MVST ServoMotor Configurator

The purpose of the MVST software is to facilitate the parameter setup for Dyadic servo motors. MVST can also be used to change the axis number of an actuator.

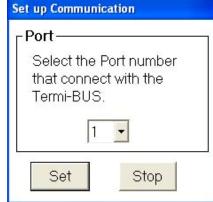
After starting MVST, please enter values and/or select items according to the following flow chart depending on the nature and specifics of the application:

5.1. Procedure for Changing the Axis Number


Please click [Set Axis Number]. The following menu will appear.

Please choose the new number for your axis. Then click [Next].	VINT		×
If this operation should be cancelled, please click [Back].	1. Set Axis Number 0 1 2 3 4 5 6 7 8 9 A B		Current Settinas 1. Axis number : 0
		Next	Back

Sold & Serviced By:



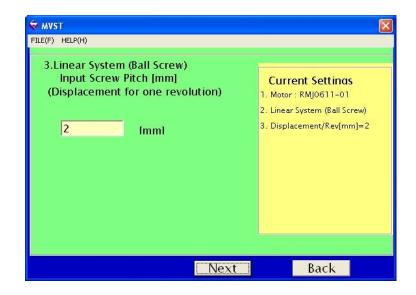
The serial port number selection menu as shown at right will appear. Select the serial port that the Mechatronics Cylinder is connected to.


Click "Set" to start communication.

5.2. Mechanism Data Setup

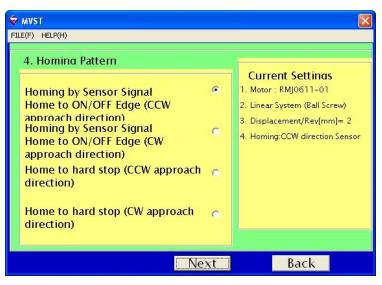
Please click [System Parameter Setup]. The "Motor Selection" menu will appear. This screen is used to establish the basic mechanical ratio in case your system uses the G1 or G2 motor. Please select the motor that is closest to what you are using, and then click [Next].

Click [Back] to go back to the previous Menu.

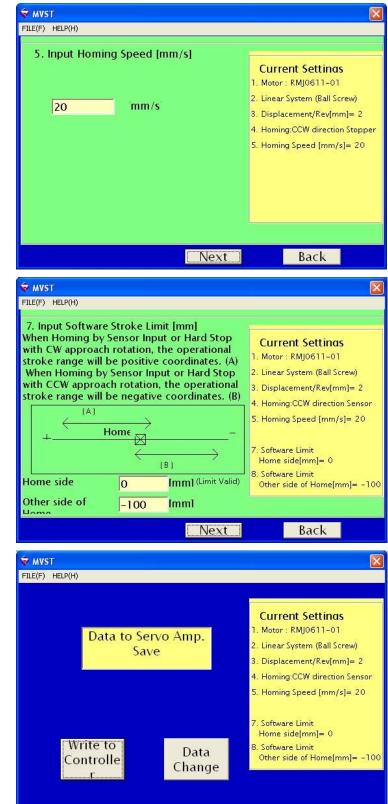

[Operation Type Selection]

Please select the mechanism type. Then please click [Next] for next set up, Please click [Back] to go back to the previous screen.

🗢 MVST					
FILE(F) HELP(H)					
2. Operation Pattern Selection					
Linear system (Ball Screw, etc.)	œ	Current Settinas 1. Motor : RMJ0611-01 2. Linear System (Ball Screw)			
Linear system (Pulley, Belt, etc.)	с				
Linear system (Rack, Pinion, etc.)	c				
Rotary system (Index Table, etc.)	c				
	ext	Back			


[Screw Pitch] menu

Please select the displacement of the tooling per revolution of the motor selected in step 1. Then click [Next]. Click [Back] to go to the previous Menu.


[Homing Pattern] menu

Please select the required Homing pattern, then click [Next]. See the RSA manual for more information on Homing. Click [Back] to go to the previous Menu.

[Homing Speed] menu

Please enter the homing speed. This screen is skipped if the system is set to home to the current position. Then click [Next]. Click [Back] to go to the previous Menu.

[Software Limit Setup] menu

Please enter the stroke limits. This menu is not used for rotary systems. Then click [Next].

Click [Back] to go to the previous Menu.

[Parameter Save] menu

Click [Write to Controller] to save system parameters you have set.

Choose your COM Port and click "Set" in the next dialog to transfer data.

Click [Data Change] to go back To the previous menu.

Imported by:

Mirai Inter-Technologies Systems Ltd.

Sold & Serviced By:

